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Abstract: Membrane fouling remains one of the most critical drawbacks in membrane filtration
processes. Although the effect of various operating parameters—such as flow velocity, concentration,
and foulant size—are well-studied, the impact of particle shape is not well understood. To bridge this
gap, this study investigated the effect of polystyrene particle sphericity (sphere, peanut and pear) on
external membrane fouling, along with the effect of particle charge (unmodified, carboxylated, and
aminated). The results indicate that the non-spherical particles produce higher critical fluxes than the
spherical particles (i.e., respectively 24% and 13% higher for peanut and pear), which is caused by the
looser packing in the cake due to the varied particle orientations. Although higher crossflow velocities
diminished the differences in the critical flux values among the particles of different surface charges,
the differences among the particle shapes remained distinct. In dead-end filtration, non-spherical
particles also produced lower flux declines. The shear-induced diffusion model predicts all five
particle types well. The Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO (XDLVO)
models were used to quantify the interaction energies, and the latter agreed with the relative critical
flux trends of all of the PS particles. As for the flux decline trends, both the DLVO and XDLVO results
are in good agreement.

Keywords: microfiltration; microplastics; membrane fouling; microparticles; interaction energy;
shear-induced diffusion; critical flux

1. Introduction

Membrane-based separation is widely used in water/wastewater treatment, food
processing, and bioprocesses, thanks to its relatively affordable and easier operations
compared to traditional techniques [1–4]. Unfortunately, membrane fouling, which causes
a decrease in permeate flux over time [5], remains the biggest drawback [6–8]. Fane et al. [9]
classified the fouling phenomenon into three categories, namely the closure of pores, pore
plugging, and cake layer formation, among which cake formation is dominant until the
end of the filtration [10]. Crossflow microfiltration, in which the feed is pumped across the
membrane surface to confer a tangential shear to mitigate fouling, is a common practice [11].
The extent of membrane fouling or particulate deposition onto the membrane surface
depends on several parameters, such as the crossflow velocity, feed concentration, particle
type and size [12–14], and membrane surface characteristics [15], which have unsurprisingly
been studied well. However, although the foulants are likely not perfectly spherical, the
effect of particle non-sphericity on membrane fouling remains poorly understood.

Connell et al. [16] found that particle shape affected the flux trends, with irregularly
shaped particles achieving less fouling, which has been tied to spherical particles forming
more uniform cakes with greater resistance. Smidova et al. [17] also reported that particle
shape affected flux trends and fouling. Wang et al. [18] reported that particles of different
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sphericities exhibited different particle velocity distributions and different orientation
velocities at the same liquid flow rate. Abdelrasoul et al. [19] developed a mathematical
model describing membrane fouling by polydisperse latex particles with different shapes,
and noted that membranes with uniform pore sizes and straight pores are highly affected
by particle shape and sphericity parameters.

Apart from the membrane-filtration field, particle sphericity effects and their corre-
sponding consequences have been reported in terms of different segregation extents [20],
different energy requirements for fluidization [21,22], different fluidizing qualities [23],
different contact forces and particle velocities [24], and different rotation tendencies [25].
A systematic, targeted study on the effect of particle shape on membrane fouling would
be useful.

Because the research gap with respect to the impact of particle shape on membrane
fouling is clear, this study focused on understanding and comparing the effects of particle
charge and shape during the microfiltration of micron-sized polystyrene foulant particles.
Five particle types were investigated: three sphere-shaped ones of different surface charges
(unmodified, aminated, and carboxylated), as well as two non-spherical ones (peanut and
pear). The Direct Observation Through the Membrane (DOTM) technique was used to
obtain images of the feed-membrane interface in real time, and to determine the critical
flux. The critical flux results were also compared with those predicted by the Shear-
induced Diffusion (SID) model. In addition to the crossflow filtration via the DOTM
technique, a dead-end filtration setup was employed in order to understand the impact
of crossflow on fouling by different particle types. Besides this, the Derjaguin-Landau-
Verwey-Overbeek (DLVO) and extended DLVO (XDLVO) models were used to calculate
foulant–membrane interactions.

2. Theory
2.1. Shear-Induced Diffusion (SID) Model

In the crossflow implemented in membrane-filtration modules to mitigate membrane
fouling, the velocity fields cause particle self-diffusion in the shear flow, which is described
by shear-induced hydrodynamic diffusion models [26]. Li et al. [27] reported that, for
smaller latex particles of 3 µm, similar to those in this study, the shear-induced diffusion
(SID) model has to be modified to the following:

Jcrit = 0.807
(

γ0D2

L

) 1
3

ln
(

φw

φb

)
(1)

where Jcrit is the critical flux (L/m2h), γ0 represents the shear rate at the membrane surface
(s−1, calculated by dividing the crossflow velocity by feed channel height), D represents

the diffusivity (m2/s, calculated using D
a2γ0

= Cdφw, where Cd = J/a4/3

γ0
and a is the foulant

diameter [27]), φw represents the particle volume fraction at the surface of the membrane
(set at 0.13 based on a membrane area coverage of 20% [27]), φb represents the particle
volume fraction in the bulk feed solution, and L represents the membrane length (m).

2.2. DLVO and Extended DLVO (XDLVO) Models

According to the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the total in-
terfacial interaction is expressed as the summation of Lifshitz–van der Waals (LW) and
electrostatic double-layer (EL) terms [28,29], given in Equation (2):

UDLVO
mlc = ULW

mlc + UEL
mlc (2)

where U represents the interaction energy, and the subscripts m, l, and c indicate the
membrane, liquid environment, and colloid, respectively. The extended DLVO theory
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(XDLVO) includes an additional Lewis acid–base (AB) component [30], which improves
the predictability for membrane fouling in aqueous media [30,31]:

UXDLVO
mlc = ULW

mlc + UEL
mlc + UAB

mlc (3)

2.2.1. Lifshitz–van der Waals (LW) Interaction

The LW interaction energy is the free energy of adhesion per unit area (∆GLW
yo ) between

two surfaces that accounts for the non-polar interaction:

∆GLW
yo = 2

(√
γLW

l −
√

γLW
m

)(√
γLW

c −
√

γLW
l

)
(4)

where y0 is the minimum equilibrium cut-off distance between the two surfaces, and is
assigned a value of 0.158 nm [30], and γ symbolizes the surface tension.

The LW interaction energy as a function of the separation distance (h) between a
colloid and a membrane can be calculated from

ULW
mlc(h) = 2π∆GLW

y0

y2
0ac

h
(5)

where ac is the radius of the colloid.

2.2.2. Electrostatic Double-Layer (EL) Interaction

The EL interaction is related to the surface zeta potentials, and the free energy per unit
area (∆GEL

yo ) between two surfaces is expressed as

∆GEL
y0 =

ε0εrκ

2

(
ζ2

m + ζ2
c

)(
1 − coth(κy) +

2ζmζc

(ζ2
m + ζ2

c )
csch(κy)

)
(6)

where ζm and ζc are the zeta potentials of, respectively, the membrane and the colloid, ε0 is
the vacuum permittivity (8.854 × 10−12 C/Vm), εr is the dielectric constant of the liquid
medium (80 for DI Water [32]), and κ is the inverse Debye screening length. As for κ, it was
calculated as follows:

κ−1 =

√
Dε0εr

σ
(7)

where D is the diffusion coefficient (10−9 m2/s) [33] and σ is the electrical conductivity of
the liquid medium. Particularly, σ was measured to be 1.162 µS/cm for DI Water using a
conductivity meter (SevenCompact, Mettler Toledo).

The EL interaction energy as a function of the separation distance (h) between a colloid
and membrane can be calculated from

UEL
mlc(h) = πε0εrac

[
2ζmζc ln

(
1 + e−κh

1 − e−κh

)
+
(

ζ2
m + ζ2

c

)
ln
(

1 − e−2κh
)]

(8)

2.2.3. Lewis Acid–Base (AB) Interaction

The AB interaction denotes the polar interaction represented by the electron acceptor
(γ+) and electron donor (γ−) parameters of the surface tension. The free energy of
adhesion per unit area (∆GAB

y0 ) between two surfaces can be expressed as follows:

∆GAB
y0 = 2

√
γ+

l

(√
γ−

m +
√

γ−
c −

√
γ−

l

)
+ 2
√

γ−
l

(√
γ+

m +
√

γ+
c −

√
γ+

l

)
− 2
(√

γ+
m γ−

c +
√

γ−
m γ+

c

)
(9)



Membranes 2022, 12, 403 4 of 19

The AB interaction energy as a function of the separation distance (h) between a
colloid and membrane is given as

UAB
mlc(h) = 2πacλ∆GAB

y0
exp
[

y0 − h
λ

]
(10)

where λ is the characteristic decay length of the AB interaction in water, and the commonly
used value for aqueous systems is 0.6 nm [34].

The overall surface tension (γTOT) is the summation of the non-polar (LW) and polar
(AB) components:

γTOT = γLW + γAB (11)

where the polar surface tension component γAB is a function of the electron acceptor (γ+)
and electron donor (γ−) parameters of the surface tension:

γAB = 2
√

γ+γ− (12)

The surface energetic parameters for the alumina membrane, water, and polystyrene
(PS) are listed in Table 1.

Table 1. The surface tension components of the alumina membrane, water, and polystyrene (PS) were
found from earlier reports.

γTOT (mJ/m2) γLW (mJ/m2) γAB (mJ/m2) γ+ (mJ/m2) γ− (mJ/m2) Ref.

Al2O3 (Membrane) 39.6 31.6 8.0 0.6 27.2 [35]
Water 72.8 21.8 51.0 25.5 25.5 [36]

Polystyrene (PS) 42.0 42.0 0 0 1.1 [35]

3. Materials and Methods
3.1. Chemicals and Reagents

The five different polystyrene (PS) microparticles (particle density = 1.05 g/mL) used
in this study were purchased from Magsphere Inc. (Pasadena, CA, USA). Three were
spherical (unmodified (PS005UM), carboxylated (CA005UM), and aminated (AM005UM))
and two were non-spherical (pear-shaped (PNT005UM) and peanut-shaped (PNT005UM)).
Figure 1 shows the high-magnification field emission scanning electron microscope (FESEM;
JEOL JSM-6701F; 5 kV accelerating voltage and high-vacuum (9.63 × 10–5 Pa) mode)
images of the spherical, pear-shaped, and peanut-shaped PS microparticles. All of the
FESEM samples were coated with platinum in order to avoid the charging effect during
the imaging. The vendor-given dimensions (listed in Table 2) specified that the spherical
particles had diameters of approximately 5 µm (Figure 1a), the pear-shaped ones had,
respectively, a maximum length and width of 5.1 and 3.8 µm, and the peanut-shaped ones
had, respectively, a maximum length and width of 5.1 and 3.4 µm. The particle dimensions
were also measured via FESEM, and were found to be similar to the vendor-given values,
as listed in Table 2. The particle size distributions and zeta potentials of the feed samples
(i.e., either 50 mg/L or 25 mg/L of PS in DI water (Milli-Q DI Water Purification System
(Merck-Millipore, Burlington, MA, USA)) were measured using the particle size analyzer
(Litesizer 500, Anton Paar, Graz, Austria). The volume-based particle size distributions
(PSDs) are presented in Figure 2, reflecting that the sizes were below 5 µm, with mean
values between 1.1–2.8 µm (Table 2). While all of the particles investigated fell within a
narrow size range, the width of the PSD of the pear-shaped PS was distinctly different,
likely due to the varied orientations during the size analysis.
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Table 2. Characteristics of the different PS microparticles.

PS Type

Vendor-Given
Particle

Dimensions
(µm)

Measured Particle
Dimensions via

FESEM (µm)

Measured Mean
Particle Sizes
via Particle

Analyzer (µm)

Particle
Sphericity

Surface
Group Surfactant Zeta Potential

(mV)

Unmodified 5.1 ± 0.16 5.1 ± 0.10 2.8 ± 0.39 1.00 Sulfate Anionic −53.23 ± 0.08
Carboxylated 5.2 ± 0.18 5.1 ± 0.06 2.2 ± 0.31 1.00 Carboxyl Anionic −16.28 ± 0.45

Aminated 5.3 ± 0.16 5.3 ± 0.09 2.4 ± 0.23 1.00 Amino Cationic 15.62 ± 4.65
Pear-shaped 3.8 by 5.1 3.9 by 5.4 1.4 ± 0.38 0.82 Sulfate Anionic −41.41 ± 0.42

Peanut-
shaped= 3.4 by 5.1 3.0 by 5.1 1.1 ± 0.18 0.52 Sulfate Anionic −44.75 ± 0.23

The membranes used in the experiments were inorganic, namely Anopore alumina
(Anodisc, Whatman, Buckinghamshire, UK) with a diameter of 47 mm and a nominal pore
size of 0.2 µm. The membrane was glued (Araldite) between two pieces of paper (55 mm
by 135 mm) from which a square (27 × 27 mm) was cut out from the center in order to
expose an active membrane area of 7.29 cm2.

3.2. Determining Particle Sphericity

The particle sphericity can be quantified using the following [37]:

ϕ =
π·d2

eq

SA
(13)

where π·d2
eq is the surface area of the volume-equivalent sphere, and SA is the particle

surface area. The unmodified, carboxylated, and aminated PS particles were spherical, as
seen in Figure 1a, giving ϕ as 1.

Following the former studies that focused on the pear-like [38,39] and peanut-like [40,41]
shapes in different applications, the sphericity values of the pear and peanut-shaped
particles were calculated from Equation (13) as 81.8% and 51.6%, while the corresponding
particle radii values are 1.90 and 1.89 µm, respectively.

3.3. Experimental Setups

Figure 3 presents the schematic of the Direct Observation Through the Membrane
(DOTM) setup, which involves a camera (Axiocam 105 Color, Zeiss, Oberkochen, Germany)
coupled with a light microscope (Axio Imager.A2m, Zeiss, Oberkochen, Germany) to obtain
a direct visual observation of the membrane fouling during the filtration. The DOTM
technique has been used popularly for crossflow microfiltration applications involving a
wide range of foulants, including oil emulsions [13,14], bacteria [42], algae [43], hematite
flocs [44], particulate foulants [45], surfactants [13,14] and organic solvents [46]. In par-
ticular, the Anopore membrane becomes transparent when it is wet, which is required
for the DOTM technique. In order to focus through the transparent membrane at the
feed–membrane interface, the objective of the microscope was placed above the crossflow
membrane module, which was made of acrylic to allow light transmission. The membrane
module had dimensions of 105 mm in length, 35 mm in width, and 3 mm in height, with the
feed and permeate channel heights being 2 mm and 1 mm, respectively. Additionally, the
other system components were a gear pump (GJ-N25.PF/S.A, Micropump Inc., Vancouver,
WA, USA) to control the feed flow (and thus to set the targeted crossflow velocity (CFV));
a peristaltic pump (Masterflex L/S 7519-20/85, Cole-Parmer, Vernon Hills, IL, USA) to
control the permeate flow; three pressure transmitters (Transducer 206, Cole-Parmer, Ver-
non Hills, IL, USA) to measure the feed inlet pressure, feed outlet pressure, and permeate
inlet pressure (and thus the transmembrane pressure, which is the difference between the
feed and permeate pressures); a 600 mL glass beaker containing the feed solution, which
was placed on a magnetic stirrer plate (MR Hei-Mix S, Heidolph, Schwabach, Germany);
a 100 mL glass beaker containing the permeate placed on top of a balance (572, Kern,
Balingen, Germany) to measure the permeate mass; and a computer to record the images
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via the microscope software (Zen 2.3 lite, Zeiss, Oberkochen, Germany), and also to log the
pressure signals from the pressure transmitters and mass from the balance via LabVIEW
(2014-64 bit). For each crossflow experiment, 500 mL of the feed solution with the desired
PS concentration (i.e., 25 and 50 mg/L) was prepared, and the particles were kept homoge-
nously suspended in DI water using a magnetic stirrer. For the feed solutions containing
mixed PS microparticles, the composition was 50% by volume of each particle type, namely
50% unmodified and 50% pear-shaped, and 50% unmodified PS and 50% peanut-shaped PS.
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Figure 3. Schematic diagram of the Direct Observation Through the Membrane (DOTM) setup.

Dead-end filtration was also performed to investigate the effect of crossflow. The
experimental setup is presented in Figure 4 [47]. The setup was made of stainless steel and
included a membrane unit with an active membrane area of 1 cm2 and a feed tank with
a volume of 1000 mL. The tubings were made of polytetrafluoroethylene (PTFE; Teflon,
Masterflex, Cole-Parmer, Vernon Hills, IL, USA). A compressed air cylinder (Leeden, Singa-
pore) was used to supply the necessary pressure to drive the filtration. The transmembrane
pressure (TMP) was monitored based on the difference between the pressure gauge on
the air cylinder and the PTFE-diaphragm pressure gauge (0 to 200 psi) in the membrane
module. During the filtration, the permeate was collected in a glass container with a volume
of 1000 mL, which was placed on an electronic balance (ML4002, Mettler Toledo, Columbus,
OH, USA), and the mass was logged every 60 s via a piece of software (Balance Link,
Mettler Toledo, Columbus, OH, USA). For each dead-end filtration experiment, 400 mL of
feed was prepared with 5 mg/L PS.
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3.4. Critical Flux Determination

The critical flux (Jcrit) is the flux above which membrane fouling onsets [48]. In this
study, the critical flux values were identified by using the flux-stepping method [49]. The
initial permeate flux was fixed at 5 L/m2h for 10 min, and after that, the flux was increased
by 5 L/m2h every 10 min. At every permeate flux, an image was taken at the second
minute, then another image was taken at the tenth minute. All of the images were analyzed
using ImageJ to calculate the rate of change of the surface coverage (∆C/∆t):

∆C
∆t

=
C10th minute − C2nd minute
t10th minute − t2nd minute

(14)

Figure 5 presents a representative rate of change of concentration
(

∆C
∆t

)
versus the

permeate flux plot. The critical flux (Jcrit) was determined as the permeate flux at which
∆C
∆t exceeded a pre-determined threshold, which was determined as 0.2%/min, as per

previous studies [13,14,45]. The reported Jcrit values were based on duplicate or triplicate
experiments, with error bars reflecting the range of data. Three crossflow velocities (CFV)
in the range of 0.1–0.4 m/s were investigated, which correspond to the Reynolds number
(calculated by ρ×Deq×CFV

µ , where ρ and µ are the density and viscosity of the feed, and

Deq = 2×H×W
H+W where H and W are, respectively, the height and width of the feed channel)

in the range of 419 and 1677 [13].
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Figure 5. Plot of ∆C/∆t versus the permeate flux for 50 mg/L of aminated PS at CFV = 0.1 m/s. In
this case, the average critical flux was determined to be 14.0 L/m2h. Each error bar represents the
range of data obtained for at least two repeats.

4. Results and Discussion
4.1. Crossflow Studies

In order to assess the effect of surface charge and particle shape on membrane fouling,
Figure 6 presents the DOTM images at five fluxes (in the range of 0 to 40 L/m2h) for the
five PS particle types. Specifically, the increase in dark pixels at the higher fluxes reflects
the increase in particle deposition onto the membrane. Because the DOTM images are
two-dimensional, it is not possible to infer the cake layer thickness, but the images clearly
show the extent of the particle deposition. Among the spherical particles, the unmodified
particles exhibited the highest fouling, followed by aminated and then carboxylated par-
ticles. Comparatively, the non-spherical particles (i.e., pear-shaped and peanut-shaped)
produced less fouling than the spherical ones.

Figure 7a presents the relative critical flux (Jcrit) trends of the three spherical particles
with different surface charges. The most significant difference among the particle types was
at the lowest CFV, which agreed with an earlier study indicating that hydrodynamic effects
diminish surface energy effects at higher CFVs [45]. That is, the increase in CFV makes
the hydrodynamic effects (e.g., particle back transport) more notable, such that the critical
flux difference for the samples with different surface charges is decreased by increasing
CFV. The trends also show that the Jcrit values were not affected by the zeta potential.
Although the carboxylated PS had a less negative zeta potential than the unmodified
ones, the Jcrit values were higher, which can be linked to the surface modifications that
confer increased hydrophilicity [50]. The relative trends agree with both the external [51]
and internal [52] fouling trends reported by earlier studies that used Optical Coherence
Tomography (OCT) for dead-end filtration. Figure 7b presents the relative critical flux
(Jcrit) trends of the unmodified spherical and two non-spherical particles, which had more
similar zeta potentials (Table 2), at different CFV values. Expectedly, all of the Jcrit values
increased with increasing CFV. Irrespective of CFV, the peanut-shaped PS had the highest
Jcrit, followed by the pear-shaped then the unmodified (spherical) ones. Specifically, the
pear- and peanut-shaped particles had Jcrit values which were, respectively, 13% and 24%
higher than the spherical ones. This indicates that spherical particles tend to exhibit more
extensive fouling. This agrees with an earlier study indicating that highly irregularly shaped
particles had higher flux trends than the spherical ones, which was tied to sphere-shaped
particles depositing closer to form denser cakes [16]. Compared to Figure 7a, it is evident
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that higher CFV values did not diminish the differences in the Jcrit values among the particle
types in Figure 7b. Other than packing effects, another feature of non-spherical particles in
crossflow is the rotational effects. Higher CFV values accentuate the rotation [18], resulting
in more significantly different Jcrit values at the highest CFV of 0.4 m/s.
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Figure 6. Surface coverage images via the DOTM technique for different PS microparticles (unmodi-
fied, carboxylated, aminated, pear-shaped, and peanut-shaped) and permeate fluxes (0–40 L/m2h) at
CFV = 0.1 m/s. All of the feeds had the same PS particle concentration of 50 mg/L. The images were
taken at the end of the 10th minute of each permeate flux step.

In Figure 8, the Jcrit values are displayed for the five particle types at two different
concentrations, namely 25 mg/L and 50 mg/L, at a CFV of 0.1 m/s. As expected, an increase
in concentration decreased the Jcrit values. The relative trends among the different particle
types remained consistent, suggesting that CFV had a greater effect than concentration
on the distinct trends in the ranges considered. Apart from the DOTM images taken in
real-time (Figure 6), FESEM images were taken at the end of the filtration experiments in
order to better visualize the deposition patterns as shown in Figure 9. Clearly, the spherical
particles packed closer, whereas the non-spherical ones packed relatively more loosely due
to the varied orientations associated with the non-sphericity. This emphasizes the need
to consider particle shape effects in membrane fouling models due to the orientation and
packing effects.
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error bars represent the range of Jcrit values from repeated experiments.
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Figure 9. FESEM images of the fouled membranes with differently shaped PS microparticles after
crossflow filtration via the DOTM technique: (a) unmodified PS, (b) pear-shaped PS, and (c) peanut-
shaped PS. Permeate flux = 40 L/m2h. The images were taken at the end of the 10th minute.
CFV = 0.1 m/s, and PS concentration = 50 mg/L.

Furthermore, the Jcrit trends obtained by the DOTM agree with the SID model (Equation (1))
for all of the particle types (unmodified, carboxylated, aminated, pear-shaped, and peanut-
shaped PS), as shown in Figure 10. This appears to suggest that the SID model is able to
account for the differences caused by particles of different shapes and charges. Li et al. [27]
were able to use the same model for both 3 µm latex and 4 µm algae particles, affirming the
versatility of the model.
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Figure 10. Comparison of the critical flux and SID model trends of the PS particles: (a) unmodified,
(b) carboxylated, (c) aminated, (d) pear-shaped, and (e) peanut-shaped.

Because practical feeds are made up of mixed particle types, the effect of mixtures
was also investigated. Figure A1 presents the Jcrit values at the CFV value of 0.1 m/s of the
mixtures (50 vol% unmodified–50 vol% pear-shaped PS, and 50 vol% unmodified–50 vol%
peanut-shaped PS) vis-à-vis that of the constituents. Expectedly, the Jcrit values of the
mixtures lie in between those of the constituents. The corresponding DOTM images are
presented in Figures A2 and A3. The FESEM images in Figure A4 show that the packing is
increased compared to the non-spherical particles alone and decreased compared to the
spherical particles alone.

4.2. Dead-End Studies

Figure 11 presents the normalized flux (J/Jo) decline trends with respect to the permeate
volume for 5 mg/L of three PS particle types (unmodified, pear-shaped, and peanut-shaped)
at a fixed TMP of 0.5 bar. Clearly, the unmodified PS gave the greatest flux decline, while
the pear- and peanut-shaped ones gave similarly slower declines. The relative flux decline
trends disagree somewhat with the relative Jcrit trends in Figures 7b and 8, specifically in
that the peanut-shaped PS gave distinctly higher Jcrit values than the pear-shaped ones. The
discrepancy can be linked to the particle orientations of such non-spherical particles in the
presence and absence of crossflow. Connell et al. [16] reported that irregular shapes were
further apart from one another, and gave a greater cake voidage that mitigated membrane
fouling in crossflow filtration.
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Figure 11. Normalized flux with respect to the permeate volume for feeds containing spherical and
non-spherical PS microparticles. The concentration was 5 mg/L, and the TMP was 0.5 bar.

4.3. Interaction Energy

Interfacial interaction energy analysis between the membrane and particles was per-
formed. Figure 12 presents the DLVO and XDLVO calculations as a function of the sep-
aration distance. For DLVO (Figure 12a), the most attractive energy is exhibited by the
unmodified PS, followed by peanut-shaped, pear-shaped, then carboxylated and aminated
particles. Because higher interaction energy between the membrane and the foulant is
related to intensive fouling, the Jcrit trends of spherical particles (unmodified, carboxylated,
and aminated PS) in the DOTM experiments (Figures 7 and 8) are in good agreement with
the DLVO results. However, the DLVO trends of the non-spherical particles do not agree
with the Jcrit trends, as the interaction energies of the pear- and peanut-shaped particles are
in between those of the unmodified PS and the aminated PS. As for XDLVO (Figure 12b), the
relative trends differ from those of DLVO, specifically, with unmodified particles persisting
to be the most attractive, but the carboxylated and aminated PS were more attractive than
the pear- and peanut-shaped PS. Unlike the DLVO calculations, the XDLVO calculations
(Figure 12b) were in much better agreement with the Jcrit trends of both the spherical and
non-spherical PS particles. As the unmodified PS exhibited the highest interaction energy,
both the DLVO and XDLVO results are in good agreement with the flux decline trends
presented in Figure 11, in which unmodified PS produced a faster flux decline than the
pear-shaped and peanut-shaped PS particles.
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Figure 12. Interfacial PS–membrane interaction energy analysis via (a) DLVO and (b) XDLVO.

5. Conclusions

This study investigated the impact of polystyrene (PS) particle surface charge (un-
modified, aminated and carboxylated) and shape (sphere-, pear- and peanut-shaped) on
membrane fouling during crossflow and dead-end microfiltration. The Direct Observation
Through the Membrane (DOTM) technique was applied for in-situ fouling observation that
allowed for imaging in real time and the determination of the critical flux. FESEM images
were captured in order to assess the impact of particle sphericity on the cake structure.

Among PS of different surface charges, the anionic carboxylated PS particles gave the
highest critical flux values, but the difference decreased at higher CFV. Regarding particle
sphericity, non-spherical particles gave higher critical flux values, with the lower-sphericity
peanut-shaped PS out-performing the pear-shaped one. This is tied to the looser cake
formed by non-spherical particles due to their varied orientations. The relative difference
among PS of different sphericities is maintained at higher CFV, unlike that for PS of different
surface charges.

The shear-induced diffusion model is able to provide reasonable predictions despite
the variations of the particle charge and shape. The DLVO and XDLVO calculations indicate
that the unmodified PS had the highest interaction energy with the membrane surface,
which explains the highest fouling performance. Unlike the DLVO calculations, the XDLVO
calculations gave a much better agreement with the Jcrit trends of both spherical and non-
spherical PS particles. As for the flux decline trends, both the DLVO and XDLVO results
are in good agreement.
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Figure A1. Critical flux (Jcrit) values at CFV of 0.1 m/s of 50 mg/L of mixtures of (a) 50 vol% of un-

modified & 50 vol% of pear-shaped PS; and (b) 50 vol% of un-modified & 50 vol% of peanut-

shaped PS. Error bars represent the ranges of Jcrit values from repeated experiments. 

Figure A1. Critical flux (Jcrit) values at CFV of 0.1 m/s of 50 mg/L of mixtures of (a) 50 vol% of un-
modified & 50 vol% of pear-shaped PS; and (b) 50 vol% of un-modified & 50 vol% of peanut-shaped
PS. Error bars represent the ranges of Jcrit values from repeated experiments.
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un-modified, 50% un-modified & 50% pear-shaped mixture, and pear-shaped) and permeate fluxes 

(0–40 L/m2h) at CFV = 0.1 m/s. All feeds had the same total PS particle concentration of 50 mg/L. 

The images were taken at the end of the 10th minute of each permeate flux step. 

 

Figure A3. Surface coverage images via DOTM technique for different PS microparticles (namely, 

un-modified, 50% un-modified & 50% peanut-shaped mixture, and peanut-shaped) and permeate 
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Figure A2. Surface coverage images via DOTM technique for different PS microparticles (namely,
un-modified, 50% un-modified & 50% pear-shaped mixture, and pear-shaped) and permeate fluxes
(0–40 L/m2h) at CFV = 0.1 m/s. All feeds had the same total PS particle concentration of 50 mg/L.
The images were taken at the end of the 10th minute of each permeate flux step.
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Figure A3. Surface coverage images via DOTM technique for different PS microparticles (namely,
un-modified, 50% un-modified & 50% peanut-shaped mixture, and peanut-shaped) and permeate
fluxes (0–40 L/m2h) at CFV = 0.1 m/s. All feeds had the same total PS particle concentration of
50 mg/L. The images were taken at the end of the 10th minute of each permeate flux step.



Membranes 2022, 12, 403 18 of 19Membranes 2022, 12, x FOR PEER REVIEW 69 of 71 
 

 

 

Figure A4. FESEM images of the fouled membranes with mixed PS microparticles after crossflow 

filtration via DOTM technique: a) 50% un-modified PS & 50% pear-shaped PS mixture, and b) 50% 

un-modified PS & 50% peanut-shaped PS mixture. (Permeate flux = 40 L/m2h and CFV = 0.1 m/s, 

total PS concentration = 50 mg/L.)  

References 

1. Hao, S.; Jia, Z.; Wen, J.; Li, S.; Peng, W.; Huang, R.; Xu, X. Progress in adsorptive membranes for separation—A review. Sep. 

Purif. Technol. 2021, 255, 117772. https://doi.org/10.1016/j.seppur.2020.117772. 

2. Rezende Moreira, V.; Abner Rocha Lebron, Y.; Cristina Santos Amaral, M. Enhancing industries exploitation: Integrated and 

hybrid membrane separation processes applied to industrial effluents beyond the treatment for disposal. Chem. Eng. J. 2022, 

430, 133006. https://doi.org/10.1016/j.cej.2021.133006. 

3. Ahmad, T.; Guria, C. Progress in the modification of polyvinyl chloride (PVC) membranes: A performance review for 

wastewater treatment. J. Water Process Eng. 2022, 45, 102466. https://doi.org/10.1016/j.jwpe.2021.102466. 

4. Du, Y.; Pramanik, B.K.; Zhang, Y.; Dumée, L.; Jegatheesan, V. Recent Advances in the Theory and Application of Nanofiltration: 

A Review. Curr. Pollut. Rep. 2022, 8, 51–80. https://doi.org/10.1007/s40726-021-00208-1. 

5. Bai, R.; Leow, H.F. mufiltration of polydispersed suspension by a membrane screen/hollow-fiber composite module. Desalina-

tion 2001, 140, 277–287. https://doi.org/10.1016/S0011-9164(01)00377-0. 

6. Cui, Z.F.; Jiang, Y.; Field, R.W. Chapter 1—Fundamentals of Pressure-Driven Membrane Separation Processes. In Membrane 

Technology, Cui, Z.F., Muralidhara, H.S., Eds.; Butterworth-Heinemann: Oxford, UK, 2010; pp. 1–18. 

7. Frenkel, V.S. Chapter 8—Membrane Technologies for Food Processing Waste Treatment. In Membrane Technology; Cui, Z.F., 

Muralidhara, H.S., Eds.; Butterworth-Heinemann: Oxford, UK, 2010; pp. 155–177. 

8. Tanis-Kanbur, M.B.; Peinador, R.I.; Calvo, J.I.; Hernández, A.; Chew, J.W. Porosimetric membrane characterization techniques: 

A review. J. Membr. Sci. 2021, 619, 118750. https://doi.org/10.1016/j.memsci.2020.118750. 

9. Fane, A.G.; Chong, T.H.; Le-Clech, P. Chapter 6—Fouling in Membrane Processes. In Membrane Operations: Innovative Separations 

and Transformations; Drioli, E., Giorno, L., Eds.; Wiley-VCH: Weinheim, Germany, 2009; pp. 121–138. 

10. Belfort, G.; Davis, R.H.; Zydney, A.L. The behavior of suspensions and macromolecular solutions in crossflow microfiltration. 

J. Membr. Sci. 1994, 96, 1–58. https://doi.org/10.1016/0376-7388(94)00119-7. 

11. Li, H.; Fane, A.G.; Coster, H.G.L.; Vigneswaran, S. Direct observation of particle deposition on the membrane surface during 

crossflow microfiltration. J. Membr. Sci. 1998, 149, 83–97. https://doi.org/10.1016/S0376-7388(98)00181-1. 

12. Koo, C.H.; Mohammad, A.W.; Suja’, F.; Meor Talib, M.Z. Review of the effect of selected physicochemical factors on membrane 

fouling propensity based on fouling indices. Desalination 2012, 287, 167–177. https://doi.org/10.1016/j.desal.2011.11.003. 

13. Tanis-Kanbur, M.B.; Velioğlu, S.; Tanudjaja, H.J.; Hu, X.; Chew, J.W. Understanding membrane fouling by oil-in-water emulsion 

via experiments and molecular dynamics simulations. J. Membr. Sci. 2018, 566, 140–150. https://doi.org/10.1016/j.mem-

sci.2018.08.067. 

14. Tanudjaja, H.J.; Tanis-Kanbur, M.B.; Tarabara, V.V.; Fane, A.G.; Chew, J.W. Striping phenomenon during cross-flow microfil-

tration of oil-in-water emulsions. Sep. Purif. Technol. 2018, 207, 514–522. https://doi.org/10.1016/j.seppur.2018.07.007. 

15. Xue, S.; Lin, C.-W.; Ji, C.; Guo, Y.; Liu, L.; Yang, Z.; Zhao, S.; Cai, X.; Niu, Q.J.; Kaner, R.B. Thin-Film Composite Membranes 

with a Hybrid Dimensional Titania Interlayer for Ultrapermeable Nanofiltration. Nano Lett. 2022, 22, 1039–1046. 

https://doi.org/10.1021/acs.nanolett.1c04000. 

16. Connell, H.; Zhu, J.; Bassi, A. Effect of particle shape on crossflow filtration flux. J. Membr. Sci. 1999, 153, 121–139. 

https://doi.org/10.1016/S0376-7388(98)00250-6. 

17. Šmídová, D.; Mikulášek, P.; Wakeman, R.J.; Velikovská, P. Influence of ionic strength and pH of dispersed systems on microfil-

tration. Desalination 2004, 163, 323–332. https://doi.org/10.1016/S0011-9164(04)90205-6. 

Figure A4. FESEM images of the fouled membranes with mixed PS microparticles after crossflow
filtration via DOTM technique: (a) 50% un-modified PS & 50% pear-shaped PS mixture, and (b) 50%
un-modified PS & 50% peanut-shaped PS mixture. (Permeate flux = 40 L/m2h and CFV = 0.1 m/s,
total PS concentration = 50 mg/L).

References
1. Hao, S.; Jia, Z.; Wen, J.; Li, S.; Peng, W.; Huang, R.; Xu, X. Progress in adsorptive membranes for separation—A review. Sep. Purif.

Technol. 2021, 255, 117772. [CrossRef]
2. Rezende Moreira, V.; Abner Rocha Lebron, Y.; Cristina Santos Amaral, M. Enhancing industries exploitation: Integrated and hybrid

membrane separation processes applied to industrial effluents beyond the treatment for disposal. Chem. Eng. J. 2022, 430, 133006.
[CrossRef]

3. Ahmad, T.; Guria, C. Progress in the modification of polyvinyl chloride (PVC) membranes: A performance review for wastewater
treatment. J. Water Process Eng. 2022, 45, 102466. [CrossRef]

4. Du, Y.; Pramanik, B.K.; Zhang, Y.; Dumée, L.; Jegatheesan, V. Recent Advances in the Theory and Application of Nanofiltration: A
Review. Curr. Pollut. Rep. 2022, 8, 51–80. [CrossRef]

5. Bai, R.; Leow, H.F. Mufiltration of polydispersed suspension by a membrane screen/hollow-fiber composite module. Desalination
2001, 140, 277–287. [CrossRef]

6. Cui, Z.F.; Jiang, Y.; Field, R.W. Chapter 1—Fundamentals of Pressure-Driven Membrane Separation Processes. In Membrane
Technology; Cui, Z.F., Muralidhara, H.S., Eds.; Butterworth-Heinemann: Oxford, UK, 2010; pp. 1–18.

7. Frenkel, V.S. Chapter 8—Membrane Technologies for Food Processing Waste Treatment. In Membrane Technology; Cui, Z.F.,
Muralidhara, H.S., Eds.; Butterworth-Heinemann: Oxford, UK, 2010; pp. 155–177.

8. Tanis-Kanbur, M.B.; Peinador, R.I.; Calvo, J.I.; Hernández, A.; Chew, J.W. Porosimetric membrane characterization techniques: A
review. J. Membr. Sci. 2021, 619, 118750. [CrossRef]

9. Fane, A.G.; Chong, T.H.; Le-Clech, P. Chapter 6—Fouling in Membrane Processes. In Membrane Operations: Innovative Separations
and Transformations; Drioli, E., Giorno, L., Eds.; Wiley-VCH: Weinheim, Germany, 2009; pp. 121–138.

10. Belfort, G.; Davis, R.H.; Zydney, A.L. The behavior of suspensions and macromolecular solutions in crossflow microfiltration. J.
Membr. Sci. 1994, 96, 1–58. [CrossRef]

11. Li, H.; Fane, A.G.; Coster, H.G.L.; Vigneswaran, S. Direct observation of particle deposition on the membrane surface during
crossflow microfiltration. J. Membr. Sci. 1998, 149, 83–97. [CrossRef]

12. Koo, C.H.; Mohammad, A.W.; Suja’, F.; Meor Talib, M.Z. Review of the effect of selected physicochemical factors on membrane
fouling propensity based on fouling indices. Desalination 2012, 287, 167–177. [CrossRef]
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