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Abstract: When functionalized by the solid-state sulfonation process, the amorphous regions of the
semi-crystalline syndiotactic-polystyrene (sPS) become hydrophilic, and thus can conduct protons
upon membrane hydration, which increases the interest in this material as a potential candidate
for applications with proton exchange membranes. The resistance of sulfonated sPS to oxidative
decomposition can be improved by doping the membrane with fullerenes. In previous work, we have
described the morphology in hydrated sulfonated sPS films doped with fullerenes on different length
scales as determined by small-angle neutron scattering (SANS) and the structural changes in such
membranes as a function of the degree of hydration and temperature. In the current work, we report
on the relationship between the morphology of hydrated domains as obtained by SANS and the
proton conductivity in sulfonated sPS-fullerene composite membranes at different temperature and
relative humidity (RH) conditions. Based on this combined experimental approach, clear evidence
for the formation and evolution of the hydrated domains in functionalized sPS membranes has been
provided and a better understanding of the hydration and conductivity pathways in this material has
been obtained.

Keywords: proton exchange membranes; semi-crystalline polymers; small-angle neutron scattering

1. Introduction

Polymer electrolyte materials (PEM) for fuel cells applications (PEMFC) are character-
ized by a nanoscale phase separation into hydrophilic domains and hydrophobic regions,
which is a combination that enables a high proton conductivity and provides a good chemi-
cal and mechanical stability, thus membrane durability. Despite its excellent conductive
properties, the Nafion [1–8], which was established as the benchmark for such applica-
tions, presents several drawbacks related to the cost, safety, and supporting equipment
during manufacturing and use [6]. Alternative low-cost semi-crystalline materials that
present similar conductive and chemo-mechanical properties as the Nafion membranes are
continuously searched for.

Syndiotactic polystyrene (sPS) is a stereoregular polymer that is easily crystallizable
(typical degrees of crystallinity are in the 30–50% range) and presents very complex poly-
morphic behavior. Several crystalline phases with polymer chains arranged in either the
trans-planar or helical conformation were identified and characterized [9–11], with the
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δ- and ε-phases, which are formed by crystallization from solution, representing co-crystals
of s-PS with low molecular mass guest molecules (clathrates). This property offers the
possibility to load different guests molecules in the cavities formed between the helices of
the sPS in the crystalline regions by using the guest-exchange process [12,13], which makes
the sPS suitable for different possible applications, such as fluorescent materials (with
chromophore guest molecules), optical memories (with photo-reactive guest molecules),
non-linear optical materials (with polar guests), and chiro-optical memories (with chiral
guest molecules) [14]. On the other hand, given the recent developments, which enable a
controlled sulfonation of only the amorphous phase, preserving thus the crystallinity of the
material [15], and an improved resistance to oxidation decomposition when fullerenes are
added [16], the sulfonated syndiotactic polystyrene (s-sPS) may become a good potential
candidate for some PEMFC applications, as it presents high proton conductivity compara-
ble to Nafion [17,18], high chemical and thermomechanical and chemical stability [16,19,20],
and a low cost [21]. The preparation of an s-sPS membrane should start from the δ-form
(clathrate with guest molecules), which enables a homogeneous sulfonation of only the
amorphous regions and can be subsequently transformed into the thermodynamically
stable β-form by high-temperature annealing procedures [17].

The proton conduction in PEMs depends on water and is governed by the water
behavior at different length scales: at the molecular scale—dissociation of protons and
formation of ion-pair with water, at the nanoscale—the transport through the hydrated
domains, at the mesoscale—the long-range mobility within the water network. There-
fore, in order to understand the transport properties in different conditions one should,
first of all, understand the morphology of the hydrated domains at different length
scales as a function of the hydration level and temperature and learn about the micro-
dynamics in hydrated membranes under such conditions. In previous works [22–24], we
reported detailed microstructural characterizations of sulfonated membranes based on
the s-sPS δ-clathrates by extended Q-range small-angle neutron scattering (SANS, where

Q = 4 π λ−1 sin(θ/2) is the modulus of the scattering vector
→
Q [25], with λ the incident neu-

tron wavelength and θ the scattering angle), complimented by WAXD, FTIR, UV-Vis, and
TEM analyses. Membranes with different sulfonation degrees, with and without fullerenes
added (by dipping the films in a fullerene-saturated toluene solution or by casting compos-
ite membranes from a common sPS/C60 solution in toluene, followed by sulfonation) were
investigated in dry and hydrated states at room and elevated temperatures, up to 80 ◦C.
The use of uniaxially deformed film samples, and neutron contrast variation allowed for
the identification and characterization of different structural levels with sizes between nm
and µm, which form and evolve with the variation of the hydration level and temperature.
In all these studies, we focus mainly on the characterization of the morphologies formed in
the amorphous functionalized regions of the material. The crystalline regions, which were
loaded with different guest molecules in either the deuterated or protonated state, to pro-
vide the proper contrast for neutrons, were not affected by the sulfonation or the subsequent
hydration or thermal treatment of the membranes, as demonstrated by the WAXD and
SANS observations prior and after the membrane hydration and thermal treatment [22,23],
including here the exposure of the membrane to Fenton’s test conditions [24]. Thus, the
preservation of the membrane crystallinity, as it was demonstrated by the WAXD and the
extended Q-range SANS observations, is a direct indication of the membrane robustness
and stability during various hydration/temperature treatment procedures, which were
meant to yield the hydrated and conductive morphologies in the amorphous regions of the
materials. It is also worth noting that the membranes based on the crystalline δ-or β-forms
of the sPS become hydrophilic by the functionalization (sulfonation) of the phenyl rings
of sPS in the amorphous regions, and exhibit a proton conductivity comparable to that of
Nafion, without any subsequent chemical treatment [15]. However, free radicals such as
hydroxyl and hydroperoxyl are produced during the operation of the PEMFC as a result of
the reaction of hydrogen and oxygen on the electrodes or the decomposition of hydrogen
peroxide with metal contaminants in the membrane. These radicals initiate processes of
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chemical degradation that affect the durability and the lifetime of the PEM, as observed in
the case of Nafion or other PEM materials [26,27]. Several approaches have been proposed
to overcome this issue, among them to load carbon nanomaterials like CNTs, graphene
oxide, or fullerenes in the PEM, as additives with radical scavenging properties [16,28,29].
Therefore, our interest is in studying the structure and properties of sPS-based PEMs with
and without fullerenes incorporated in the membranes.

We report here on the common analysis of the results of the SANS investigation on
the microstructure and of the measurement of the proton conductivity on a composite
membrane made of s-sPS and C70 fullerenes. By comparison to the structural and proton
conductivity results on fullerenes free s-sPS membranes, this combined approach provides
direct evidence of the formation and development of the hydration domains in function-
alized sPS membranes as a function of the degree of hydration and the temperature to
which they are exposed and helps form a better understanding of the proton conduction
pathways in these materials.

2. Materials and Methods

As-cast and uni-axially deformed sPS films were used in the previous structural
investigations by SANS and for the proton conductivity measurements. All films were
made of deuterated sPS (C8D8)n, which provides a low incoherent background in the
neutron scattering experiments. Films containing fullerenes were prepared as composite
membranes by casting from common sPS and C70 or C60 solution in toluene. Particularly
for this study, a composite sPS-C70 membrane was prepared by casting from a common sPS
and C70 toluene solution with 1 wt% C70 content. A second membrane with a C70 fullerene
content in the initial solution of 3 wt% was prepared for a parallel pre-characterization
regarding the condition of the fullerenes incorporated in the membrane.

Preparation and subsequent treatment—clathrate formation, sulfonation, guest-exchange
in the crystalline region—of uni-axially deformed deuterated syndiotactic polystyrene films
were described elsewhere [22]. The sulfonation of sPS/C70 membranes used in the current
study followed the procedure described in [22]. For the SANS experiment, the exchange of
the guest molecules in the polymer clathrate form from d-chloroform, which was loaded
into the composite membrane during the sulfonation process, to d-toluene was achieved
by immersing the films in the new solvent for 1 day, followed by drying at 40 ◦C under
vacuum for a few hours. A detailed description of the preparation method of the composite
membranes of s-sPS and fullerenes can be found in [24].

All reagents used for the preparation of the membranes, excepting the deuterated
syndiotactic-polystyrene, were purchased from Sigma-Aldrich (Munich, Germany) and
used as received. The deuterated syndiotactic-polystyrene was synthesized in collaboration
with University “Federico II”, Naples, Italy, following the procedure which is described in
detail in [22].

The investigation of the membrane microstructure by SANS was carried out on the
time-of-flight (TOF) SANS diffractometer TAIKAN (BL-15), at the Material and Life Science
Experimental Facility (MLF) of the Japan Proton Accelerator Research Facility (J-PARC),
Tokai, Japan [30]. A Q-range between 0.005 and 1 Å−1 was covered in reciprocal-space [25],
which corresponds to an investigation of structural sizes over a length scale between a few Å
and 200 Å in the real space. Details of the methodical procedure and data analysis routines
can be found in [22–24]. The temperature and humidity of the sample were controlled in
a multi-position humidity sample chamber, which was designed and produced in house
(Comprehensive Research Organization for Science and Society CROSS, Tokai, Japan), by
using the so-called two-temperature method: dry air from a ga cylinder/compressor passes
through the H2O in a tank and becomes pre-saturated vapors with a dew point almost
equal to the water’s temperature (Tw), then goes to the sample chamber which is at the
temperature Ts, with the RH being calculated from the saturated vapor pressure (Pws) at
the dew point (Tw) and the chamber temperature (Ts).
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Complementary analyses to SANS done by WAXD and membrane quality check
by UV-Vis optical microscopy, thermo-gravimetric analysis (TGA), and prompt-gamma
neutron activation analysis (PGAA) were carried out.

The incorporation of the fullerenes in the sPS-C70 composite membrane was checked
by UV-Vis and thermo-gravimetric analysis (TGA). UV-Vis analysis was carried out at a
Cary 100 SCAN UV-Vis Varian spectrometer (Agilent, Santa Clara, CA, USA) with the
film samples placed in a specific holder equipped with quartz windows. The spectra
were collected in the range 200–800 nm at a resolution of 100 nm/min. The TGA analysis
was done on a TG 209 F1 Libra instrument—NETZSCH (NETSCH-Gerätebau GmbH,
Selb, Germany) in the temperature range between 30 ◦C and 1000 ◦C at a heating rate of
5 ◦C/min with nitrogen flow at 60 mL/min.

Additional insight about the structure and morphology of C70 agglomerates in com-
posite membranes were obtained by optical microscopy with a Leica DM6000 M light
microscope (Leica Mikrosysteme Vertrieb GmbH, Wetzlar, Germany) in bright-field and
crossed polarizers modes and by WAXD analysis of films by means of an X-ray powder
diffractometer Brucker 2nd Gen-D2 Phaser (Cu-source) (Brucker, Karlsruhe, Germany).

The degree of sulfonation, expressed as SD atoms/styrene units × 100 mol% and
further indicated as SD, was checked at the neutron prompt-gamma activation analysis
(PGAA) instrument at the Heinz Maier-Leibnitz Zentrum (MLZ, Garching, Germany). Full
descriptions of the experimental method and data interpretation can be found in [22].

The conductivity of the sPS-C70 composite membranes was measured in the plane
direction at 100 kHz using a four-point probe alternating current electrochemical impedance
spectroscopy (EIS) with an electrode system connected to an LCR meter (HIOKI 3522 LCR
HiTESTER, Nagano, Japan). For the determination of the conductivity in liquid water, the
membrane was equilibrated in H2O at 25 ◦C and 80 ◦C and placed between two platinum
electrodes in air. For the measurement of the conductivity at different hydration levels
from the vapor phase and different temperatures, the membrane was placed in a BT-115
Conductivity Cell (Scribner Associates, Southern Pines, North Carolina, USA) equilibrated
by a temperature/humidity controller (HUM-1F, Rigaku Co., Tokyo, Japan) wherein the
RH range was 10–80% at the prescribed temperature within the range 25–60 ◦C. The
conductivity σ (mS/cm) was calculated from the obtained resistance R (Ω) according to the
following equation.

σ (mS/cm) = L/(S × R) × 103 (1)

where L (cm) is the distance between two electrodes, and S (cm2) is the cross-sectional area
of the membrane obtained by multiplying the membrane thickness by the membrane width.

3. Experimental Results

The sPS-based membranes were characterized via UV-Vis, TGA, PGAA, optical mi-
croscopy, and WAXD prior to their investigation by SANS and the conductivity mea-
surements. As reported elsewhere [22–24], membranes with different sulfonation and
crystalline degrees were prepared, as shown by the PGAA and WAXD analysis, respec-
tively. For the newly synthesized sPS-C70 composite membrane for the 1 wt% C70 fullerene
content in the initial solution, a sulfonation degree of SD = 55% and a crystallinity of 29%
were determined.

The incorporation of the fullerenes into the membrane was checked by UV-Vis before
being exposed to the sulfonation reaction, and by TGS in the sulfonated state. The UV-Vis
absorption spectrum of the composite membrane is shown in Figure 1a in parallel with
the spectrum from an sPS film, and the TGA plots for three membranes, an sPS film, an
s-sPS film, and the sulfonated sPS-C70 composite membrane, are displayed in Figure 1b. In
the UV-Vis spectrum from the sPS film, one can observe that the characteristic absorption
features of polymer occur below 300 nm while above this value the absorbance falls quickly
off. Unlike this, the absorption spectrum from the composite membrane is significantly
stronger above 300 nm, which indicates the incorporation of fullerenes into the membrane.
The broad absorption band at around 470 nm, the absorption peak at around 380 nm,
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and the shoulder observed at around 330 nm are characteristic of the C70 absorption [31].
Thermal decomposition of the sPS membrane containing guest molecules (toluene) shows
two stages in the TGA plot (Figure 1b): the loss of volatile guest molecules, from 100 to
200 ◦C, and the decomposition of the polymeric matrix, from 400 to about 600 ◦C. For
the sulfonated membrane, an additional intermediate stage can be observed between
these two decomposition processes, which is the degradation and decomposition of the
sulfonate sites [1], which occurs gradually between 100 and 400◦C. The higher temperature
degradation process observed in the plot from the composite membrane arises from the
decomposition of fullerenes [32]. These observations confirm that the C70 fullerenes are
incorporated in the membrane.

Figure 1. The UV-Vis spectra from the sPS–C70 composite membrane prior to sulfonation and a
fullerene-free sPS film (a) and the thermogravimetric analysis (TGA) result from the sulfonated
sPS–C70 composite membrane in parallel with results from the sPS and s-sPS films (b).

The analysis of the sulfonated composite membrane under the optical microscope
using the bright field option (Figure 2a) revealed C70 agglomerate particles with sizes of up
to 25 µm, which are characterized by a very large polydispersity in size. The micrograph
resembles that obtained from a C60-Nafion composite membrane [33,34] and proves the
incorporation of fullerenes in the polymer matrix. The C70 agglomerates look similar in
the composite membrane before sulfonation, which shows that the fullerenes are stably
embedded in the membrane, even though the fullerenes are not chemically bound to the
polymer. This confirms that syndiotactic polystyrene, similar to Nafion, can accommodate
fullerenes in the amorphous regions [33]. It is noteworthy that at a higher C70 content in
the initial polymer-fullerene solution (3 wt%), the formation of fullerene crystals in the
membrane was observed by optical microscopy with crossed polarizers (Figure 2b). We can
assume that the fullerenes incorporated in the syndiotactic polystyrene matrix are more
effective in their role as radical scavengers if composite membranes are made with lower
concentrations of fullerenes in the initial solution (up to 1 wt%), which leads to a better
dispersion of fullerenes and their aggregates in the polymer matrix. A higher concentration
of fullerenes in the initial solution leads to the formation of large crystals, which can also
affect the mechanical stability of the membrane, as described in [16].
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Figure 2. Micrographs (a,b) and wide-angle X-ray diffraction (WAXD) spectra (c) from sulfonated
composite membranes obtained by casting of common sPS–C70 solution in toluene (for 1 wt% (a) and
3 wt% (b) fullerenes content in the initial solution) and subsequent sulfonation. C70 morphologies
were observed by using bright field (a) and crossed polarizers (b) optical microscopy (the scale bar in
panels (a,b) indicates 250 µm). The scattering patterns in panel (c) are shifted vertically for clarity.
The black arrows in the panel (c) indicate the C70 crystalline reflections, as reported in [35], while the
red arrows indicate the peaks characteristic to the δ-form of sPS clathrates [22].

The δ-form of the sPS in the sulfonated composite membrane cast from the initial
sPS-fullerene solution with 1 wt% C70 concentration was confirmed by the WAXD analysis
(Figure 2c), as for the previously investigated membranes [22,23]. This indicates that the C70
fullerenes are mainly incorporated in the amorphous regions of the membrane, in a similar
way as observed in the case of Nafion membranes [33]. As with the sPS-fullerene composite
membranes [32] or the PMMA-C70 composite membranes [36] with low fullerene loading,
in this case, no clear fullerene reflections were observed in the WAXD spectrum (the red
diffraction pattern if Figure 2c). This may be indicative of a disordered positioning of
neighbors around a given C70 molecule within the fullerene agglomerates. Although the
C60 fullerenes could be incorporated as guests between the helices of the sPS chains of the
crystalline regions, as reported in [32], there is no clear evidence of this effect in the WAXD
spectra from our sPS-C70 composite membranes. Whether or not the C70 fullerenes may
also be incorporated as guest molecules in the crystalline regions of the membrane is of no
importance for this study, since, as mentioned in our earlier work, the neutron scattering
of fullerenes, even in the aggregate form, is very weak in the investigated Q region in
our SANS study, and would not affect the scattering from the crystalline and amorphous
sPS morphologies. In addition, for isotropic membranes, the major contribution to the
observable scattering would come from the functionalized and hydrated regions of the
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sPS polymer. Therefore, the possible presence of C70 fullerenes within the crystalline sPS
lamellae is neglected in the current study. For a higher C70 content in the initial common
polymer-fullerene solution, on the other hand, the reflections from the fullerene crystals
are observed in the diffraction pattern (Figure 2c). The scattering characteristics typical
for the sPS crystalline forms can no longer be distinguished. The optical microscopy and
WAXD characterizations show that sPS-C70 composite membranes could play a role as
PEM materials for a low fullerene load. In the case of the membranes that were produced
by the casting of common polymer-fullerene solution with a C70 content of up to 1 wt%,
the crystalline matrix of the sPS is still retained and therefore these membranes are suitable
for such applications after their sulfonation, which does not appear to affect the fullerene
dispersion in the membrane. At higher fullerene content, patches of large C70 crystals are
observed, which also influence the formation of a robust crystalline polymer matrix by
solution casting.

Microstructural characterization by SANS was done on the sulfonated composite
sPS-C70 membrane prepared by casting of solution with 1 wt% C70 fullerene content.
SANS results on the composite membrane in the dry state at 30 ◦C (green symbols) and at
RH = 80% and temperatures 30 ◦C (black symbols) and 60 ◦C (blue symbols) are shown in
Figure 3. Since the membrane is obtained by the casting of an initial common solution of sPS
and C70 in toluene, the scattering pattern is isotropically distributed on the two-dimensional
neutron detector. Such scattering patterns can be analyzed by radially averaging the data
over the entire detector and not over sectors as in the case of the uniaxially deformed
membranes [22]. In all scattering patterns, three scattering features could be observed: (a)
the power-law behavior in the small Q regime, where the typical upturn is observed due to
the large-scale fractal character of the polymer film; (b) an intermediate Q regime between
0.01–0.1 Å−1, in which a broad feature occurs, which corresponds to the superposition of
scatter signals from the randomly oriented crystalline regions (so-called “matrix knee”)
and the dry sulfonated and hydrated sulfonated domains, respectively; and (c) the high Q
regime (ca. 0.1–0.5 Å−1) in which the most characteristic feature is observed, namely the
ionomer peak, which arises due to the correlation distance between the dry or hydrated
ionic clusters in such polymer membranes.

Figure 3. One-dimensional small-angle neutron scattering (SANS) patterns from the sulfonated compos-
ite membrane of sPS and C70 in dry state (green symbols) and hydrated state at 30 ◦C (black symbols)
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and 60 ◦C (blue symbols) for RH = 80%. The full red curves represent the fit of the experimental data
with the model in Equation (2), while the dotted red curves depict the contribution of the correlated
spherical domains to the global model.

Increased scattering intensity is observed from the membrane in the hydrated state
compared to the dry sate, which is due to the water uptake at RH = 80%. As reported
elsewhere [22,23], the hydration of sulfonated domains is changing drastically the scattering
length density (SLD) of these domains due to the large difference between the SLD of the
accumulated water (ρw = −0.56 × 1010 cm−2) compared to that of sulfonated sPS segments
(ρsulf = 6.34 × 1010 cm−2). This leads to an increase in the scattering contrast between the
sulfonated hydrated domains and the rest of the polymer matrix compared to the case
of the dry membrane. At the same time, the position of the ionomer peak is shifted to
the lower Q values when the membrane is hydrated, which is due to the increase in the
correlation length between the ionic clusters as a consequence of the swelling of sulfonated
domains when water is absorbed.

As already observed with similar membranes [24], the scattering intensity decreases
slightly with increasing temperature at constant RH. This indicates a decrease in the
scattering contrast, which can be due to slight water desorption. A very small shift in the
ionomer peak position to higher Q values with increasing temperature at constant RH
can only be assumed after inspection of the high Q region, and it seems to confirm what
was previously the case for membranes with a lower degree of sulfonation and fullerenes
content [24] when the effect was observed more clearly. This can be an indication of a small
decrease in the correlation length between the ionic clusters with increasing temperature
as a result of weak morphological changes due to the variation in the amount of absorbed
water. The red lines in Figure 3 represent the model interpretation of the experimental
data based on the model of scattering from correlated spherical sulfonated and hydrated
domains, which was used in our previous studies [22–24]:

I(Q)= ϕ ∆ρ2 Vd P(Q) S(Q)+Iion+Ifract+Bckgd (2)

where P(Q) represents the form factor of the scattering domains, supposed spherical in
shape, and S(Q) is the structure factor of the correlated domains, which appears for highly
sulfonated membranes [23]. The form factor and the structure factor for such morphologies
are described in detail in [25]. The contrast ∆ρ is the difference between the SLD of the
sulfonated or hydrated domains and the rest of the polymer matrix. Usually, the factor
(ϕ∆ρ2 Vd) is called the “forward scattering” I0 from the scattering domains. The terms Iion
and Ifract represent the additional contribution at high Q, from the ionomer peak, which
can be described by a Gaussian function, and at low Q, from the fractal behavior of the
film, which can be described by a simple power-law term, P3Q−3, with P3 the power-law
constant [25]. A constant background, Bckgd, which arises mostly from the incoherent
scattering contribution from the film sample, is added as a final term of the model. The
solid lines show the global fit of the scattering patterns while the dashed lines represent
the scattering contribution of the correlated sulfonated or hydrated domains to the global
fit [23]. The results of the fitting procedure show an increase in the radius of the sulfonated
domains Rd by a factor of 1.28 due to hydration at 30 ◦C, while due to the increase of the
temperature from 30 ◦C to 60 ◦C at the RH = 80%, a decrease factor in dimensions of 1.07 is
obtained. This behavior also agrees fairly well with the shift in the position of the ionomeric
peak observed in the high Q region. Since we cannot assess the scattering contribution of
the crystalline areas when working with un-oriented membranes, in the following analysis,
we will only refer to relative comparisons between the scattering patterns collected under
different hydration and temperature conditions, which is a pretty good assumption since
the change in the scattering contrast between different conditions is due to the water being
absorbed only by the functionalized amorphous areas.

The neutron contrast in the dry membrane represents the difference in the SLD between
the sulfonated and non-sulfonated polymer segments, ∆ρs

d = 0.34 × 1010 cm−2 [23], while
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in the hydrated membrane the contrast is produced due to difference in SLD between the
non-sulfonated polymer segments and the hydrated domains, the latter being a partition
between the SLD of the water molecules ∆ρw

d and sulfonated polymer segments ∆ρs
d, each

with its own volume fraction occupied in the hydrated domain,
(

ϕs∆ρs
d + ϕw∆ρw

d
)
. Thus,

we can roughly calculate the volume fraction of water in the hydrated domains from
the ratio between the forward scattering of the dry and hydrated sulfonated domains at
30 ◦C and RH = 80%, which is about ϕw = 15%. Considering the sulfonation degree of
the membrane, we can estimate a volume fraction of 8.5% at 30 ◦C for RH = 80%, which
is occupied by water in the membrane. In the same way, we can estimate that with a
temperature increase from 30 ◦C to 60 ◦C at an RH = 80% the water volume fraction in
the membrane decreases by 11%, which indicates low water desorption with increasing
temperature at constant RH. It should be noted that in the above calculation, we neglected
the presence of C70 fullerenes incorporated by the membrane. As discussed elsewhere [23],
the contribution of the fullerenes, even in their aggregation state, to the total scattering
from the membrane is negligible under the conditions of the current study. However,
the fullerene aggregates can change the conditions for rationalizing the volume fraction
occupied by different species in the membrane, so the numbers from the above calculations
should be considered as a rough estimate.

The proton conductivity of the membranes depends on the amount of water absorbed,
which depends on the degree of sulfonation of the membranes. In Table 1, we report the
results of the proton conductivity measurements on the sulfonated C70-sPS composite
membrane (SD = 55%) under various humidity and temperature conditions. The results
are shown in parallel with the observations made on a sulfonated uniaxially deformed sPS
membrane (SD = 45%) in liquid water, previously reported in [24]. The composite mem-
brane is characterized by a higher proton conductivity than the fullerene-free membrane at
room temperature, which is due to its higher degree of sulfonation. However, although
both membranes have a higher proton conductivity at high temperature in liquid water
than at room temperature, the increase in proton conductivity of the composite membrane
at 80 ◦ C is much more significant than that of the fullerene-free membrane. Here, we can
speculate that this is due to the presence of the fullerenes built into the amorphous area of
the membrane. In the vapor phase, the proton conductivity of the composite membrane,
although it shows much lower values than in the liquid phase, still increases when the
relative humidity, that is, the amount of water absorbed by the membrane, is increased.
At RH = 80%, however, the proton conductivity decreases drastically with increasing
temperature from 30 ◦C to 60 ◦C, contrary to the expected Arrhenius behavior. From
this observation, one can directly infer the possible interruption of the water paths with
increasing temperature for the membrane hydrated from the vapor phase. Furthermore, the
activation energy for proton conduction in the two membranes in liquid water hydration
state was evaluated from the Arrhenius dependence of conductivity on temperature.

σ = A exp
(
− Ea

RT

)
(3)

where σ, A, Ea, R, and T denote the proton conductivity, pre-exponential factor (mS cm−1),
activation energy for proton conduction, ideal gas constant (8.314 J K−1 mol−1), and
absolute temperature (K), respectively. The activation energy Ea that was estimated from
the slope of the linear plot of ln σ against 1000/T is reported in Table 1.
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Table 1. The proton conductivity shown by two sPS-based membranes, one uni-axially deformed
s-sPS film and one sulfonated composite membrane of sPS and C70, with different sulfonation
degrees, as measured in different humidity and temperature conditions, and the corresponding
morphology of the hydrated domains, as evaluated from the SANS data reported in this work or from
combined SANS and cryo-TEM (cryogenic transmission electron microscopy) observations reported
in previous publications.

Sample Hydration/Temperature σ (mS cm−1) Morphology 1 Ea (kJ mol−1)

s-sPS uniaxially Liquid water, 30 ◦C 128 Cylindrical channels 3.95
deformed Liquid water, 80 ◦C 160 Cylindrical channels
SD = 45%

Liquid water, 30 ◦C 180 Cylindrical channels
sPS-C70 Liquid water, 80 ◦C 450 Cylindrical channels 16.4

sulfonated
composite RH = 50%, 30 ◦C 1.5 Spherical clusters, partially interconnected

SD = 55% RH = 70%, 30 ◦C 10 Spherical clusters, interconnected
RH = 80%, 30 ◦C 19 Spherical clusters, interconnected
RH = 80%, 60 ◦C 1.3 Spherical clusters, partially interconnected

1 from SANS ([22–24], current work) and cryo-TEM [22] characterization.

4. Discussion

The proton conductivity of the sPS-based sulfonated membranes that we have pro-
duced and characterized in this study is comparable to that of the sPS sulfonated mem-
branes reported in [17,37]. The proton conductivity measured when the membrane is
hydrated from liquid water differs between the uniaxially elongated sPS film and the
sPS–C70 composite membrane, as expected due to the difference in the degree of sul-
fonation (Table 1). In addition, the proton conductivity shows an Arrhenius behavior for
both membranes in this hydration condition. The drastic increase in proton conductivity
observed in the composite membrane at 80 ◦C by more than twice the value observed at
30 ◦C differs significantly from the behavior of the fullerene-free sPS membrane, which may
be attributed to the incorporation of fullerenes into the composite membrane. According
to [33], possibilities of additional water trapped in the interface between the fullerene
aggregates and the polymer domain or morphological changes of polymer caused by the
introduction of fullerenes into the polymer matrix may be considered in the case of compos-
ite membranes of Nafion and C60 fullerenes. The activation energy for proton conduction
(Ea) represents the minimum energy required for the proton transport from one free site to
another. The Ea for the s-sPS membrane is similar to that in Nafion [38]. The composite
membrane exhibits higher Ea, which means that proton migration requires more energy.
This observation, together with the higher conductivity measured in such membranes,
indicates that a complex proton transport mechanism takes place in the sPS membranes
that incorporate fullerenes. However, the detailed study of the proton transport mecha-
nism in terms of either the Grotthuss (hopping) or the vehicle (diffusion) mechanism [39]
requires a more complex characterization and the analysis of a number of membranes
made with different compositions and treated under different humidity and temperature
conditions, which is beyond the scope of the current manuscript. At this level of inves-
tigation, we can only speculate that in the case of the sPS–C70 composite membranes,
the addition of fullerenes influences the development of the water paths and the proton
transport mechanism in the hydrophilic regions of the polymer, possibly also through an
effect on the conformation of the amorphous polymer segments. The latter can be tested
when examining the composite membranes and fullerene-free membranes at different
temperatures using quasi-elastic neutron scattering (QENS), which provides information
about the segment dynamics of the amorphous polymer chains under different conditions,
an investigation that is currently in progress on our membranes.

The proton conductivity of the composite membrane increases with the RH at constant
temperature (30 ◦C): the more water the membrane absorbs, the hydrophilic domains swell
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and percolate, which facilitates proton conduction. At RH = 80% and 30 ◦C the sPS-C70
composite membrane shows a proton conductivity comparable to that of the Nafion 117 in
similar conditions [40]. One should note that at RH = 50% the value of conductivity shown
by the sPS-C70 membrane is very low and much lower than that observed in the case of
Nafion 117. We may draw a first qualitative conclusion regarding the possible different
formation and evolution of hydration pathways in the two materials. A drastic decrease in
the proton conductivity of the sPS-C70 composite membrane was observed with increasing
temperature at constant RH = 80% (Table 1). In the case of thermally treated Nafion 117, a
slight decrease in proton conductivity was observed with increasing temperature between
20 ◦C and 45 ◦C due to water loss from the membrane, while a further temperature increase,
above 45 ◦C, led to an increase in proton conductivity with temperature. The decrease
in conductivity was attributed to structural changes caused by the heat treatment of the
membranes prior to the measurement. However, the decrease in proton conductivity
observed for the heat-treated Nafion 117 was modest.

The observed drastic drop in the proton conductivity of the sPS-C70 composite mem-
brane at 60 ◦C compared to the value measured at 30 ◦C should be attributed to a morpho-
logical change in the hydrated domains rather than to the water desorption in increasing
temperature. Based on the interpretation of the forward scattering of the hydrated domains
provided by the SANS data, only a small decrease in water content of about 11% is ob-
served when the temperature on the membrane is increased from 30 ◦C to 60 ◦C while
maintaining the RH = 80%. To relate this observation with the observed large drop in
proton conductivity, a structural idealization is proposed in Figure 4 for the formation and
development of the hydrated domains and water paths in this type of membrane. In this
model, only the formation and development of the morphology in the bulk amorphous
region as a result of sulfonation and hydration processes is discussed. In addition, for the
sake of simplicity of the model, which is based only on SANS and proton conductivity
observations, the presence of C70 fullerenes is neglected.

Figure 4a shows the schematic view of the proposed morphology of the sulfonated
amorphous regions: sulfonated domains, in which the correlation between ionic clusters
takes place over the distance ξion, are indicated by dashed lines. The correlation between
the ionic clusters leads to the appearance of the ionomer peak, which is observed in the
scattering pattern from the membrane even in the dry state. The sulfonated domains are
characterized by a neutron SLD that differs from that of the non-sulfonated or crystalline
polymer domains (see the discussion in [22–24]), which creates a SANS contrast that leads
to the appearance of the broad scattering feature that can be observed in the scattering
pattern at the intermediate Q range. During the hydration process, first water molecules
ionize and bind to the sulfonic acid groups via hydrogen bonds, which enables the bound
counterions to dissociate. As more water is absorbed, phase separation is promoted and
hydrophilic ion-rich domains are formed, as shown in Figure 4b. The correlation length
between the ionic clusters ξion increases as a consequence of the swelling of the domains,
hence the shift in the ionomer peak position to lower Q values as the membrane hydration
level increases. At higher RHs, additional water molecules cause further growth and
connectivity of the hydrophilic domains, as shown in Figure 4c. The dissociated protons,
which form ion-pairs with water, are transported through the interconnected hydrated
domains, promoting membrane conductivity. A further increase of hydration level leads
eventually to bulk-like water regions (channels) where the water molecules move freely
(Figure 4c), which is the case of the membranes immersed in water. Water channels were
evidenced by cryo-TEM in the uni-axially deformed s-sPS membranes in this state and
characterized by contrast variation SANS analysis [22].

The evolution of the morphology of the composite sPS-C70 sulfonated membrane in
increasing RH and temperature during our SANS and proton conductivity measurements
corresponds to the stages depicted in Figure 4a–c. Given the low water desorption in
increasing temperature while maintaining the same RH, as it was revealed by SANS, the
observed drastic decrease in proton conductivity at RH = 80% when the temperature on the
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membrane is raised from 30 ◦C to 60 ◦C can only be assigned to interruptions occurring in
the water connections between hydrated domains shown in Figure 4c. While the amount
of water adsorbed by the membrane remains relatively high, the conduction paths are
interrupted, thus the proton conductivity decreases significantly. Assuming the same
pre-exponential factor determined from the linear variation in conductivity as a function
of inverse temperature (Equation (3)), an activation energy Ea = 22.1 kJ mol−1 for the
composite membrane at RH = 80% and 30 ◦C is roughly estimated, which indicates that
small ion clusters are formed under these conditions, whereby the proton migration requires
more energy. It is therefore expected that the connectivity between such clusters is easily
broken with increasing temperature, while the RH is kept constant, with consequences for
proton conduction.

Figure 4. Proposed morphological descriptions for sPS based hydrophilic membranes emerged from
the SANS investigation of membranes in different hydration and temperature conditions: clusters
of sulfonated domains in dry state (a) are hydrated following the water sorption by the membrane,
giving rise to hydrated clusters (b), which grow in size and become interconnected in increasing the
hydration of membrane (c). The membrane becomes conductive in the state corresponding to the
morphology shown in panel (c). At high hydration levels or when the membrane is immersed in
liquid water, the interconnected water clusters evolve in cylindrical water channels (d). The rising of
temperature on the membrane in the morphological state depicted in panel (d) leads to interruption
in the interconnectivity of water domains, which affects the membrane conductivity.
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These observations support the water cluster model, which may be characteristic of
ionomer membranes based on syndiotactic-polystyrene. The behavior of the membrane
conductivity with the variation of RH and temperature can only be explained if an organi-
zation of the hydrophilic domains in interconnected hydrated clusters is considered [41],
which swell to form cylindrical channels as a result of the continuous water uptake through
the membrane. In Table 1 we have specified the morphology assigned to the hydrated
domains in the sPS-based membranes under different conditions.

5. Conclusions

Small-angle neutron scattering investigation and proton conductivity measurements
have been carried out on a sulfonated composite membrane of syndiotactic-polystyrene
and C70 fullerenes in various hydration and temperature conditions. In comparison with
earlier reported similar measurements on syndiotactic-polystyrene-based membranes with
variable sulfonation degree and crystallinity, a clear image of the formation and evolution of
the hydrated morphologies in such materials in different hydration/temperature conditions
could be achieved. Water clusters form and evolve in increasing the relative humidity
RH and become interconnected, leading to proton conductivity in such membranes. At
high hydration levels or in liquid water the clusters evolve in cylindrical channels through
which the water moves freely, which confers the membranes a high proton conductivity.
The proton conductivity of the membrane increases by increasing the RH at a constant low
temperature (30 ◦C), while in increasing temperature (60 ◦C) it drops drastically. Based on
the observation that only minor water desorption at 60 ◦C was estimated from the SANS
experiments, we conclude that the water clusters, though still present in the membrane,
are losing their interconnectivity in increasing temperature, which explains the observed
proton conductivity behavior.
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