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Abstract: In this study, novel composites were produced by blending partially cyclized polyacryloni-
trile (cPAN) and poly(amide-imide) (PAI) in N-methylpyrrolidone in order to fabricate asymmetric
membranes via phase inversion method. The compatibility of PAI and cPAN through possible inter-
molecular interaction was examined by quantum chemical calculations. The composite membranes
were characterized by FTIR, SEM, contact angle measurements, etc. A considerable reduction in
the contact angles of water and ethylene glycol (EG) was observed after adding cPAN to the PAI
membrane, which is evidence of improved membrane hydrophilicity. Membrane transport properties
were investigated in ultrafiltration tests by measuring the pure water flux, rejection of proteins, and
flux recovery ratio (FRR). The best properties were found for the membrane containing 5 wt% cPAN;
an increase in BSA rejection and a remarkable increase in FRR were observed, which can be explained
by the hydrophilization of the membrane surface provided by the presence of cPAN.

Keywords: ultrafiltration; polymer composites; cyclized polyacrylonitrile; poly(amide-imide)

1. Introduction

At present, membrane methods are widely applied for the separation of liquid me-
dia [1–5]. Ultrafiltration (UF) is one of the most common membrane methods, which is
widely used for wastewater treatment in food and biopharmaceutical industries due to
its low energy consumption, ease of operation, and high efficiency [6,7]. UF allows for
improved quality of life by purifying water, which is the basis of all living organisms, of
dissolved organic macromolecules, suspended particles, viruses, etc. [8,9]. An ideal UF
membrane has high permeability and rejection, as well as anti-fouling properties. However,
it should be recognized that the performance and anti-fouling properties of known poly-
meric membranes are rather low due to their hydrophobic nature, which leads to membrane
fouling [10,11]. Membrane contaminants such as proteins, microorganisms, and colloidal
solids can deposit on a membrane surface and block pores, which has an adverse effect
on membrane performance as a result of reduced fluxes, changing membrane selectivity,
increased operating costs, and shortened membrane life cycles [12,13]. Therefore, a highly
relevant step is to modify UF membranes to overcome membrane fouling and enhance
water fluxes [14–16]. Common methods include coating and grafting on the membrane
surface [17,18]. However, the blending method is simpler and more versatile for controlling
the membrane structure, properties, and filtration efficiency [19]. It should be recognized
that the blending method often faces the issue of poor compatibility of blended polymers,
which can lead to a rough membrane surface and defect formation. Polymers with similar
molecular structure generally exhibit good compatibility, and their blending leads to the
improvement of membrane operational characteristics [20,21].
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Membranes based on aromatic poly(amide-imides) are being actively developed and
researched [22–26]. In this work, we study membranes based on poly[(4,4′-bisamide)-
oxydiphenylene-N-(p-phenylene)-4-phthalimide] (PAI), i.e., poly(amide-imide) (Figure 1),
which has been established as a membrane material in gas separation [27,28] and pervapo-
ration [29] processes.
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Figure 1. Molecular structures of (a) PAI and (b) cPAN.

This PAI belongs to the class of polyheteroarylenes, and its high thermal, mechanical,
and transport properties are determined by the presence of the amide and imide functional
groups in the monomer unit. A.N. Cherkasov et al. produced a defect-free, asymmetric
flat-sheet PAI membrane [30].

The transport properties of UF membranes are significantly affected by the introduc-
tion of various additives, including polymeric additive [31]. In this work, PAI is modified
by an additive of partially cyclized polyacrylonitrile (cPAN), in which the parts of nitrile
groups of cPAN were converted into the cyclic sequences containing polyconjugated bonds
of the imine and carbonyl groups as a result of chemical treatment with organometallic
compounds [32,33]. cPAN is not a flexible polymer and cannot form films on its own. How-
ever, it is resistant to most organic solvents, swells and dissolves only in amide solvents
(in particular, N-methylpyrrolidone), and has high thermal and chemical stability [34].
cPAN has been used as a polymer additive for obtaining UF polyimide membranes from
polyamic acid, where it also acts as an imidization catalyst [35].

The aim of this work is to select the conditions for obtaining UF asymmetric PAI
membranes with increased permeability, to create an ultraporous asymmetric membrane
from a blend of PAI and cPAN, and to study the effect of cPAN on the structure and
transport properties of membranes based on PAI.

2. Materials and Methods
2.1. Materials

PAI was synthesized by low-temperature polycondensation in N-methylpyrrolidone
(NMP) as described in [36].

Polyacrylonitrile (PAN) was synthesized by anionic polymerization; cPAN was ob-
tained from PAN by treatment with lithium tert-butoxide in dimethyl formamide in an
inert gas atmosphere at a temperature ≥0 ◦C [37]. The process was terminated by adding
acetic acid to the solution; then, the reaction mixture was filtered, and the polymer was
isolated by precipitation into water. After washing with water, cPAN powder was dried
in air.

The structures of PAI and cPAN are shown in Figure 1.
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2.2. Preparation of Membranes

Asymmetric membranes were obtained by the phase inversion technique. To prepare a
polymer blend in a casting solution, calculated amounts of cPAN powder (5, 10, or 15 wt%)
were added to a PAI solution in N-methylpyrrolidone (NMP) under thorough stirring.

Asymmetric membranes were obtained by casting a 12 wt% solution of PAI or PAI-
cPAN in NMP onto a glass plate using a casting knife with a gap of 0.3 mm. Then, the glass
plate with the polymer solution was immersed into a coagulating bath at room temperature.
Water or a water/ethanol mixture (60/40 w/w) was used as a coagulant. The formed
membrane was kept in the coagulating bath for ~3 h. The membrane was then washed
with water, ethanol, and hexane and dried. The composite membranes containing 5, 10,
and 15 wt% of cPAN additive are denoted as PAI-5, PAI-10, and PAI-15, respectively, in
this work.

2.3. Computational Details

Full geometry optimization of all model structures was carried out at the PM6 level
of theory with the help of the Gaussian-09 program package (Gaussian, Inc., Wallingford
CT, USA) [38]. No symmetry restrictions were applied during the geometry optimization
procedure. The Hessian matrices were calculated for all optimized model structures
to prove the location of correct minima on the potential energy surface (no imaginary
frequencies were found in any case). The thermodynamic parameters were calculated
at 298.15 K and 1.00 atm (Table S1, Supplementary Materials). The Cartesian atomic
coordinates for all optimized equilibrium model structures are presented in Supplementary
Materials as XYZ files.

2.4. Characterization

The presence of functional groups and their intensities were analyzed via a Bruker
Tensor 27 FTIR spectrometer (Bruker Daltonics, Bremen, Germany) with a resolution of
1 cm−1 in the range of 500–4000 cm−1 at 25 ◦C.

Membrane morphology was studied by scanning electron microscopy (SEM) using a
Zeiss SUPRA 55VP (Carl Zeiss, Oberkochen, Germany) microscope. To prepare a sample
for SEM, the dried membrane was cracked in liquid nitrogen and then coated with a
20 nm thick platinum layer using a Quorum 150 cathode-sputtering installation (Quorum
Technologies Ltd., Lewes, UK).

Contact angles of liquids on membrane surfaces were measured via the sessile drop
method as described in [39] at ambient temperature and atmospheric pressure. Liquids
under study were water and ethylene glycol, with a surface tension equal to 72.4 mN/m
and 47.7 mN/m, respectively.

Ultrafiltration experiments were carried out in an FM-01 dead-end stirred cell at
ambient temperature; the membrane diameter was 29 mm, and the initial filtration volume
was 10 mL [40]. A transmembrane pressure of ~1.6 bar was created by supplying a nitrogen
flow. The amount of permeate (filtrate) was determined by the weight method.

The data of UF experiments were used to calculate the transport properties of the
membranes. The flux through the membrane, J (m·h−1·bar−1), was calculated as:

J =
V

t·S·P (1)

where V is the volume of the permeate (m3), t is the filtration time (h), S is the membrane
surface area (m2), and P is the transmembrane pressure (bar).

Separation efficiency of the membranes was determined in UF experiments using
1 g/L aqueous solutions of various proteins (Table 1) according to the technique described
in [41].
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Table 1. Molecular weights (M) and Stokes radii (rS) of protein molecules.

Protein M 10−3, g/mol rS, Ǻ

Ovalbumin 44.0 28.6
Bovine serum albumin 67.0 34.0

γ-globulin 160.0 46.5

The protein concentration in the feed and permeate was determined using a PE-5400UF
spectrophotometer. The measurements were carried out at a wavelength of 280 nm.

The rejection (R) was calculated by the following equation [42]:

R =

(
1−

Cp

C0

)
·100%, (2)

where Cp is the protein concentration in the filtrate, and C0 is the protein concentration in
the feed (g/L).

The flux recovery ratio (FRR) was calculated using the following equation:

FRR =
J0t

J0
, (3)

where J0 is the pure water flux through the membrane, and J0t is the pure water flux after
ultrafiltration of the protein solution at the same pressure.

3. Results and Discussion
3.1. Transport Properties of Poly(Amide-Imide) (PAI)

The membranes studied in this work were prepared from poly[(4,4′-bisamide)
oxydiphenylene-N-(p-phenylene)-4-phtalimide] (PAI) (Figure 1); the main physical and
mechanical properties of this polymer are given in Table 2 [36]. The high density, high glass
transition temperature, and high level of mechanical properties of this polymer should
contribute to the formation of mechanically strong, thermally and chemically resistant
membranes from this polymer.

Table 2. Physical and mechanical properties of PAI [36].

Property Unit Value

Molecular weight g·mol−1 60,000
Density g·cm−3 1.50

Glass transition temperature ◦C 230
Break stress MPa 125

Ultimate deformation % 53

It is known that the conditions of formation of asymmetric membranes strongly af-
fect their morphology and transport parameters [43]. Thus, one successful method for
increasing the productivity of membranes is to vary the composition of the coagulant in
the precipitation bath. The conventional and most accessible coagulant for polyheteroary-
lene membranes is water. In this work, another coagulant that combines soft and hard
precipitants was studied, namely water and ethanol in a ratio of 60/40 wt%.

Figure 2 shows the dependence of pure water flux and rejection of bovine serum
albumin (BSA) on the composition of the coagulation bath. Changing the composition of
the bath significantly affects the transport properties of the membranes. The pure water
flux increased by nine times when using the water/ethanol mixture (60/40 wt%) as a
coagulant. In addition, when using the water/ethanol mixture (60/40 wt%) as a coagulant,
the PAI membrane demonstrated the maximum rejection (100%), whereas this value for
the membrane prepared in water bath was equal to 97%. In our opinion, the improvement
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of PAI membrane properties is connected with the fact that the water/ethanol mixture
(60/40 wt%) is a softer coagulant than pure water [42].
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Figure 2. Dependence of pure water flux (J0) and BSA rejection (R) on the composition of
coagulation bath.

All the membranes further studied were prepared from a 12 wt% PAI solution in
NMP using the water/ethanol mixture (60/40 wt%) as a coagulant. To study the transport
properties of the PAI membranes in detail, UF experiments were carried out with the
aqueous solutions of proteins with different molecular weights: ovalbumin (44,000 g/mol),
bovine serum albumin (67,000), and γ-globulin (160,000). Figure 3 shows the dependences
of the flux of aqueous protein solutions and rejection of proteins on their molecular weights.
With an increase in the molecular weight of a protein, a decrease in the flux and an increase
in the rejection were observed. Ovalbumin (as the smallest protein molecule) showed the
highest permeability but the lowest rejection. When filtering the solutions of bovine serum
albumin and γ-globulin, the PAI membrane demonstrated a rejection rate close to 100%.

3.2. Membrane Structure and Characterization

The transport properties of UF membranes are significantly affected by the intro-
duction of various additives, including polymeric additive, in the membrane composi-
tion [44,45]. In this work, partially cyclized polyacrylonitrile (cPAN) was used as an
additive to PAI. During membrane formation from PAI/cPAN composites, it was shown
that the introduction of up to 15 wt% of cPAN led to the formation of single-phase solu-
tions, from which asymmetric membranes could be formed. The composite membranes
containing 5, 10, and 15 wt% cPAN additives in PAI are denoted as PAI-5, PAI-10, and
PAI-15, respectively.

Membrane composition was studied by FTIR spectrometry. Figure 4 shows the spectra
of PAI, cPAN, and their composites. The vibration band corresponding to the nitrile group
of cPAN is present at 2245 cm−1, and the vibration band assigned to C–H stretching
vibrations of cPAN appears at about 3000 cm−1. The bands characteristic of pure PAI
are as follows: the band corresponding to N-C=O stretching vibrations (1603 cm−1), the
band assigned to C=O stretching vibrations of the amide group (1651 cm−1), as well as
the bands corresponding to symmetric and asymmetric C-O-C stretching vibrations (1015
and 1220 cm−1, respectively). Furthermore, the bands corresponding to symmetric and
asymmetric C=O stretching vibrations also appear in the spectrum of pure PAI. As can
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be seen in Figure 4, the bands characteristic of cPAN also appear in the spectra of the
composite membranes. In particular, the band assigned to the nitrile group appears at
about 2250 cm−1 for PAI-5, PAI-10, and PAI-15, which confirms the presence of cPAN in
the structure of the composites. This band is the most intensive in the case of PAI-10
and PAI-15.

Membranes 2022, 12, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 3. Dependences of the flux of aqueous protein solutions (Jm) and rejection of proteins (R) on 
their molecular weights for the PAI membrane. 

3.2. Membrane Structure and Characterization 
The transport properties of UF membranes are significantly affected by the introduc-

tion of various additives, including polymeric additive, in the membrane composition 
[44,45]. In this work, partially cyclized polyacrylonitrile (cPAN) was used as an additive 
to PAI. During membrane formation from PAI/cPAN composites, it was shown that the 
introduction of up to 15 wt% of cPAN led to the formation of single-phase solutions, from 
which asymmetric membranes could be formed. The composite membranes containing 5, 
10, and 15 wt% cPAN additives in PAI are denoted as PAI-5, PAI-10, and PAI-15, respec-
tively. 

Membrane composition was studied by FTIR spectrometry. Figure 4 shows the spec-
tra of PAI, cPAN, and their composites. The vibration band corresponding to the nitrile 
group of cPAN is present at 2245 cm−1, and the vibration band assigned to C–H stretching 
vibrations of cPAN appears at about 3000 cm−1. The bands characteristic of pure PAI are 
as follows: the band corresponding to N-C=O stretching vibrations (1603 cm−1), the band 
assigned to C=O stretching vibrations of the amide group (1651 cm−1), as well as the bands 
corresponding to symmetric and asymmetric C-O-C stretching vibrations (1015 and 1220 
cm−1, respectively). Furthermore, the bands corresponding to symmetric and asymmetric 
C=O stretching vibrations also appear in the spectrum of pure PAI. As can be seen in Fig-
ure 4, the bands characteristic of cPAN also appear in the spectra of the composite mem-
branes. In particular, the band assigned to the nitrile group appears at about 2250 cm−1 for 
PAI-5, PAI-10, and PAI-15, which confirms the presence of cPAN in the structure of the 
composites. This band is the most intensive in the case of PAI-10 and PAI-15. 

Figure 3. Dependences of the flux of aqueous protein solutions (Jm) and rejection of proteins (R) on
their molecular weights for the PAI membrane.

Membranes 2022, 12, x FOR PEER REVIEW 7 of 14 
 

 

500 1000 1500 2000 2500 3000 3500 4000

cPAN

PAI-15

PAI-10

PAI-5

υ, cm−1 

PAI-0

 
Figure 4. ATR-FTIR spectra of cPAN, PAI-0, PAI-5, PAI-10, and PAI-15. 

It is known that the presence of intermolecular interactions contributes to better com-
patibility of polymers [35]. The nature of interactions between the two polymers used as 
components of the composites in this work was estimated using quantum calculations. 
The results of quantum chemical calculations (Tables 3 and S1) suggest the existence of 
four minima on the potential energy surface for hypothetical supramolecular adducts 
formed by the model structures of PAI and cPAN: adduct A, with bifurcated N–H···N 
intermolecular hydrogen bonds between the carboxamide group of PAI and two N atoms 
of the imine moieties in cPAN; adduct B, with N–H···N intermolecular hydrogen bonds 
between the carboxamide group of PAI and N atoms of the central imine moiety in cPAN; 
adduct C, featuring N–H···O intermolecular hydrogen bonds between the carboxamide 
group of PAI and O atoms of cPAN; and adduct D, bonded by multiple weak, noncovalent 
contacts involving C–H and Ph moieties but without a noticeable participation of N and 
O atoms from cPAN (Figure 5). The hypothetical supramolecular association process of 
PAI + cPAN → D is the most thermodynamically favorable (exothermic by 16.4 kcal/mol 
and exergonic by 0.9 kcal/mol). 

Table 3. Calculated values of enthalpies and Gibbs free energies of reaction (ΔH and ΔG) for various 
hypothetical supramolecular association processes (in kcal/mol). 

Supramolecular Association 
Process ΔH ΔG 

PAI + cPAN → A −8.0 3.0 
PAI + cPAN → B −8.3 5.7 
PAI + cPAN → C −10.5 2.6 
PAI + cPAN → D −16.4 −0.9 

 

Figure 4. ATR-FTIR spectra of cPAN, PAI-0, PAI-5, PAI-10, and PAI-15.

It is known that the presence of intermolecular interactions contributes to better
compatibility of polymers [35]. The nature of interactions between the two polymers used
as components of the composites in this work was estimated using quantum calculations.
The results of quantum chemical calculations (Tables 3 and S1) suggest the existence of
four minima on the potential energy surface for hypothetical supramolecular adducts
formed by the model structures of PAI and cPAN: adduct A, with bifurcated N–H···N
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intermolecular hydrogen bonds between the carboxamide group of PAI and two N atoms
of the imine moieties in cPAN; adduct B, with N–H···N intermolecular hydrogen bonds
between the carboxamide group of PAI and N atoms of the central imine moiety in cPAN;
adduct C, featuring N–H···O intermolecular hydrogen bonds between the carboxamide
group of PAI and O atoms of cPAN; and adduct D, bonded by multiple weak, noncovalent
contacts involving C–H and Ph moieties but without a noticeable participation of N and
O atoms from cPAN (Figure 5). The hypothetical supramolecular association process of
PAI + cPAN→ D is the most thermodynamically favorable (exothermic by 16.4 kcal/mol
and exergonic by 0.9 kcal/mol).

Table 3. Calculated values of enthalpies and Gibbs free energies of reaction (∆H and ∆G) for various
hypothetical supramolecular association processes (in kcal/mol).

Supramolecular Association Process ∆H ∆G

PAI + cPAN→ A −8.0 3.0
PAI + cPAN→ B −8.3 5.7
PAI + cPAN→ C −10.5 2.6
PAI + cPAN→ D −16.4 −0.9
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Scanning electron microscopy (SEM) was used to study the membrane morphology.
Figure 6 shows the cross-section micrographs for the PAI-0, PAI-5, PAI-10, and PAI-15 mem-
branes. The cross sections of all the membranes have an anisotropic structure consisting of a
thin top layer and a porous substrate. The micrograph of the PAI-0 membrane demonstrates
a finger-like structure throughout the thickness of the cross section. For PAI-5, PAI-10, and
PAI-15 composite membranes, the structure of the cross section changes to a combined
porous structure. Figure 6b–d shows that the cPAN addition leads to the formation of
a spongy structure towards the bottom surface, along with a finger-like structure. The
content of the spongy structure increases with increasing cPAN content in the composite.
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Figure 6. SEM micrographs of cross sections of the (a) PAI-0, (b) PAI-5, (c) PAI-10, and
(d) PAI-15 membranes.

We assume that the change in the membrane morphology after adding cPAN is due to
the formation of a supramolecular structure as a result of interactions between the cPAN
and PAI molecules. This assumption is supported by the results of quantum chemical
calculations discussed above (Table 3 and Figure 5). The above interactions lead to the
formation of PAI-cPAN associates and microheterogeneity, which results in a more porous
structure of the PAI-cPAN composite membranes.

The nature of the change in the surface properties of the PAI membrane modified with
cPAN was estimated by measuring the contact angles of two liquids (water and ethylene
glycol) on the membrane surfaces (Table 4). The water contact angle of pure PAI is 56◦,
and it decreases with increasing cPAN content in the composite membrane. The ethylene
glycol contact angle of the membrane surface has the same tendency to decrease after
adding cPAN. Thus, the introduction of cPAN contributes to hydrophilization of the PAI
membrane. This phenomenon may be explained using the data of quantum chemical
calculations. Intermolecular interactions between the cPAN and PAI molecules result in
the formation of supramolecular structures (adducts), where hydrophobic Ph moieties
are localized inside an associate, whereas more hydrophilic fragments are situated on
the surface.

Table 4. Contact angles of the membranes at 25 ◦C.

Liquid
Contact Angle, ◦

PAI-0 PAI-5 PAI-10 PAI-15

Water 56.0 35.6 33.3 32.6
Ethylene glycol 33.5 29.5 28.3 24.8
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3.3. Transport Properties of the Polymer Composites (PAI/cPAN)

The transport properties of the PAI/cPAN membranes were studied in UF experiments
with an aqueous solution of bovine serum albumin. Figure 7 shows the dependence
of aqueous BSA flux and BSA rejection on the cPAN content in the membrane. The
introduction of cPAN leads to a decrease in permeability. For the PAI-5 membrane, the
permeability of the aqueous BSA slightly decreases compared to the PAI membrane. At the
same time, high values of BSA rejection are observed for all the membranes. For the PAI-5
membrane, the BSA rejection exceeds 98 wt%.
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It is particularly noteworthy that cPAN additives increase the FRR. Figure 8 demon-
strates that the introduction of 5 wt% cPAN contributes to a significant increase in the FRR
up to 72% (compared to 46% for pure PAI). This fact can be explained by the hydrophiliza-
tion of the membrane and pore surfaces after the addition of cPAN, which prevents fouling
of the composite membrane [15,18]. A further increase in the cPAN content in the mem-
brane does not have such a pronounced effect on the FRR, although the FRR value for all
the composites exceeds that for the PAI membrane.
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A significant increase in the FRR for PAI-5 as compared with PAI can be associated
with a sharp decrease in the water contact angle and an increase in hydrophilicity, which
results in an increase in the FRR. As compared with PAI-10 and PAI-15, the predominant
finger-like structure of the porous substrate of PAI-5 is more accessible for regeneration after
the filtration of protein solutions. Thus, the enhanced FRR of PAI-5 is associated with hy-
drophilization and a change in the structure and shape of the microporous substrate [15,18].

To determine the value of the molecular weight cut-off (MWCO) of the studied mem-
branes, UF experiments were carried out with aqueous solutions of ovalbumin, bovine
albumin, and γ-globulin. Figure 9 shows the dependence of rejection on the protein molec-
ular weight for all membranes under study. The data shown in Figure 9 allowed us to
determine the value of the MWCO, which corresponds to the weight of a protein rejected by
90% [32]. The PAI-5 and PAI-10 membranes are typical ultrafilters, with an MWCO equal to
60 × 103 g/mol. The PAI-15 membrane shows a rather low efficiency.
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Thus, it was found that the composite containing 5 wt% cPAN exhibits the optimal
transport characteristics. The introduction of cPAN leads to hydrophilization of the mem-
brane surface and porous substrate, which prevents membrane fouling.

4. Conclusions

In this work, novel composites were prepared by blending PAI and cPAN in casting
solutions in order to fabricate asymmetric membranes via phase inversion method. A
water/ethanol (60/40 wt%) mixture was used as a coagulation medium. The SEM studies
shows the formation of an anisotropic structure consisting of a thin top layer and a porous
substrate. The porous substrate of pure the PAI membrane has a finger-like structure. The
introduction of cPAN led to the formation of a spongy structure near the bottom surface.
The content of the spongy structure increases with cPAN content in the composite.

The compatibility of PAI and cPAN through possible intermolecular interaction was
investigated by FTIR and quantum chemical calculations. It was suggested that hypothetical
thermodynamically favorable supramolecular adducts could be formed. Measurements
of water and ethylene glycol contact angles showed that the contact angle values for
cPAN/PAI composites containing 5, 10, and 15 wt% of cPAN were lower than those of the
pure PAI matrix, which indicates enhanced membrane hydrophilicity.
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Membrane transport properties were investigated in UF tests by measuring the pure
water flux, protein rejection, and flux recovery ratio. The best properties were found for the
membrane containing 5 wt% cPAN, characterized by an increase in BSA rejection up to 98%.
Furthermore, the addition of 5 wt% cPAN contributes to a significant increase in the flux
recovery ratio up to 72%, which can be explained by hydrophilization of the membrane
and pore surface. UF tests with proteins of different molecular weight showed that the
composite membranes developed in this work are typical ultrafiltration membranes. The
molecular weight cut-off is about 60 × 103 g/mol for the PAI-5 and PAI-10 membranes.

It should be noted that the use of cPAN as a modifier is promising in terms of increasing
the flux recovery ratio. The relatively high FRR of the composite membranes (compared to
that of pure PAI) is an important advantage because this factor can facilitate the process of
membrane regeneration and purification and reduce the loss of target components.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes12050489/s1; Table S1: Calculated enthalpies, en-
tropies, and Gibbs free energies (in Hartree) for optimized equilibrium model structures (H, S, and
G, respectively).
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