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Abstract: The microheterogeneous model makes it possible to describe the main transport properties
of ion-exchange membranes using a single set of input parameters. This paper describes an adaptation
of the microheterogeneous model for describing the electrical conductivity and diffusion permeability
of a track-etched membrane (TEM). Usually, the transport parameters of TEMs are evaluated assum-
ing that ion transfer occurs through the solution filling the membrane pores, which are cylindrical and
oriented normally to the membrane surface. The version of the microheterogeneous model developed
in this paper takes into account the presence of a loose layer, which forms as an intermediate layer
between the pore solution and the membrane bulk material during track etching. It is assumed that
this layer can be considered as a “gel phase” in the framework of the microheterogeneous model due
to the fixed hydroxyl and carboxyl groups, which imparts ion exchange properties to the loose layer.
The qualitative and quantitative agreement between the calculated and experimental concentration
dependencies of the conductivity and diffusion permeability is discussed. The role of the model
input parameters is described in relation to the structural features of the membrane. In particular, the
inclination of the pores relative to the surface and their narrowing in the middle part of the membrane
can be important for their properties.

Keywords: microheterogeneous model; track-etched membrane; electrical conductivity; diffusion
permeability; loose layer

1. Introduction

Track-etched membrane (TEM) is a thin polymer film with a thickness in the range of
5–25 µm (usually from polyethylene terephthalate, polycarbonate or polyimide [1]) that was
irradiated with heavy ions to form so-called «tracks», after which the material was etched
under certain conditions with suitable chemicals. Etching determines the size and shape of
the resulting pores [2]. This type of membranes has found a number of applications, most
notably in the processes of micro- and ultra-filtration [3]. TEMs are widely used in medicine
and biochemistry [4], in biological and chemical sensors [5], electrophoresis [6], optical
sensors [7], and also as templates for the growth of hydrogels and nanowires of metals,
semiconductors, and dielectrics [8]. The attractiveness of these membranes is due to the
uniform size of pores of a regular shape, which is determined by the production method.

Indeed, the pores of TEMs have a strictly defined shape, and this shape can be different
(e.g., cylindrical, conical, etc.) [9,10]. Note that the widespread idea about the cylindrical
pore shapes of TEMs often is only an approximation, since the pores have a more complex
geometry in reality. Thus, nanopores of polycarbonate membranes have rather a “barrel”
shape [11]. TEM can have also a “cigar-like” [12,13] or a “toothpick” shape [14]. The
shape of the pores of TEMs, as well as the final chemical composition of the surface,
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depend on many factors, such as: the chemical structure of the polymer, the conditions of
irradiation and etching (temperature, time, exposure to UV irradiation, etching agents and
surfactants) [15,16], as well as additional modification of the membranes (PVP coating or
staining with dyes [17].

An important aspect in the context of this study is the fact that TEMs have a loose
layer [18,19]) known also as a “loosened layer” [15] and “gel layer” [15,20,21]) on the pore
wall [15,20,21], which appears as a result of the polymer damage by swift heavy ions and
incomplete degradation of the polymer [15,22–24]. Since the etching takes place in an
intermediate layer of a non-zero thickness [18,19], chain scission events may create end
groups in the depth of a few nanometers. In the case of PET, these are –OH and –COOH
groups. Therefore, this layer has ion-exchange properties and can swell in the presence of
water and can be interpreted as an ion-exchange conducting gel layer [15]. At the same time,
its hydraulic permeability should be negligible [20]. The thickness of the loose layer may
vary depending on the type of polymer from which the membrane is made and the etching
parameters. Dejardin et al. [15] estimated the thickness of this layer as approximately
1 nm based on the streaming potential measurements and based on accounting for the
back current through the conductive loose layer. Based on the results of porosity values
found from filtration data and data on the membrane electrical resistance reported by
Sabbatovsky et al. [25], it is possible to evaluate the thickness of the loose layer in some
PET TEMs as close to 2 nm; it is assumed in calculations that there is no convective flow in
the loose layer, and the electrolyte electrical conductivity in this layer is equal to that in the
bulk pore solution.

Modeling the transport properties and structure-property relationship of TEMs is
an important task for predicting their behavior in various applications. Two main types
of models serve as a theoretical basis. The first type of models, so-called «pore-flow»
models [26], consider the membrane as a system of flow-through pores. They assume that
the transport of particles is described inside a separate pore filled with a solution [27].

The second type of models, which is more common and is of the greatest interest
for the present study, is called the “solution–diffusion” model [28]. Models of this type
assume that the transported substances dissolve in the membrane material and then are
transported through it under the action of a concentration gradient and/or a potential
gradient. The general driving force in models of this type is the gradient of electrochemical
potential. In turn, “solution–diffusion” models are divided into two groups. The first
group includes the models that consider the membrane as a homogeneous medium [29].
The second group includes heterophase models [30], which consider the membrane as a
heterogeneous system consisting of two (or more) phases, each of which is assigned with
its own parameters.

In this paper, to describe the transport properties of a TEM, we apply the microhetero-
geneous model (MHM) [31], which is related to the second group. This model allows
the description of transport characteristics of ion-exchange membranes, such as electrical
conductivity, diffusion permeability, and ion transport numbers as functions of some struc-
tural and kinetic parameters [31,32]. The model is widely used by various laboratories
and has shown its effectiveness in modeling the structure–property relationship for both
commercial [33–35] and modified lab-made membranes [36–39]. For the first time, this
model is applied to a TEM, where the ions may transport in aqueous pores of a specific ge-
ometry and a loose layer with ion-exchange properties. We also show that it is important to
account for the fact that the pore axes are generally tilted at a certain angle to the membrane
surface, which differs from 90◦. We compare the results of modeling with experimental
concentration dependencies of conductivity and diffusion permeability of a TEM. A part of
model parameters is evaluated using the experimental values of the ion-exchange capacity,
water content, and zeta potential for this membrane.
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2. Theoretical
2.1. Basic Microheterogeneous Model (MHM)

The main idea of describing the ion transport in a multiphase membrane is to assign
certain physicochemical properties to each domain (phase) and to describe the properties
of the membrane as a whole as functions of the properties of individual domains, which
is in line with the effective medium theory [40]. According to the basic MHM [31], the
membrane under study consists of two nanophases. One of them is the gel phase formed
by polymer chains with hydrated fixed and mobile ions, also including electrical double
layers in the pore solution, which compensate the charge of the fixed ions so that the gel
phase is electrically neutral. The second phase is an electroneutral solution that fills intergel
spaces: the central parts of macro- and mesopores. The sum of the volume fractions of
the gel ( fg) and the electroneutral solution ( fs) is equal to one ( fg + fs = 1). The model
assumes that there is a local equilibrium between the gel phase and the electroneutral pore
solution. The latter is identical to the external bulk solution [31].

It is convenient to introduce the conductance coefficients of ion i in the gel phase, Lg
i ,

and electroneutral solution, Ls
i , which are linked with the diffusion coefficients of ion i in

the corresponding phases as gel, Dg
i , and solution Ds

i , respectively [31]:

Lg
i =

Dg
i cg

i
RT

, Ls
i =

Ds
i cs

i
RT

, (1)

where cg
i and cs

i are the ion concentrations in the respective phases; R is the gas constant;
and T is the temperature.

The concentration of ions in the gel phase can be expressed through their concentration
in the solution phase using the Donnan relation (written below for the case of a cation-
exchange membrane) in a simplified form, valid for dilute solutions (<1 M) [41]:

cg
+cg

− = KDcs
+cs

−, (2)

The electroneutrality condition in the gel phase and solution reads as:

cg
+ = Qg + cg

−, cs
+ = cs

− = c, (3)

where indexes “g” and “s” refer to the gel and electroneutral solution, respectively; KD
is the Donnan constant characterizing the interaction of coions with the matrix of the gel
phase; the “+” and “−” indices refer to the counterion and coion, respectively (in case of a
cation exchange membrane); Qg is the ion-exchange capacity of the gel phase (concentration
of charged fixed groups per unit volume of the gel). Equations (2) and (3) are written for the
case of a 1:1 electrolyte, z+ = −z− = 1. Joint solution of these equations allows finding the
cation and anion concentrations in the gel phase as functions of the electrolyte concentration
in the intergel solution (the final equation is present in the Appendix A).

Qg can be calculated when knowing the ion-exchange capacity of the membrane, Qmb,
and the volume fraction of the gel phase, fg:

Qg =
Qmb

fg
, (4)

When knowing Lk
i , it is possible to find the transport parameters in phase k, such as

the ion transport number Equation (5), electrical conductivity Equation (6), and diffusion
permeability Equation (7), according to the following relations [31,41]:

tk
+ =

Lk
+

Lk
+ + Lk

−
, (5)

κk = (Lk
+ + Lk

−)F2 (6)
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Pk = 2tk
+Lk

−
RT
c

=
(tk
+Lk

− + tk
−Lk

+)RT
c

, (7)

where κg = (Lg
+ + Lg

−)F2 and κs = (Ls
+ + Ls

−)F2 are the conductivity of the gel phase and
electroneutral solution, respectively.

After calculating these parameters for each phase constituting the membrane, the
corresponding parameters of the membrane as a whole, can be found using the following
relations [42]:

κ∗ =
(

fg(κ
g)α + fs(κ

s)α)1/α (8)

P∗ =
(

fg(Pg)α + fs(Ps)α)1/α (9)

where α is a structural parameter that characterizes the mutual arrangement of the mem-
brane phases, −1 ≤ α ≤ +1, where α = −1 corresponds to the in series arrangement, and
α = 1 corresponds to the parallel one.

When knowing κ∗ and P∗, it is possible to calculate the ion transport numbers in
the membrane using the following relation (deduced in the framework of the irreversible
thermodynamics [43]):

P∗ =
2RTκ∗t∗+t∗−

F2c
(10)

and the fact that
t∗+ + t∗− = 1 (11)

Another way for reaching the membrane transport parameters is the use of a relation
similar to Equations (8) and (9), but applied to the conductance coefficient of each ion [31]:

L∗
i =

(
fg(Lg

i )
α
+ fs(Ls

i )
α
)1/α

, (12)

After calculating the effective membrane transport coefficients, the values of κ∗, P∗, and
t∗+ can be found using Equations (5)–(7), in which superscript “k” is replaced with “*” [31].

Both ways for calculating the effective transport parameters of heterogeneous medium
use similar equations, Equations (8) and (9) in the first case, and Equation (12) in the
second case. The above equations (Equations (8) and (9), on one hand, and Equation (12),
on the other) are different ways of generalization of the two limiting situations, when
the conducting phases are arranged in series or in parallel. In both cases, it is necessary
to know the following six parameters determining the transport properties of a specific
membrane: two thermodynamics coefficients, KD and Qg; two structural parameters, fg
and α; and two kinetic ones, Dg

+ and Dg
−. The diffusion coefficients in the inter-gel solution,

Ds
i , are assumed to be the same as in free solution (tabular values). If these parameters

are known and the external electrolyte concentration is set, it is possible to calculate,
first, the ion concentrations in the gel phase, Equations (2) and (3); then, the Lg

i and Ls
i

coefficients, from Equation (1), are considered. After that, when using the first way, we
calculate first the conductivities and diffusion permeabilities of different phases by using
Equations (5)–(7), and then we determine the conductivity and diffusion permeability of
the membrane by using Equations (8) and (9); finally, the transport numbers are calculated
using Equations (10) and (11) (the equations are present in the Appendix A). When using
the second way, L∗

i effective coefficients are calculated via Equation (12), and then the
membrane transport parameters are found, as explained in the comment to Equation (12).

In this study, we report the results obtained using the first way, i.e., Equations (5)–(10),
since the agreement between the calculations and experiment was better than when using
the second way.

2.2. Problem Formulation

When describing the properties of a TEM, Sarapulova et al. [34] assumed that the
transfer occurred only through a solution that fills the membrane pores. In this study, we
take into account an additional way for ion transfer: an intermediate loose layer between
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the pore solution and membrane bulk; the latter is a dense material not permeable for ions
and water. Figure 1 shows a schematic representation of a pore and loose layer in a TEM,
assuming that the pore has a cylindrical shape.
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Figure 1. Schematic representation of a system that includes a solution in a TEM pore with a radius
rp and a loose (gel) layer with a thickness of lg.

The volume of the solution in one pore of the membrane is equal to:

Vs = πr2
ph, (13)

where h is the cylinder height (membrane thickness).
The loose conductive layer will be considered as a “gel phase” within the framework

of the MHM. We assign to this phase the diffusion coefficients of cations, Dg
+, and anions,

Dg
−, as well as the Donnan constant, KD, in order to take into account the contribution

of this layer. This will make it possible to calculate the ion concentrations in this phase
using Equations (2) and (3), and then we can calculate the conductivity, κg, and diffusion
permeability, Pg

di f , using Equations (5)–(7). Similarly, the values of κs and Ps can be found
using the same equations with Ls

i coefficients.
The radius and volume of the “pore solution + loose layer” system (abbreviated as

“pore + layer”) are found as:
rpl = rp + lg, (14)

Vpl = π(rp + lg)
2h, (15)

where lg is the thickness of the loose layer.
The volume fraction of the solution in the “pore + layer” system, which means the fs

parameter when applying the MHM to this system, is equal to:

fs =
Vs

Vpl
=

(
rp

rp + lg

)2
, (16)

Note that, even if the pore axis is not perpendicular to the membrane surface, Equation
(16) remains correct. The volume fraction of the “gel phase” (loose layer) in this system is
equal to:

fg = 1 − fs, (17)

Now the calculation of the conductivity, κ∗, and diffusion permeability, P∗, of the “pore
+ layer” system is possible, when using Equations (8) and (9), respectively. In addition, the
ion transport numbers in this system, t∗i , can be found using Equation (10). Since t∗i is a
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relative dimensionless quantity, it characterizes the TEM as a whole: tmb
i = t∗i . However, to

find the conductivity, κmb, and diffusion permeability of the membrane, we have to take
into account that it contains, together with pores, the hydrophobic material not acceptable
to water and ions.

To find the value of conductivity for the membrane as a whole, κmb (as a property of the
material), we find the conductance of one pore together with its loose layer (as a property
of the component), κpl = κ∗π(rp + lg)

2/h, and then we determine the conductance of the
membrane with an area of 1 cm2, where np is the number of pores per 1 cm2 of surface. The
value κmb is further defined as κmb = κplh. Finally:

κmb = κ∗π(rp + lg)
2np=

(
fg(κ

g)α + fs(κ
s)α)1/α

π(rp + lg)
2np, (18)

Similarly, for the (differential) diffusion permeability of the membrane, Pmb is:

Pmb = P∗π(rp + lg)
2np =

(
fg(Pg)α + fs(Ps)α)1/α

π(rp + lg)
2np, (19)

3. Experimental
3.1. Membrane

In the current study, a TEM obtained at the Flerov Laboratory of Nuclear Reactions,
Joint Institute for Nuclear Research (FLNR JINR) (Dubna) is considered. The membrane
under study (with the provisional name TEM#811) is made of polyethylene terephtha-
late (PET) film (manufactured by Vladimirskii khimicheskii zavod, Russia). The main
characteristics of TEM#811 are presented in Table 1.

Table 1. Some characteristics of TEM#811.

Thickness * Pore Density *, np Pore Radius, rp Surface Porosity Fixed
Groups [17]

10 µm 5.0 × 109

pores/cm2

20 nm *
14 nm **
22 nm ***

0.063
hydroxyl and

carboxyl
groups

Water Uptake [34] Hydraulic Permeability [44] Density (Dry) [44] Total Ion-Exchange Capacity,
Qtot

mb [34]

5% 5.0 × 10−3 cm3/(cm2 min)
1.30 ± 0.02

g cm−3
0.064 ± 0.003

mmol g−1 wet

* Estimated by SEM. ** Estimated by hydraulic permeability. *** Estimated from the difference between the density
of the dry TEM#811 and the PET foil density, 1.41 ± 0.01 g cm−3.

Figure 2 represents scanning electron microscopy (SEM) images of the membrane
surface. Figure 2a shows a rough surface structure with a characteristic scale of about
10 nm or less.

During the manufacture of TEM#811, hydroxyl and carboxyl groups are formed on
the polymer surface after etching the tracks, which determine the negative electrical charge
of the surface [1,34,45]. The pores of TEM#811 have a shape close to cylindrical, although
there are reasons to believe that the shape of the pores is more similar to an elongated
double cone («hourglass») [34]. This assumption is supported by the pore radius values,
rp, determined from SEM images (Figure 2a) (20 nm) [44], and estimated by hydraulic
permeability (14 nm) [44].



Membranes 2022, 12, 1283 7 of 18

Membranes 2022, 12, x FOR PEER REVIEW 7 of 19 
 

 

In the current study, a TEM obtained at the Flerov Laboratory of Nuclear Reactions, 
Joint Institute for Nuclear Research (FLNR JINR) (Dubna) is considered. The membrane 
under study (with the provisional name TEM#811) is made of polyethylene terephthalate 
(PET) film (manufactured by Vladimirskii khimicheskii zavod, Russia). The main charac-
teristics of TEM#811 are presented in Table 1. 

Table 1. Some characteristics of TEM#811. 

Thickness * Pore Density *, np Pore Radius, rp Surface Porosity Fixed Groups [17] 

10 μm 5.0 × 109 
pores/cm2 

20 nm * 
14 nm ** 
22 nm *** 

0.063 hydroxyl and car-
boxyl groups 

Water Uptake [34] Hydraulic Permeability 
[44] 

Density (Dry) 
[44] 

Total Ion-Exchange Capacity, 
Qtotmb 

[34] 

5% 5.0 × 10−3 cm3/(cm2 min) 1.30 ± 0.02 
g cm−3 

0.064 ± 0.003 
mmol g−1 wet 

* Estimated by SEM. ** Estimated by hydraulic permeability. *** Estimated from the difference be-
tween the density of the dry TEM#811 and the PET foil density, 1.41 ± 0.01 g cm−3. 

Figure 2 represents scanning electron microscopy (SEM) images of the membrane 
surface. Figure 2a shows a rough surface structure with a characteristic scale of about 10 
nm or less. 

 
Figure 2. SEM images of surface (a) and cross section (b,c) of TEM#811. 

During the manufacture of TEM#811, hydroxyl and carboxyl groups are formed on 
the polymer surface after etching the tracks, which determine the negative electrical 
charge of the surface [1,34,45]. The pores of TEM#811 have a shape close to cylindrical, 
although there are reasons to believe that the shape of the pores is more similar to an 
elongated double cone («hourglass») [34]. This assumption is supported by the pore ra-
dius values, rp, determined from SEM images (Figure 2a) (20 nm) [44], and estimated by 
hydraulic permeability (14 nm) [44]. 

3.2. Solution 
In the experiments, we used a solution prepared from solid NaCl of analytical grade 

(JSC “Vekton”). Deionized water with the electrical conductivity of 0.5 μS cm−1 and pH of 
5.50 ± 0.05 was used. 

3.3. Measurement of Transport Characteristics 

Figure 2. SEM images of surface (a) and cross section (b,c) of TEM#811.

3.2. Solution

In the experiments, we used a solution prepared from solid NaCl of analytical grade
(JSC “Vekton”). Deionized water with the electrical conductivity of 0.5 µS cm−1 and pH of
5.50 ± 0.05 was used.

3.3. Measurement of Transport Characteristics

In this study, the pretreatment of TEM was carried out similarly to the pretreatment
of ion exchange membranes [46]. All samples were successively exposed for 24 h in NaCl
solutions, the concentration of which was 300 and 30 g dm−3. All experiments were carried
out at 25 ± 1 ◦C.

The specific electrical conductivity of the membranes, κmb, was determined by a
differential method using a pince-like cell [47,48] and a MOTECH MT4080 immittance
meter (Motech Industries Inc. Taiwan) at an alternating current frequency of 1 kHz. The
calculation of κmb was performed by the following equation:

κmb =
h

Rmb+s − Rs
(20)

where h is the membrane thickness; Rmb+s, measured resistance of the membrane and
solution; Rs, resistance of solution.

The diffusion permeability was measured using a flow-type two-chamber cell. The
membrane under study separated two ducts. Distilled water was pumped through one of
them (duct 1), while a salt solution with a given concentration was pumped through the
other (duct 2). The scheme of the cell, procedure for experiment and processing of the data
obtained are described in detail in [32]. The following equation was used to calculate the
integral coefficient of diffusion permeability, P:

P = j
h

C2 =
d(C1V1)

dt
h

SmbC2 (21)

where j is the density of the salt diffusion flux through the membrane; Smb, area of the
membrane; C1 и C2, salt concentrations in ducts 1 and 2, respectively; d(C1V1)/dt is the
rate of the increase in the salt concentration in duct 1; V1 is the volume of the solution in
this duct.

Differential diffusion permeability coefficient, P*, was determined from the concentra-
tion dependence of P using the following equation [31]:

P∗ = P
(

1 +
d ln P
d ln c

)
(22)
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3.4. Ion-Exchange Capacity

Total ion-exchange capacity (Qmb) of weakly ionized membranes is determined by a
static method [49]. The membrane samples, the weight of which in dry state (mdry) was
about 0.5 g, were preliminarily transformed into the H+ form, washed in distilled water,
ground, and placed into conical flasks. 20.00 cm3 of 0.01 mol dm−3 sodium acetate solution
was added with a pipette and kept for 24 h, shaking occasionally. The potentiometric
titration of this solution (with membranes placed into it) was carried out with a 0.01 mol
dm−3 NaOH solution using an EasyPlusTitrators autotitrator (METTLER TOLEDO). More
details are reported in [34].

3.5. Zeta Potential

Streaming potential (∆E) measurements were performed in the dead-end filtration
mode using a cylindrical cell made of polymethyl methacrylate 250 mm long and 38 mm in
inner diameter with two silver chloride electrodes located above and below the membrane
and a tap for supplying compressed nitrogen, creating a pressure drop (∆P) over the mem-
brane. After mounting the membrane in the lower part of the cell, an electrolyte solution
was poured through the upper hole, and the upper hole was sealed, and compressed
nitrogen was supplied. During the measurements, a pressure drop of up to 2.5 bar was
used. A high resistance voltmeter was used to record the values of streaming potential.
The value of specific electrical conductivity of the solution, κ0, was separately measured
in each case in a conductometric cell with blackened platinum Pt/PtO2 electrodes. The ζ

potential was calculated by the Helmholtz–Smoluchowski equation:

ζ = (∆E/∆P)κ0η/εε0 (23)

where ε and ε0 are the relative and vacuum permittivity, respectively; η is the viscosity of
the solution.

The value of surface charge, σ, is estimated using the Grahame equation [50]:

σ =
√

8εε0cRT × sinh
(

ζF
2RT

)
(24)

4. Results and Discussion
4.1. Model Input Parameters

All parameters of the simulation are presented in Table 2. The values of some of the
parameters were estimated based on the following consideration.

Table 2. Input parameters used in the calculation of the conductivity and diffusion permeability of
the membrane.

Parameter Value Description Source

α 0.34 Structural parameter *

c 0.1–0.5 M Concentration of free solution **

Ds
+ 1.33 × 10−9 m2/s

Ion diffusion coefficients in the free solution [51,52]
Ds
− 2.04 × 10−9 m2/s

Dg
+ 9 × 10−10 m2/s

Ion diffusion coefficients in the membrane
*

Dg
− 0.1 × 10−10 m2/s *

KD 0.2 Donnan’s constant *

np 5 × 109 1/cm2 Density of pores on the surface **

Qmb 0.015 mol/L of the
swollen membrane

Concentration of fixed charged groups at
pH = 5.5 **
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Table 2. Cont.

Parameter Value Description Source

Qg 0.450 mol/L of the
loose layer

Ion-exchange capacity of the loose layer of
the membrane **

rp 18 nm Pore radius *

lg 5.6 nm Thickness of the loose layer *

T 298.15 K Temperature of the system **
* fitting parameter. ** measured value.

Ion-exchange capacity of membrane, Qmb (in mol/L of membrane), measured as
described in Section 3.4, is total. It includes the contribution of all ionogenic groups that are
deprotonated at high pH of the external solution. As mentioned above, the fixed ionogenic
groups in PET membranes are –OH and –COOH. For the terephthalic acid, containing
COOH groups similar as the PET matrix, pKa1 = 3.54 [23], hence, at pH = 5.5 (at which
the conductivity measurements were made), most of these groups should be dissociated.
However, it is known that the conductivity of PET TEMs increases in the pH range from
4 to 7, which indicates that the degree of dissociation increases in this range of pH [25].
Apel et al. [23] explain this result by the fact that the degree of dissociation of functional
groups in constrained space, in particular, in nanopores in PET, can significantly decrease
compared to the bulk value [53]. Chen and McCarthy [54] estimate the content of COOH
and OH groups in the surface layer (after alkaline etching) as approximately 0.06 and
0.1 groups per 1 repeating unit of PET. Therefore, the fraction of the COOH groups among
all functional groups is 6/16. Taking into account that hydroxyl groups do not dissociate at
pH = 5.5, we considered it reasonable to assume that, at this pH value, the fraction of the
dissociated groups is 0.25 of the total functional groups (0.064 M) and is equal to 0.015 M
(per L of the swollen membrane) (Table 2). The ion-exchange capacity of the loose gel layer,
that is, the concentration of charged fixed groups in this layer, Qg (in mol/L of loose layer)
in accordance with Equation (4), will be equal to:

Qg = Qmb/ f mb
g = Qmb/( fp fg) (25)

where fp = π(rp + lg)
2np is the fraction of the membrane surface occupied by the “pore + layer”

systems.
The value of Qg can also be estimated from the data on the cross-streaming potential

in the membrane pores obtained in the dead-end filtration mode (Section 3.5). The zeta-
potential of the pore surface is ζ = −10 mV in a 0.01 M KCl solution. This value is
approximately three times less than in the case of a homogeneous CMX membrane, for
which ζ = −28 mV in a 0.02 M NaCl solution [55]. The estimations of the surface charge
density, σ, using the Grahame equation, Equation (24), give 0.2 and 0.9 µC/cm2 for the pore
walls of the TEM#811 and for the CMX membrane, respectively. The result for the TEM#811
correlates with the value of 0.35 µC/cm2 reported by Sabbatovskiy et al. [25], for a PET
TEM with a radius 17 nm. Chen and McCarthy [54] estimated the surface concentration of
COOH on etched PET surface as 2.5 × 1013 1/cm2, which gives σ ≈ 0.4 µC/cm2 when all
these groups are dissociated.

The ion-exchange capacity of the CMX membrane is 1.6 M [56–58], and the gel fraction
is approximately equal to 0.85–0.9 [56,58]. Hence, it follows that the ion-exchange capacity
of the gel phase in the CMX membrane is approximately equal to 2 M. Assuming a linear
dependence of the surface charge on its volume value, the ion-exchange capacity of loose
layer at pH = 5.5 can be defined as Qg = 0.45 M.

Knowing Qg and Qmb values, it is possible to estimate the thickness of the loose layer
(«gel phase»), lg. Indeed, the values of lg and rp define fp and fg values in Equation (25),
considering that np is known with sufficient accuracy from SEM images. It is possible
to find the dependence of lg on rp (Figure 3) using Equation (26), which is obtained by
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substituting Equation (4) into (17) (taking into account Equation (16)) and then solving the
quadratic equation:

lg =
Qmb

πnpQg
(

rp +
√

r2
p + Qmb/πnpQg

) (26)

Since Qg и Qmb are fixed, the global volume fraction of the charged porous material
in the loose layer, f mb

g , does not change when varying rp. Therefore, lg increases with
decreasing rp. Note that the calculated values of lg become larger than the pore radius if
rp < 10 nm (Figure 3).
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Figure 3. The thickness of loose layer as a function of pore radius found using Equation (26) with
np = 5.0 × 109 pores/cm2, Qg and Qmb are indicated in Table 2.

The loose layer is assumed to be a porous polymer (PET) material, which is the result
of incomplete etching. Apparently, it looks similar to a non-crosslinked ion-exchange gel
with larger pores than in homogeneous ion-exchange membranes. Therefore, it can be
expected that the ion diffusion coefficients in this layer are significantly greater than in
homogeneous ion-exchange membranes, but lower than in free solution. We assume that
Dg
+ is several times less than in free solution, however, Dg

− is about one order of magnitude
less than Dg

+. The latter is due to the fact that, in a porous medium, there are some narrow
pores with charged walls, which are easily permeable to a counterion, but impermeable to
a coion. As a result, the path for the coion is much more tortuous than for the counterion.
However, Dg

+ and Dg
− are fitting parameters in the model. To find them, we take into

account that the gel conductivity is very sensitive to the value of Dg
+ (and almost does not

depend on Dg
−). On the contrary, the diffusion permeability strongly depends on Dg

−, but
is not sensitive to Dg

+.
The characteristic value of the Donnan equilibrium constant can be estimated from

the consideration presented in our paper [59]. When the concentrations are expressed
in mol per m3 of free water within a membrane pore, the Donnan constant should be
of the order of 1. Additionally, when ion concentrations are expressed in mol per m3 of
swollen membrane, the free water content should be taken into account. The latter is about
20–30 vol.% in gel ion-exchange membranes and expected to be close to 50 vol.% in the
loose layer. Then, the KD value should be of the order of 0.1 at water content equal to
30 vol.(%). In our calculations, we used the value of KD = 0.2.

The membrane pore radius, rp, was previously determined [44] by two independent
methods: using SEM images (which gives 20 nm) and by using hydraulic permeability
(14 nm). This difference is most likely due to the hourglass shape of the pores: the radius
is larger on the membrane surface and smaller in the volume. The hourglass shape of the
pores is due to the etching stage. The pore radius is more than two orders of magnitude
smaller than its length; the delivery of a chemical reagent that etches the membrane material
is carried out mainly due to its diffusion. As a result, the etching process along the length
of the pore proceeds at different rates: the maximum rate is at the entrance to the pore and
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decreases towards its middle. We have carried out calculations for a wide range of pore
radius, including both of the above values.

4.2. Modelling of Transport Characteristics for Cylindrical Pores Perpendicular to the Surface

When calculating membrane transport characteristics by applying the MHM, we first
assume that pores in the TEM#811 are cylindrical and their axes are perpendicular to the
surface. Then, we set α = 1 in Equations (8) and (9). In calculations, the entire solution
filling the pore outside the loose layer is assumed to be electrically neutral. We use this
assumption, taking into account that, in the studied concentration range (0.1–0.5 M), the
pore radius of the TEM#811 is almost an order of magnitude greater than the Debye length.
Double electrical layers in the pores of such a membrane do not overlap, and a relatively
high permselectivity is found in refs. [44,60], which is unattainable due to the formation of
these layers in the pores. Thus, for a quantitative description of the characteristics of this
membrane, it is necessary to use the MHM described above.

Figure 4 show the simulated concentration dependencies of the conductivity and diffu-
sion permeability of the TEM#811 found at different pore radius and different thicknesses
of loose layer, lg. The other input parameters are indicated in Table 2.
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Figure 4. Experimental (dots) and simulated (lines) results for the electrical conductivity (a,c,d,e) and
diffusion permeability (b,f) of TEM#811 as a functions of NaCl concentration. Simulations are made
for rp = 8, 12, 16, 20 and 24 nm at lg = 0 (a,b), 5 nm (c), 10 nm (d), and 20 nm (e).

An increase in the thickness of the loose layer leads in increasing the membrane
conductivity but has no effect on its diffusion permeability. We give the P* vs. c dependence
only in the case of lg = 0 and lg = 20 nm (for comparison) because the eye does not notice
the difference in the course of such curves at other values of lg. This is explained by the fact
that membrane diffusion permeability is controlled by the transport of coions, Cl− ion in
our case. Since the coions are excluded from the loose layer (Donnan exclusion [49]), the
Cl− ion concentration there is significantly lower than in the external equilibrium solution.
In addition, the Cl− diffusion coefficient in this layer is much less than in free solution.
As a consequence, the diffusion flux through the loosed layer, in the first approximation,
is equal to Dg

−cg
−lg/h, which is much lower the diffusion flux through the pore solution,

proportional to Ds
−cs

−rp/h. As for the membrane conductivity, the cation-exchange loose
layer gives an important contribution to the value of this parameter due to high counterion
(Na+ ion) concentration in this layer: κg = (Dg

+cg
+ + Dg

−cg
−)F2/RT, especially at low

concentrations in the external solution since, in this concentration range, cg
+ >> cs

+.
Besides, as we noted above, Dg

+ > Dg
−.

It can be seen that, if we take lg = 0, the κ∗ vs. c and P* vs. c dependencies can be
described quantitively. However, the first dependence is well described at rp = 20 nm,
and the second one is at rp = 12 nm. Simultaneously, both dependences with one set of
parameters cannot be described, even if we change the lg value. This discrepancy can be
explained by two factors.

First, this can be linked with the deviation of the shape of the pore from cylindrical.
Note that the value of rp fitting the κ∗ vs. c dependence is higher than the hydraulic
pore radius; the value of rp fitting the P* vs. c dependence is less than the hydraulic pore
radius. If we assume that the pore is conical, as in an hourglass, we can arrive at a higher
conductivity at a lower pore radius due to the cation (counterion) conductance of the loose
layer. At the same time, the cation-exchange loose layer does not contribute to the anion
permeation since coions are excluded from a cation-exchange material. Therefore, the
narrow part of the pore can assure a low diffusion permeability detected experimentally.

The second factor could be the intersection of pores within the membrane when they
are not perpendicular to the surface (Figure 4c). At such an intersection, there appears
a path when ions cross the interface between the loose layer and pore solution, i.e., the
conductive phases can be arranged in series. This arrangement does not affect significantly
the membrane conductivity (since the loose layer has a good counterion conductance), but it
essentially reduces the diffusion permeability (the loose layer is low permeable for coions).

Note that series arrangement takes place if the pores are hourglass shaped, even when
the pore axis is perpendicular to the surface.
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4.3. Application of the MHM with α < 1

As written above, two factors can explain the failure of the assumption that the pores
are cylindrical and perpendicular to the membrane surface studied in Section 4.2: (1) the
hourglass-like shape of the pores and (2) the intersection of inclined pores within the
membrane. In both cases, there appear in series arrangement of two conductive phases,
which can be modelled in the frame of the MHM by setting α < 1.

Figure 5 shows the results of such a simulation performed with a reasonable value
of α = 0.34. Note that for ion-exchange membranes, the value of α is mainly in the range
0.2–0.3 [31,61]. The value of rp = 18 nm is also reasonable, being lower than that determined
by the SEM images and higher than that from hydraulic permeability measurements. The
other parameters are indicated in Table 2. The ideal agreement between the simulation and
experiment is not achieved, but the tendency for the increase in electrical conductivity and
diffusion permeability is well observed.
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Figure 5. Experimental (dots) and simulated (lines) electrical conductivity (a) and diffusion per-
meability (b) of TEM#811 as functions of NaCl concentration. Simulations were made using the
parameters presented in Table 2.

Figure 6 show the effect of different parameters on the course of κ* vs. c and P* vs. c
dependencies. As can be seen, the membrane ion-exchange capacity, Qmb, affects both κ *
than P*. However, an increase in Qmb leads to a growth in κ *, but to a decrease in P*. As
mentioned above, the conductivity of the loose layer is proportional to the concentration of
cations in it, which is proportional to Qmb in the first approximation. On the contrary, an
increase in Qmb strengthens the Donnan exclusion of coions, which reduces the electrolyte
diffusion in the loose layer.

Parameter α has practically no effect on κ*: the conductivities of the pore solution and
the loose layer are comparable, hence, it does not matter how the phases are located relative
to each other. However, the diffusion permeability of the loose layer is much lower than
that of the pore solution. For this reason, P* decreases rapidly as α decreases: the smaller
α is, the more and more coions have to cross the ion-exchange material in order to move
from one side of the membrane to the other.

As for KD, which determines (together with Qg) the coion concentration in the loose
layer, its increase almost does not affect the membrane conductivity, since the contribution
of coions in this layer is quite low. However, the effect of KD on the diffusion permeability
is significant: an increase in KD leads to an important increase in the coion concentration in
the loose layer, which results in a higher P*.
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Figure 6. Experimental (dots) and simulated (lines) electrical conductivity (a,c,e) and diffusion
permeability (b,d,f) of TEM#811 as functions of NaCl concentration. Simulations were performed
using the parameters presented in Table 2. In each figure, one parameter was varied, while others
were fixed: Qmb = 0.005, 0.010 . . . 0.025 M (a,b), α = 0.25, 0.3 . . . 0.5 (c,d), and KD = 0.1, 0.3 . . . 0.9 (e,f).

The comparison between the experimental and simulated results (Figure 5) shows a
qualitative agreement between them. However, this agreement could perhaps be better if
one takes into account the expected hourglass-like shape of the pore and the presence of an
electrical double layer (EDL) on the pore walls. We have discussed above how this shape
could improve the model fidelity, mainly by introducing an in-series connection of the
ion-exchange material and the pore solution. As for the EDL, its role indeed is insignificant
when the pore radius is close to 18 nm, as it was used in the calculations of the curves in
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Figure 5. However, in the case of hourglass-like pore shape, it can be imagined that the
pore radius in its narrowest part can be significantly lower, and then the EDL thickness can
be comparable with the pore radius.

Interestingly, different methods give different pore radius (Table 2). These deviations
can be explained by taking into account the peculiarities of each method and the fact
that, in all cases, the pores are assumed to be cylindrical. Indeed, the lower value of rp
(14 nm) obtained from hydraulic permeability compared to that found from SEM images
(20 nm) should be due to narrowing of the pores in the middle part of the membrane (if it is
expected to have an hourglass-like shape). The value of rp, found by fitting the parameters
of the MHM, is 18 nm, i.e., it lies in a fork between two mentioned above values. This is
logical since rp = 18 nm is a trade-off when modeling: a higher value of rp allows a better fit
when describing the conductivity, while a lower value is better for describing the diffusion
permeability. As for 22 nm, estimated from the difference between the density of the dry
TEM#811 and the PET foil density, this value apparently reflects the porous structure of
the loose layer: although this layer is not hydraulically permeable, it has pores which
reduce the measured density of the dry membrane. If the porosity of the loose layer is set
equal to 50% (as assumed in Section 4.1 when evaluating KD), then, to obtain the density of
TEM#811 equal to 1.30 g cm−3, it is necessary to set rp = 18.8 nm to obtain, by calculation,
the TEM#811 density equal to 1.30 g cm−3; the PET density is 1.41 g cm−3 (Table 1).

5. Conclusions

We have shown that, when assuming that the pores in a TEM are cylindrical and their
axes are perpendicular to the membrane surface, it is impossible to describe simultaneously
the membrane conductivity and diffusion permeability by using one set of input parameters.
To fit the conductivity, the pore radius should be relatively great, and to fit the diffusion
permeability, it should be small. When assuming that the pores are hourglass shaped
and/or that the pores are inclined to the surface and can intersect within the membrane,
we can obtain a qualitative agreement between the experimental and simulated data using
the MHM. The model allows accounting for the presence of an in-series connection of the
pore solution and ion-exchange material of the loosed layer by introducing a structural
parameter α < 1. However, we believe that the quantitative agreement could perhaps be
better if one assume the hourglass-like shape of the pores and takes into account presence
of an electrical double layer (EDL) on the pore walls.
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Appendix A

The co-ion (anion in our work) concentration in the gel phase and transport number
of counterions in the membrane as functions of the electrolyte concentration in the intergel
solution may be found using the following equations:

cg
− = −Qg

2
+

√(
Qg

2

)2
+ KDc2 (A1)

and

t∗+ =
1
2
+

√
1
4
− P∗F2c

2RTκ∗
(A2)
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