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Abstract: Solar-driven interfacial water purification and desalination have attracted much attention
in environmentally friendly water treatment field. The structure design of the photothermal materials
is still a critical factor to improve the evaporation performance such as evaporation rate and energy
conversion efficiency. Herein, an asymmetric cellulose/carbon nanotubes membrane was designed as
the photothermal membrane via a modified droplet method. Under 1 sun irradiation, the evaporation
rate and energy efficiency of pure water can reach up to 1.6 kg m−2 h−1 and 89%, respectively.
Moreover, stable reusability and desalination performance made the cellulose/carbon nanotubes
membrane a promising photothermal membrane which can be used for solar-driven desalination.

Keywords: droplet method; carbon nanotubes; porous materials; interfacial evaporation; solar
energy materials

1. Introduction

In recent years, solar-driven interfacial evaporation has attracted widespread atten-
tion [1–4]. Many studies have shown that this emerging water treatment technology
has great application prospects in seawater desalination and water purification [5–8].
Compared with traditional desalination technologies such as reverse osmosis (RO), multi-
stage flash distillation (MSF), multi-effect distillation (MED) and vapor compression dis-
tillation (VCD), solar-driven interfacial desalination can maximize water recovery and
reduce fossil fuel consumption by inducing various materials with light-to-heat conversion
properties [7,9–11]. Therefore, it is considered to be one of the most promising technologies
for water purification and desalination [12].

To improve the overall evaporation performance, photothermal membranes with
vertically oriented, wrinkled or layered structure can be constructed by freeze-drying
and hydrothermal methods to enhance the light absorption capacity and accelerate the
vapor diffusion [13–19]. Although these membranes of different structure can achieve
great performance of photothermal evaporation, their photothermal-vapor conversion
capacities are relatively low, because the efficient photothermal steam generation is also
somewhat related to the porous structure. Solar-driven interfacial desalination used porous
structure membranes exhibits more excellent performance in terms of optical absorption,
photothermal conversion and photothermal interfacial evaporation [20,21]. At present, the
reported preparation methods of porous membranes include template method, stretching
and electrospinning [22–24]. These preparation methods are expected to be great strategies
for preparing photothermal membranes with excellent interfacial evaporation performance,
but most of them are complicated in operation, which are not conductive to large-scale
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application [25–28]. Therefore, a simple method to synthesize photothermal evaporation
membranes with abundant pore structures is urgently needed.

It has been reported that utilizing the gas–liquid interface can fabricate the ordered
porous membranes. For example, the porous poly (lactic acid) membrane obtained by
polymerizing or precipitating at the gas–liquid interface using the template of monolayer
colloidal crystal floating on the liquid surface [29]. Adopting the two-phase anisotropy at the
gas–liquid interface, asymmetric membranes with porous structures can be obtained [30–34].

Recently, inspired by membrane formation on the gas–liquid interface, droplet meth-
ods have been adopted in preparing porous membranes due to its uncomplicated oper-
ation. The typical process is summarized as follows: (1) Preparation of polymer solu-
tion for droplets formation. The droplets are homogenous solution composed of poly-
mer, solvent and additions which improve the structure and performance of membranes.
(2) Preparation of coagulation bath. The coagulation bath is composed of nonsolvent and
solvent. Changing the proportion of solvent and nonsolvent could affect the structure
of the prepared membranes. (3) Droplets dropping from the fixed nozzle. The droplets
drop from nozzle and fall into the coagulation bath at a certain height to form membrane.
There are some factors affecting the formation of membranes such as solution concentration,
droplet height [35–37]. However, the key point is the selection of solvent and nonsolvent.
The solvent must completely dissolve the polymer while the nonsolvent cannot dissolve
the polymer, and the solvent should be miscible with the nonsolvent. When the droplet
of homogenous solution is in contact with coagulation bath, the exchange of solvent and
nonsolvent at the gas–liquid interface leads to phase separation, forming a polymer-rich
phase (to form dense skin layer) and polymer-poor phase (to form porous structure).
Subsequently, phase separation continues until the polymer-rich phase completely solidi-
fies, forming an asymmetric porous membrane [38–41].

Herein, an asymmetric cellulose/carbon nanotubes membrane with porous structure
was prepared by modified droplet, in which a mixed polymer solution of cellulose, poly-
methacrylic acid (PMAA), ionic liquid and carbon nanotubes (CNTs) was dropped into the
coagulation bath. Under the combined effects of gravity, buoyancy and surface tension,
droplet of polymer solution dropping into the coagulation bath would form a membrane
at the gas–liquid interface of the coagulation bath. PMAA increased hydrophilicity as a
polymer electrolyte and ionic liquid was used to dissolve cellulose. CNTs were used as
photothermal materials to convert the absorbed light energy [42,43]. At the same time, it
also acts as a supporting network together with cellulose to stabilize the porous structure.
The three-dimensional (3D) interconnected pores structure of the membrane can effec-
tively improve the evaporation performance by reducing light reflection and accelerating
vapor escape.

2. Materials and Methods
2.1. Materials

Carbon nanotube were multi-walled CNT with a length of 1~2 µm and outer di-
ameter of 20~40 nm obtained from Shenzhen Nanotech Port Co., Ltd. Cellulose was
received from Shanghai Aladdin Bio-Chem Technology Co., LTD. (Shangai, China) 1-
Butyl-3-methylimidazolium chloride ([Bmim] Cl, >99%) was obtained from Shanghai Yiji
Industrial Co., Ltd. (Shangai, China) Methacrylic acid (MMA, AR), dimethylformamide
(DMA, AR), sodium chloride (NaCl, AR), methylene blue (biological dye, BS), methyl
orange (biological dye, BS) were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shangai, China). Distilled water was received from Harbin Wenjing Distilled Water Factory.

2.2. Acidification of Carbon Nanotubes

First, 5 g pristine multi -walled CNTs with lengths of 1~2 µm were added to 500 mL
of the mixed strong acid solution with H2SO4/HNO3 which was a volume ratio of 1/3.
The mixture was uniformly mixed under magnetic stirring, then heated to 333 K and stirred
at reflux for 3 h. After cooling to room temperature, the solution was poured into a beaker
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and diluted with deionized water, and then filtered under reduced pressure until the sample
became neutral. Finally, the acidified carbon nanotubes were prepared by drying at 323 K
in a vacuum drying oven. Through the modification of acidification, oxygen-containing
functional groups were added to improve the hydrophilicity of materials so that they can
be fully dispersed in solvents.

2.3. Fabrication of Cellulose/CNTs Membrane

In this experiment, the cellulose/CNTs membrane was prepared by a droplet method.
First, 0.15 g cellulose powder and 0.15 g PMAA were added to 3 g 1-Butyl-3-methylimidazolium
chloride ([Bmim] Cl) at 80 ◦C and stirred for 2 h until they were completely dissolved.
Then, 5 mL of N, N-Dimethylformamide (DMF) solution containing 20 mg acidified CNTs
was poured into the above solution and mixed thoroughly. After that, the obtained solution
was transferred to a 10 mL syringe and dropped into a coagulation bath with DMF/water
(volume ratio = 1/1) through a micro-syringe pump at a height of 10 cm above the liquid
level, thereby forming a composite membrane on the surface of the coagulation bath with
DMF/water solution (Figure 1). Subsequently, the composite membrane was repeatedly
washed with water to remove [Bmin] Cl and PMAA, and then freeze-dried using liquid
nitrogen. The resulting cellulose/CNTs membrane was named as CCM. As a control, cellu-
lose membrane without any CNTs were also prepared according to the above procedure,
which was named as CM. Cellulose membrane without porous structure by freeze-drying
prepared solution directly for another control experiment was named as CCM-N.

Figure 1. Schematic diagram of the preparation of the cellulose/CNTs membrane.

2.4. Characterization

The surface morphologies and cross-section morphologies of the CCM were character-
ized by a scanning electron microscope (Hitachi, Tokyo, Japan, S-4800). Surface chemical
composition of CCM was examined by an ATR-FTIR spectra which was measured by
using a Spectrum One instrument (Perkin Elmer, Waltham, MA, USA). UV-vis-NIR diffuse
reflectance spectra (DRS) was measured with a Perkin-Elmer Lambda 950 UV-vis-NIR
spectrophotometer (USA). The concentrations of ions were detected by inductively coupled
plasma-optical emission spectrometer (ICP-OES, Optima 8300, Perkin Elmer, USA).

2.5. Solar-Driven Interfacial Evaporation Experiments

To investigate the solar-driven interfacial evaporation performance, the cellulose
membrane with/without CNTs was employed as the photothermal material and placed on
a transporter-assisted evaporation system. A polystyrene foam and a glass fiber filter were
used as the heat insulation and water channel, respectively. In this experiment, the area of
the membrane used was 4 cm2, and the volume of water used was 20 mL. All evaporation
experiments were conducted under a solar simulator (Perfect Light PLS-SXE300DUV).
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The mass of the water loss is measured by an electrical balance. The surface temperature
of the photothermal membrane was measured by an infrared thermal image (FLIR ONE).
The solar-heat energy conversion efficiency (η) was calculated using the following formulas:

η =

.(
mlight − mdark

)
hLV

I
× 100%

hLV = c(Tsur f ace − T0) + L

L = −0.00006T3
sur f ace + 0.0016T2

sur f ace − 2.36T1
sur f ace + 2500.8

where mdark and mlight are water evaporation rates under dark and light conditions, respec-
tively. hLV is the total enthalpy, c is the specific heat capacity and L is the specific latent heat
of phase change. Tsurface and T0 represented the temperature of the evaporation surface and
bulk water reservoir, respectively.

The desalination efficiencies of different ions(ηi) were calculated using the following
formulas [44–46]:

ηi =
C0 − Ct

C0
× 100%

where C0 is the concentrations of different ions before desalination and Ct is the concentra-
tions of different ions after desalination.

3. Results and Discussion

When the droplet enters the DMF/water solution of coagulation bath, they will sink
to the liquid under gravity. Meanwhile, [Bmim] Cl molecules in the droplet diffuses into
the DMF/water solution, resulting in generating large number of tiny pores. As [Bmim]
Cl content in the droplet decreases, the 3D spherical droplet becomes a two-dimensional
(2D) membrane and then floats on the surface of the coagulation bath. Since [Bmim] Cl
molecules diffuse relatively rapidly when the droplet contacts with DMF/water solution,
the cellulose/CNTs mixed polymer solution occurred gelation, dense skin layers are formed
on the liquid–liquid surfaces of the CCM (Figure 1). The dense skin layer could help resist
the pulling effect of surface tension in the coagulation bath. In contrast, the interior of the
CCM exhibited an obvious 3D interconnected porous structure, whose reason lied in the
sufficient solvent diffusion.

The modified droplet method for preparing the CCM mainly involves phase-inversion
process in the coagulation bath. There are many influencing factors of phase-inversion,
and the key factors of phase-inversion are solvent type and composition, polymer type
and composition, non-solvent type and composition and membrane forming conditions.
In this process, cellulose/CNTs in the droplet is selected as polymer, [Bmin]Cl/DMF in
the droplet as solvent, and DMF/water as nonsolvent (the coagulation medium) [47].
Therefore, attention also needs to be paid to the concentration of solvent and nonsolvent.
When the droplet enters the coagulation bath, a portion of the droplet surface is in contact
with the nonsolvent of the coagulation bath. Due to the gradients in density and/or
interfacial energy of the polymer-nonsolvent interface, slow convective flow of nonsolvent-
solvent occurs in the droplet, resulting in a large number of small pores which is the
sponge-like 3D interconnected porous structure [47,48]. The membrane at liquid–liquid
interface presents a dense structure due to the direct contact between the coagulation bath
and the droplet. The other part of the droplet surface, that is not in direct contact with
the nonsolvent of the coagulation bath, is relatively distant from the nonsolvent, so it has
difficulty forming convective flow with the nonsolvent. The relatively high concentration
of polymer causes it gather together, resulting in the size of pores at the gas–liquid interface
are relatively large [48,49]. The modified droplet method is achieved at the interface by
gravity, buoyancy and interaction between the surface tension of cellulose/CNTs mixed
solution and the surface tension of the coagulating bath. The main purpose of adding
DMF is to adjust the surface tension of cellulose/CNTs mixed polymer solution and
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coagulation bath. The addition of DMF had little effect on gravity and buoyancy, so their
impact could be almost ignored in this research. When the appropriate content of DMF
is added to cellulose/CNTs mixed solution, the concentration of cellulose/CNTs mixed
solution at the liquid–liquid surface is higher than that at other parts of the membrane
through phase separation, so that the CCM would form a dense layer at the liquid–liquid
surface. The dense layer can better resist the surface tension of the coagulating bath and
prevent the film from being damaged by the surface tension of the coagulating bath.
Therefore, when the droplet is dropped into the coagulation bath, the solution bead is
formed in the coagulation bath and, at the same time, the original stable state should
be destroyed to make the cellulose/CNTs solution flow so as to make the droplet form
a membrane [50]. So, there are two crucial factors affecting the preparation of CCM:
cellulose/CNTs mixed polymer solution concentration and coagulation bath concentration.

As shown in Figure 2, when the DMF/water volume ratio of the coagulated bath
remained unchangeable and the DMF content of droplet increased, the concentration of
cellulose/CNTs mixed polymer solution decreased and the surface tension of droplet
would decrease, which would also affect the state of CCM formation. It was taken as the
research object that DMF/water volume ratio of the coagulation bath was 1/3 (surface
tension= 0.07100 N m−1). As the DMF content in the droplet increased and concentration
of cellulose/CNTs mixed polymer solution decreased, the final state of the droplet in the
coagulation bath gradually changed from bead-like to membrane-like and then even was
split into small pieces. This was because the surface tension of the droplet was unable to
resist the surface tension of the coagulating bath, therefore the droplet was split under the
action of the surface tension of the coagulating bath. As can be seen from the Figure 2, due to
the surface tension of the cellulose/CNTs mixed polymer droplet which added 4 mL DMF
(surface tension = 0.07112 N m−1) was too large to form a membrane, the droplet fell into the
coagulation bath and formed like-bead float on the coagulation bath under combination of
gravity, buoyancy and surface tensions. Meanwhile, the surface tension of the droplet was
too small, due to the addition of 7 mL DMF (surface tension = 0.06711 N m−1). When the
droplet dropped into the coagulating bath, the surface tension of the droplet cannot compete
with the surface tension of the coagulating bath. So, it was difficult to form a complete
circular membrane and will be dispersed into small pieces or the membrane formed was
too thin. With the increase of DMF content, the gelation degree of cellulose/CNTs mixed
polymer solution also decreased, and it cannot resist the surface tension of coagulation
bath effectively.

In Figure 2, by fixing DMF content of cellulose/CNTs mixed polymer droplet and
increasing DMF/water volume ratio of coagulation bath, the surface tension of coag-
ulation bath would decrease, but the decrement was small. If DMF cellulose/CNTs
mixed polymer solution added 6 mL DMF was taken as the research object (surface
tension= 0.06756 N m−1), we can clearly see that different volume ratio of coagulation
bath had different effect on the formation of membrane. With the decrease of the vol-
ume ratio, the formed membrane gradually changed from a thin membrane which was
split easily to a circular membrane with uniform and appropriate thickness, finally a
complete film cannot be formed. Considering the two variables, the membrane which
was prepared from cellulose/CNTs mixed polymer solution added 6 mL DMF and water
(surface tension = 0.07222 N m−1) was similar to the membrane which was prepared from
cellulose/CNTs mixed polymer solution added 7 mL DMF (surface tension = 0.06711 N m−1)
and coagulation bath with DMF/water (volume ratio = 1/3). The appearance further illus-
trated that CCM obtained from the interaction between the surface tension of coagulation
bath and the surface tension of polymer solution. From the above analysis, it was clear
that when the DMF content added to cellulose/CNTs polymer solution and DMF/water
volume ratio of coagulation bath were appropriate, a circular membrane with uniform and
appropriate thickness would be formed. In a word, the coagulation bath with DMF/water
(volume ratio= 1/1) and the cellulose/CNTs mixed polymer solution added 6 mL DMF
were the most suitable conditions to prepare membranes by the droplet method.
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Figure 2. Digital photos of cellulose/CNTs mixed polymer solution added different DMF contents
dropped into coagulating bath with DMF/water (different volume ratio).

In the coagulation bath with DMF/water (volume ratio = 2/1), less water can be
gelatinized for cellulose/CNTs mixed polymer solution, the degree of gelation was lower,
while more polymer solution appeared as liquid state compared to others at the same
time. When the membrane area reached its maximum, non-gelatinization polymer solution
returned to the droplet shape by its own surface tension, resulting in the contraction of
membrane as shown in Figure 2.

In Figure 3, the digital photographs taken by the high-speed camera showed that the
entire process from droplet to the CCM took 4 ms. In this process, the cellulose/CNTs
mixed polymer solution was diffused and formed a complete circular membrane under
the interaction of droplet surface tension and coagulation bath surface tension. At 20 ms,
a cavity could be seen forming after the droplets had been dropped into the coagulation
bath. Then a circular membrane was formed under the interaction of the surface tensions.
In less than 0.04 s, CCM could be formed. When a complete circular film was formed, the
membrane floated on the coagulation bath under the action of surface tensions. When a
complete circular membrane was formed, the membrane floated on the coagulation bath
by the action of surface tensions.

A mathematical model was established for analyzing membrane formation through
modified droplet method. The A is the spreading coefficient of polymer solution, which is
the ratio of spreading ability (δspread) to anti-spreading ability (δanti-spread). The spreading
ability of the polymer solution is derived from the surface tension of the coagulation
bath. The spreading resistance (Bgel) is the tensile resistance of the instantaneous gelation
product of polymer solution, which is related to the concentration of polymer solution.
Meanwhile, gelation is accomplished by non-solvent in the coagulation bath. The ratio of
water in the coagulation bath affects the thickness and strength of the gel layer, so k water
is induced. The value of A can be used to determine whether the gel can be formed and the
state of the membrane.

A =
δspread

δanti-spread
=

σcb
k × Bgel
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Figure 3. Digital photos of cellulose/CNTs mixed polymer solution added 6 mL DMF dropped into
coagulating bath with DMF/water (volume ratio = 1/1) taken by high-speed camera.

By the measurement of the gel membrane size, the formula is obtained by fitting.
Different requirements of the gel membrane can be prepared by changing the parameters.

rmembrane = A × a
σpolymer solution

+ b

hmembrane =
V
A

=
V

πr2
membrane

We can see from the above research, the best CCM was prepared from cellulose/CNTs
mixed polymer solution added 6 mL DMF and coagulation bath with DMF/water (volume
ratio = 1/1). Therefore, we chose this membrane for further tests.

SEM images in Figure 4 showed the surfaces and internal morphology of the CCM
with a thickness of 400 ± 25 µm. The characteristic of asymmetric membrane can be clearly
seen by Figure 4. The dense skin layer which located at liquid–liquid surface was 1~3 µm
(Figure 4c). At the gas–liquid interface, pore diameters could up to 22 µm (Figure 4b).
After the sufficient solvent diffusion, the interior of the CCM exhibited an obvious 3D
interconnected pores structure (Figure 4c,d).

The FTIR spectra shown in Figure 5a demonstrated that the CCM exhibited character-
istic peaks at 1708 cm−1 and 1053 cm−1, which were attributed to the vibration of C=O and
C-O-C pyranoid ring of PMAA and cellulose, respectively. Comparing with the cellulose
and PMAA samples, a new characteristic peak appeared at 1562 cm−1 corresponding to
the stretching vibration of COO−. Besides, the carboxyl group in PMAA could generate
electrostatic attraction with the hydroxyl group in cellulose to form a cross-linked network,
which destroyed the intermolecular hydrogen bond of cellulose, with the characteristic
peak at 3600–3000cm −1 strength decreased. Comparing with the CM, the CCM exhibited
small optical reflectance (≈4–6%) in the 250–2500 nm wavelength range, indicating the
large optical absorption of the CCM (Figure 5b).
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Figure 4. SEM images of (a) liquid–liquid interface; (b) gas–liquid interface; (c) cross section; (d) mag-
nified cross section of the CCM.

Figure 5. (a) FTIR spectra of the cellulose, PMAA and CCM; (b) UV-vis-NIR spectra of CM and CCM.

It was shown in Figure 6 that the transporter-assisted interfacial evaporation system,
where the CCM was used as the photothermal membrane to absorb light heat water and
generate vapor. As a result, compared with the bulk water and cellulose membrane, the
surface temperature of the CCM can quickly rise to 44.4 ◦C within 600 s under 1 sun
irradiation (Figure 7a). Additionally, excellent light absorption and heat localization of
the CCM enabled the evaporation system to present higher water evaporation rates under
dark and light conditions. As shown in Figure 7b, the membrane with CNTs exhibited an
excellent evaporation rate of roughly 1.6 kg m−2 h−1, and the corresponding light-to-heat
energy conversion efficiency of the transporter-assisted evaporation system was calculated
to be 89%, which was higher than that of reported photothermal membranes. In contrast,
the evaporation rate of the evaporation system using the CM was less than 0.9 kg m−2 h−1

due to the absence of light absorber and lower surface temperature, and the evaporation
rate of the evaporation system using the CMM-N was less than 1.3 kg m−2 h−1 due to the
absence of 3D interconnected pore structure. The results indicated that the addition of
CNTs and optimal porous structure can significantly enhance the solar-driven interfacial
evaporation performance and maximize the energy conversion efficiency.
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Figure 6. Schematic diagram of the transporter-assisted evaporation system.

Figure 7. (a) Temperature changes of the water surface and membrane surface using CCM and CM
under light and dark conditions; (b) weight loss of water using CCM and CM during the interfacial
evaporation process under light and dark conditions.

We also evaluated the desalination performance of the transporter-assisted evapora-
tion system. Figure 8a showed that evaporation rate of seawater was slightly lower than
that of pure water, which was caused by more complex components such as salt ions,
natural organic matters and bacteria [51]. For NaCl solutions with different salinities, the
evaporation rate of 20 wt% NaCl solution can still reach about 1.4 kg m−2 h−1 after one-hour
evaporation test, although the lower partial vapor pressure resulted in a slower evaporation
rate as the concentration increased from 1.4 wt% to 20 wt% (Figure 8a,b). In the 10-cycle test,
the evaporator can maintain a stable evaporation rate of about 1.55 kg m−2 h−1 (Figure 8c).
More importantly, during the evaporation of seawater, the desalination efficiencies of Na+,
Mg2+, K+ and Ca2+ were 99.96%, 99.97%, 99.30% and 99.86%. Meanwhile, the concentra-
tions of Na+, Mg2+, K+ and Ca2+ in the condensed water were greatly reduced, which were
lower than the salinity levels defined by World Health Organization (WHO) (Figure 8d).
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Figure 8. (a) Weight loss of water using the CCM when processing NaCl solutions with different
salinities; (b) the corresponding evaporation rate of the CCM when processing NaCl solutions with
different salinities; (c) stability test of the evaporation system using the CCM in 3.5 wt% NaCl solution;
(d) ion concentrations using CCM before and after the solar-driven interfacial desalination.

4. Conclusions

The asymmetric CCM was fabricated by droplet method with 3D interconnected pores
structure and good light absorption ability, which resulted in high evaporation rate and
energy conversion efficiency when processing pure water, salt water and fresh seawater
under one sun irradiation. The stable reusability and high-quality condensed water made
the transporter-assisted evaporation system a potential candidate for solar-driven water
purification and desalination.

Author Contributions: Conceptualization, T.D. and Z.Y.; methodology, T.D. and Z.Y.; software, Z.Y.;
validation, Z.Y., T.D. and L.Z.; formal analysis, T.D. and L.S.; investigation, Z.Y.; resources, T.D.;
data curation, T.D. and Z.Y.; writing—original draft preparation, Z.Y.; writing—review and editing,
Y.Z., D.Z., Y.X. and L.S.; visualization, T.D.; supervision, Y.Z.; project administration, D.Z.; funding
acquisition, L.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Heilongjiang Natural Science Foundation Project, grant
number LH2020E107 and Innovation Training Program for College Students of China, grant number
202110212052.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Membranes 2022, 12, 369 11 of 13

References
1. Zhao, F.; Bae, J.; Zhou, X.; Guo, Y.; Yu, G. Nanostructured Functional Hydrogels as an Emerging Platform for Advanced Energy

Technologies. Adv. Mater. 2018, 30, e1801796. [CrossRef] [PubMed]
2. Dao, V.-D.; Vu, N.H.; Yun, S. Recent Advances and Challenges for Solar-Driven Water Evaporation System toward Applications.

Nano Energy 2020, 68, 104324. [CrossRef]
3. Tao, P.; Ni, G.; Song, C.; Shang, W.; Wu, J.; Zhu, J.; Chen, G.; Deng, T. Solar-Driven Interfacial Evaporation. Nat. Energy 2018, 3,

1031–1041. [CrossRef]
4. Zhu, L.; Gao, M.; Peh, C.K.N.; Ho, G.W. Solar-Driven Photothermal Nanostructured Materials Designs and Prerequisites for

Evaporation and Catalysis Applications. Mater. Horiz. 2018, 5, 323–343. [CrossRef]
5. Tan, Z.; Chen, S.; Peng, X.; Zhang, L.; Gao, C. Polyamide Membranes with Nanoscale Turing Structures for Water Purification.

Science 2018, 360, 518–521. [CrossRef]
6. Werber, J.R.; Osuji, C.O.; Elimelech, M. Materials for Next-Generation Desalination and Water Purification Membranes. Nat. Rev.

Mater. 2016, 1, 16018. [CrossRef]
7. Zhu, L.; Gao, M.; Peh, C.K.N.; Ho, G.W. Recent Progress in Solar-Driven Interfacial Water Evaporation: Advanced Designs and

Applications. Nano Energy 2019, 57, 507–518. [CrossRef]
8. Wang, Z.; Elimelech, M.; Lin, S. Environmental Applications of Interfacial Materials with Special Wettability. Environ. Sci. Technol.

2016, 50, 2132–2150. [CrossRef]
9. Ghim, D.; Wu, X.; Suazo, M.; Jun, Y.-S. Achieving Maximum Recovery of Latent Heat in Photothermally Driven Multi-Layer

Stacked Membrane Distillation. Nano Energy 2021, 80, 105444. [CrossRef]
10. Al-Karaghouli, A.; Kazmerski, L.L. Energy Consumption and Water Production Cost of Conventional and Renewable-Energy-

Powered Desalination Processes. Renew. Sustain. Energ. Rev. 2013, 24, 343–356. [CrossRef]
11. Li, Y.; Chen, J.; Cai, P.; Wen, Z. An Electrochemically Neutralized Energy-Assisted Low-Cost Acid-Alkaline Electrolyzer for

Energy-Saving Electrolysis Hydrogen Generation. J. Mater. Chem. A 2018, 6, 4948–4954. [CrossRef]
12. Liu, X.; Mishra, D.D.; Wang, X.; Peng, H.; Hu, C. Towards Highly Efficient Solar-Driven Interfacial Evaporation for Desalination.

J. Mater. Chem. A 2020, 8, 17907–17937. [CrossRef]
13. Kim, C.; Shin, D.; Baitha, M.N.; Ryu, Y.; Urbas, A.M.; Park, W.; Kim, K. High-Efficiency Solar Vapor Generation Boosted by a

Solar-Induced Updraft with Biomimetic 3D Structures. ACS Appl. Mater. Interfaces 2021, 13, 29602–29611. [CrossRef]
14. Zhang, Y.; Xiong, T.; Nandakumar, D.K.; Tan, S.C. Structure Architecting for Salt-Rejecting Solar Interfacial Desalination to

Achieve High-Performance Evaporation With In Situ Energy Generation. Adv. Sci. 2020, 7, 1903478. [CrossRef]
15. Sun, P.; Zhang, W.; Zada, I.; Zhang, Y.; Gu, J.; Liu, Q.; Su, H.; Pantelić, D.; Jelenković, B.; Zhang, D. 3D-Structured Carbonized
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