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Abstract: Yeast S. cerevisiae has been shown to suppress a sterol biosynthesis as a response to
hyperosmotic stress. In the case of sodium stress, the failure to suppress biosynthesis leads to an
increase in cytosolic sodium. The major yeast sterol, ergosterol, is known to regulate functioning of
plasma membrane proteins. Therefore, it has been suggested that the suppression of its biosynthesis
is needed to adjust the activity of the plasma membrane sodium pumps and channels. However, as
the sterol concentration is in the range of thirty to forty percent of total plasma membrane lipids,
it is believed that its primary biological role is not regulatory but structural. Here we studied
how lowering the sterol content affects the response of a lipid bilayer to an osmotic stress. In
accordance with previous observations, we found that a decrease of the sterol fraction increases a
water permeability of the liposomal membranes. Yet, we also found that sterol-free giant unilamellar
vesicles reduced their volume during transient application of the hyperosmotic stress to a greater
extent than the sterol-rich ones. Furthermore, our data suggest that lowering the sterol content in
yeast cells allows the shrinkage to prevent the osmotic pressure-induced plasma membrane rupture.
We also found that mutant yeast cells with the elevated level of sterol accumulated propidium iodide
when exposed to mild hyperosmotic conditions followed by hypoosmotic stress. It is likely that the
decrease in a plasma membrane sterol content stimulates a drop in cell volume under hyperosmotic
stress, which is beneficial in the case of a subsequent hypo-osmotic one.

Keywords: sterol; hyperosmotic stress; hypoosmotic stress; yeast; giant unilamellar vesicle; large
unilamellar vesicle; light scattering

1. Introduction

In the yeast S. cerevisiae, hyperosmotic stress causes a decrease in intracellular ergos-
terol concentration [1]. This suppression is mediated by the key yeast high osmolarity
sensor kinase, Hog1, which activates the transcription of Mot3. The latter protein is a
transcriptional suppressor of a set of genes involved in the ergosterol import and the
biosynthesis (as reviewed in [2]). In agreement with that, it has been shown that the sup-
pression is essential for yeast cell survival [1]. In addition, various mutations affecting the
ergosterol biosynthetic pathway render yeast cells sensitive to hyperosmotic stress [3,4].
Generally, it is believed that the physiological role of sterols in an osmoadaptation is the
adjustment of the activities of plasma membrane pumps and channels (reviewed in [2]).
However, it has also been suggested that sterol content may affect mechanical properties of
the plasma membrane (PM) and thus influences the survival upon a change in an osmotic
pressure [4]. Similarly, a gadolinium-mediated modulation of a membrane fluidity has
been shown to be involved in a formation of water pores in A549 cells after hypotonic cell
swelling [5]. The latter line of reasoning seems more attractive than the former one, since
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the concentration of sterol can reach fifty percent of the PM total lipid content, implicating
that the primary role of sterols in the PM is most likely structural. Indeed, one can speculate
that it should take less time and resources to adjust the activity of PM pumps and channels
by phosphorylation rather than by transcriptional changes in the ergosterol biosynthesis.
Following this logic, in the current work we attempted to estimate physicochemical changes
of lipid bilayers caused by a decrease in a sterol content and to match these changes with
potential benefits for cells upon the occurrence of osmotic stress. In fact, these benefits
are not so obvious. It is known that the concentration of sterols in the PM is much higher
than in membranous organelles inside the cell. It has been shown that sterols provide lipid
bilayers with additional rigidity, resistance to rupturing, and also decrease the permeability
to hydrophilic molecules [6–10]. All of these features are believed to contribute to the
barrier function of the PM [11].

Assuming that lowering the PM sterol concentration plays a structural role upon
hyperosmotic stress, one might speculate that decreasing the rigidity with simultaneous
increase of the water permeability of the membrane might be beneficial, allowing the
“deflation” of the PM upon hyperosmotic stress (Figure 1). The volume decrease causing
the membrane folding upon the occurrence of hyperosmotic stress might equilibrate the
osmotic pressure. An enhanced rigidity due to high sterol concentration is likely to oppose
the folding. In addition, lower permeability of the sterol-rich membrane to water is likely to
decelerate the adjustment (decrease) of the cell volume in hyperosmotic conditions. Thus,
sterol-rich membranes seem to be more prone to rupturing (i.e., a pore formation) upon the
occurrence of hyperosmotic stress followed by the hypoosmotic one (Figure 1). Importantly,
it is known that the free energy of an intact lipid bilayer is lower than that of the pore-
containing one [12]. Thus, pores forming in the sterol-rich membrane upon the occurrence
of hyperosmotic stress are expected to be able to self-repair (Figure 1). At the same time,
sterol-rich membranes are characterized by the approximately an order of magnitude
higher modulus of lateral stretching [13] meaning that the membrane rupture occurs at
smaller relative changes of the enclosed volume. In the case of sterol-free membranes and a
vesicle swelling, induced by hypotonic solution, membrane rupture occurs already above
the membrane area increase of ~3% [14]. Yet, such numbers cannot be directly translated to
cells as the plasticity of their membranes is increased by membrane reserves [15].
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Figure 1. A scheme illustrating how sterol might provoke the pore formation upon changes in the
osmotic pressure. High rigidity and low water permeability provided by high sterol might prevent
the volume decrease upon high salt stress. In the case the hyperosmotic stress is followed by the
hypoosmotic one, sterol-rich structures appear to be prone to rupturing. See text (Introduction)
for details.

In the present study we tried to clarify the influence of the sterol content on the
membrane integrity with respect to transient hyperosmotic gradients. We used large and
giant unilamellar vesicles (LUVs and GUVs, respectively) as model membrane systems, as
well as yeast cells. We utilized fluorescent microscopy on GUVs, which are known as a good
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model of the lipid matrix of the cell PM, to illustrate possible changes of the GUV structure
upon propagation of the hyperosmotic front. Additionally, we performed stopped-flow
experiments in hyperosmotic conditions on small unilamellar vesicles, the membrane of
which either contained or not contained cholesterol. Finally, we studied the hyper- and
hypoosmotic stress on wild-type yeast, as well as on mutants having elevated or lowered
levels of ergosterol in the plasma membrane. Our data indicate that sterols increase rigidity
of the LUVs, GUVs and the plasma membrane. This additional rigidity prevents swelling
upon hyperosmotic stress, which, in turn, promotes the membrane rupturing upon the
following kind of hypoosmotic stress.

2. Materials and Methods
2.1. Chemicals

E. Coli polar lipid extract and cholesterol were purchased from Avanti Polar Lipids
(Alabaster, AL, USA). Chloroform (>99.0%), sodium chloride (NaCl), sucrose, sorbitol, and
HEPES were purchased from Sigma (St. Louis, MO, USA). All chemicals were used without
further purification. d-glucose (Roquette-361,103-0.5) was purchased from Helicon. Bacto
Agar (0207/0-PW-L.500) and peptone (HYP-A.5000) were obtained from BioSpringer.

2.2. Large Unilamellar Vesicle Preparation

Large unilamellar vesicles (LUV) were prepared as described in [14]. In brief, a lipid
solution containing the E. Coli polar lipid extract (PLE) or PLE with 23 mol.% of cholesterol
dissolved in chloroform was rotary evaporated on the bottom of a glass flask and kept
under vacuum for one hour. The resulting dried lipid film was resuspended in the working
buffer solution (10 mM NaCl, 140 mM KCl, 50 mM HEPES, pH 7.48). After vigorous
vortexing the solution was extruded 21 times through two polycarbonate membranes with
a pore diameter of 100 nm (Avestin, ON, Canada) to give unilamellar liposomes with an
average diameter of 120 nm–150 nm [14,16].

2.3. Stopped Flow Experiments

Equal volumes of vesicle suspension in the buffer solution and hyperosmotic solution
(buffer solution with 150 mM sucrose or 150 mM sorbitol added) were mixed at 5 ◦C. The
scattered light intensity I(t) at 90◦ was measured in a stopped-flow apparatus (SFM-300,
Bio-Logic, Claix, France) with a dead time of 2.6 ms at a wavelength of 546 nm.

As a result of the osmotic stress, water left the vesicles by a passive diffusion through
the lipid membrane. We denote the membrane permeability for water as Pf. The change in
the vesicle volume over time can be written as [17]:

dV(t)
dt

= APf Vw

(
V0

V(t)
ci

0 −
(

ci
0 + cS

))
, (1)

where Vw, V0, A, c0
i and cs are the molar volume of water, vesicle volume at time zero,

area of the vesicle membrane, the initial osmolarity of the solution inside the vesicles, and
the incremental osmolarity in the external solution due to sucrose or sorbitol addition,
respectively. The analytical solution of Equation (1) has the form:
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, (2)

where L is the Lambert function, defined as: L(x)eL(x) = x. The explicit dependence
of I(t) on V(t) is given by the Rayleigh-Gans-Debye approximation [18], and is rather
cumbersome. However, it has been shown in [19] that the exact dependence can be quite
accurately approximated by its Taylor series up to the quadratic term:

I(t) = a + bV(t) + cV(t)2 (3)
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with constant (time-independent) coefficients a, b, d, which can be obtained analytically.
Thus, the only unknown parameter Pf can be found from the fit of the experimentally
determined dependence I(t) by Equation (3). However, as demonstrated in [19], technically
it is simpler to obtain all coefficients (a, b, d, Pf) directly from the fit. We performed the fit
using the gradient descent method, and thus determined Pf for membranes of different
compositions (PLE or PLE + cholesterol) treated by different osmolytes (sucrose or sorbitol).

2.4. GUV Experiments

GUVs were obtained by an electroformation technique on conductive ITO-coated glass
slides [20]. In brief, 5 µL of a lipid solution in chloroform (compositions: (1) 99.9 mol.% of
DOPC + 0.1 mol.% of Rhod-PE; (2) 69.9 mol.% of DOPC + 30 mol.% of ergosterol/cholesterol
+ 0.1 mol.% of Rhod-PE) were applied over each conductive side of the slides with an area
of 4 cm2, and dried under a stream of argon for 2 min. Then, the slides were separated with
a 1 mm PDMS spacer and the cell was filled with the buffer (220 mM sucrose, 2 mM NaCl,
and 1 mM HEPES, pH 7). A sinusoidal voltage with an amplitude of 2 V and a frequency
of 11 Hz was applied to the ITO-coated glass slides at 45 ◦C for 3 h.

GUVs were observed using a Nikon Ti-E fluorescent microscope with a 60× objective.
For experiments, 10 µL of the GUV suspension were placed in 100 µL of the isosmotic
buffer (100 mM NaCl, 5 mM MES, pH 7) at a cover glass pretreated by bovine serum
albumin to avoid the GUV disruption [21]. To study the effect of hyperosmotic conditions,
a hyperosmotic solution (2 M NaCl, 5 mM HEPES, pH 7) was added to the GUV using a mi-
croinjection glass pipette. Recorded movies were further processed using ImageJ software.

The effect of hyperosmotic conditions on the GUV was analyzed by measuring the
relative change in the average vesicle diameter before, during, and after application of
the hyperosmotic buffer. Hyperosmotic buffer was added using a micropipette with a
diameter of 1 µm for 3 s. In such conditions, the released hyperosmotic solution represents
a cloud that passes in the vicinity of the GUV membrane, and locally raises the salt
concentration. About 20 GUVs of the each lipid composition were chosen for measurements,
the average diameter of the each vesicle was measured by 10 snapshots, with two diameters
in perpendicular planes for the each GUV on the snapshot.

The relative change in the GUV size was calculated according to the equation:

A =
d0 − d1

d0
× 100%, (4)

where d0 and d1 are average diameters before and during (after) NaCl addition, respectively.

2.5. Yeast Strains and Growth Conditions

We used the standard rich yeast medium yeast peptone dextrose (YPD) described by
Sherman [22]. Yeast cells were grown in liquid YPD overnight in 50 mL sterile tubes up
to the exponential growth phase. Next, we equalized the yeast cell concentration of the
different mutants by diluting the cultures with fresh YPD to ensure a final OD550 of 0.05
that corresponded to a cell density of 106 cells/mL. The cells were then transferred into
96-well microplates (Eppendorf, 0030730011; Hamburg, Germany) at aliquots of 100 µL and
incubated in a SpectroStar Nano (BMG Labtech GmbH; Hamburg, Germany) microplate
reader. The optical density was measured every 5 min for the entire duration of the
experiment (20 h), with the temperature set at 30 ◦C. The cells were shaken for a minute
before the OD measurements (500 rpm). Table 1 summarizes the yeast strains used in
this study.
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Table 1. Yeast strains used in this study.

Strain Genotype Parental Strain Reference

W303 MATa ade2–101 his3–11 trp1–1
ura3–52 can1–100 leu2–3 W303 Laboratory of A. Hyman

UPC2-1 MATa UPC2–1 ura3–1
his3–11,- 15 leu2–3,-112 trp1–1 W303 [23]

UPC2-1 ∆lam2
MATa UPC2–1 ura3–1
his3–11,- 15 leu2–3,-112 trp1–1
∆lam2::TRP1

W303 This study

∆lam1∆lam2
∆lam3∆lam4

MATa ade2–101 his3–11 trp1–1
ura3–52 can1–100 leu2–3
MATa ade2–101 his3–11 trp1–1
ura3– 52 can1–100 leu2–3
∆lam3::kanMX4 ∆lam2::TRP1

W303 [23]

BY4742 MATalpha his3∆1 leu2∆0
met15∆0 ura3∆0 BY4742 Deletion collection [24]

∆hog1
MATalpha his3∆1 leu2∆0
met15∆0 ura3∆0
hog1::kanMX4

BY4742 Deletion collection [24]

∆erg4∆lam2
MATalpha his3∆1 leu2∆0
met15∆0 ura3∆0
erg4::kanMX4 ∆lam2::HIS3

BY4742 [25]

2.6. Deletion of LAM2

LAM2 deletion in the UPC2-1 background was obtained by the homologous recom-
bination of the PCR product (primers: LAM2-400 5′-CGTTAGTCCACCATAACCAA and
LAM2+200 5′-AGTAATGCACCAGAAATGGA) with the heterologous selection marker
HIS3. The templates used during PCR were DNA of the ∆lam2 strain. The disruption
cassette integration and the deletion of LAM2 gene were verified by the PCR with in-
dependently designed primers flanking the disruption cassette: (primers: LAM2-600
5′-CGTTTAATATCGTCAACGAC and LAM2+300 5′-CCAGATATAGATGCTATATG).

2.7. Growth Kinetics Analysis

The growth kinetics analyses were conducted in a semi-automatic manner using a
custom R-script. µmax was calculated as the maximum detected slope of Log2 (OD) during
the course of the experiment. Therefore, the µmax values are equal to 1/duplication time.
The lag period was defined as the interval between the start of the experiment and the time
point when the cells reached their maximal growth rate.

2.8. Propidium Iodide Uptake upon Hypoosmotic Stress

The overnight cell cultures of three strains (W303, UPC2-1, ∆lam1∆lam2∆lam3∆lam4
(further referred to as ∆lam1234)) were transferred to 1.5 mL centrifuge tubes, centrifuged
at 4000 rpm (~1300 g) and resuspended in fresh YPD media until OD550 = 1 (approximately,
2 × 107 cells in 1 mL). Then the NaCl solution was added until the concentration reached
330 mM in all samples. Subsequently, the samples were incubated for 5 min at room
temperature. After that, the samples were centrifuged again, and the media was replaced
with milli-Q water with propidium iodide (PI) (1 µL [0.1 µg/mL PI] per 100 mcl = 1 × 10−3

µg/mL). 10 min after adding propidiuim iodide, the samples were diluted and analyzed
via flow cytometry in channel PC5.5-A(CytoFLEX).
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3. Results
3.1. Lowering Sterol Content of Artificial Liposomes Increases Their Water Permeability

It has been reported that the water permeability of liposomal cholesterol-free mem-
branes is higher than the permeability of cholesterol-containing ones [6]. As this finding is
apparently in an agreement with our hypothesis, we attempted to confirm these data using
sorbitol and sucrose as osmolytes.

In cases when sorbitol is used, the time dependent scattering intensities of cholesterol
free vesicles are non-monotonous (Figure 2a). It seems that in the absence of cholesterol
sorbitol is able to penetrate the membranes [14], whereas on the timescale of the experiment
sucrose does not penetrate the membranes (Figure 2b). In the case of the non-monotonous
scattering data, we determined the membrane permeability with respect to water fitting
the rising left part of the scattering curve I(t), from t~0 till the maximum of the scattering
intensity [14]. The membrane permeability with respect to water determined from the fits
is Pf = 12.7 µm/s both for sucrose and sorbitol used as an osmolyte. Addition of cholesterol
(Figure 2c,d) led to an approximately two-fold decrease in the permeability (12.7 µm/s
vs. 5.7 µm/s). Note, that from Equation (2), the characteristic time of the LUV shrinkage
is of the order of 1 s for Pf = 5.7 µm/s, and about 0.5 s for Pf = 12.7 µm/s. However,
if we substitute into Equation (2) the parameters typical for GUVs, the corresponding
characteristic times would be about 200 s and 100 s, respectively, under the same osmotic
conditions. In real experiments on the water leakage from GUVs these time values could
be even larger due to unstirred layers adjacent to the membrane, the width of which can
reach hundreds of micrometers [26].

Thus, sterol addition decreases the water permeability of artificial lipid bilayers.
However, does that explain why the cells reduce the sterol content of their PM upon
hyperosmotic stress? Our next step to answer this question and to test our hypothesis
(Figure 1) was to study the response of giant unilamellar vesicles) to the addition of
high salt.

3.2. Sterol Prevents Shrinkage of Giant Unilamellar Vesicles upon Transient Hyperosmotic Stress

We have challenged sterol-free and sterol-rich GUVs with the transient hyperosmotic
stress applied by a finite-time lasting flux of hyperosmotic buffer from a vicinal micropipette.
Changes of the GUV volume were monitored throughout the entire experiment. According
to our hypothesis, we expected a more pronounced shrinkage of the sterol-free GUVs due
to the smaller elastic rigidity and the higher water permeability with respect to cholesterol-
free membranes.

In the case of pure DOPC GUVs, a vesicle shrinkage resulted in the diameter decrease
of (12 ± 5)% in approximately 15 s after the start of the application of the hyperosmotic
solution, with the formation of spherical daughter vesicles inside the GUVs. After the
hyperosmotic front passed, the vesicle size was restored (30 s from the beginning of the
experiment) (Figure 3A). For GUVs with ergosterol or cholesterol, only minor relative
changes in the GUV size occurred at this point of time (15 s after the start of the application
of the hyperosmotic solution), despite the formation of “beads on a wire” such as protru-
sions inside the vesicle (Figure 3B,C). At the same time, formation of the protrusions could
add to the volume stability of cholesterol-rich GUVs [27]. As the membrane area stored
in such protrusions is negligible compared to the surface area of GUVs, formation of such
protrusions does not contradict with minor changes in GUV diameters. The only observable
difference between ergosterol and cholesterol in our in vitro experiments concerned the
time of appearance of protrusions in hyperosmotic conditions. In the case of cholesterol,
they formed twice as late (see Figure 3). The results are summarized in Table 2. Substitution
of NaCl with KCl in the hyperosmotic solution did not result in any changes.
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Figure 2. Representative dependences I(t) of the light intensity scattered from LUV suspensions
after application of the hyperosmotic gradient. (a,b)—LUVs made from PLE (no cholesterol) with
sorbitol (a) or sucrose (b) used as an osmolyte. (c,d)—LUVs made from PLE + cholesterol lipid
mixture with sorbitol (c) or sucrose (d) used as an osmolyte. Solid blue and red curves represent the
fit of the experimentally determined dependence I(t) (green traces) by Equation (3). The membrane
permeability with respect to water determined from the fits is Pf = 5.7 µm/s (PLE + cholesterol
membrane) and Pf = 12.7 µm/s (PLE membrane) both for sucrose and sorbitol used as an osmolyte.
All curves are rather well fitted by a single-component Lambert function.
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Figure 3. Time course of the GUV reaction on the transient hyperosmotic stress. (A)—GUV formed
from DOPC; (B)—GUV formed from 70 mol.% DOPC + 30 mol.% Ergosterol; (C)—GUV formed
from 70 mol.% DOPC + 30 mol.% Cholesterol. Time in seconds passed from the application of the
hyperosmotic stress is indicated in left upper corners. Time count starts from the moment of the
application of the hyperosmotic solution. Scale bar is 10 µm.

Table 2. Reduction of the average diameter of GUVs depending on the time from the start of
hyperosmotic stress. Errors are standard deviations of the corresponding values.

GUV Composition
15 s from the Start of

Application of the
Hyperosmotic Solution

30 s from the Start of
Application of the

Hyperosmotic Solution

DOPC 12 ± 5% 3 ± 2%

70 mol.% DOPC +
30 mol./% Ergosterol 5 ± 3% 2 ± 1%

70 mol.% DOPC +
30 mol./% Cholesterol 4 ± 2% 3 ± 2%

Therefore, in agreement with our model (Figure 1), sterols appear to provide GUV
membranes with additional rigidity and smaller water permeability thus preventing the
volume decrease during and right after the transient hyperosmotic challenges, in contrast
to pure DOPC vesicles.

3.3. Yeast Mutants in Sterol Biosynthesis/Trafficking Are More Sensitive to Sodium Chloride than
to Sorbitol

The results of the experiments on LUVs and GUVs are, apparently, in agreement
with our model (Figure 1). Next, we used yeast cells to verify the model. According
to our scheme, membranes with high sterol content are envisioned to undergo transient
pore formation upon hyperosmotic stress until the osmotic pressure is released. Thereby,
equilibration of the osmotic pressure across the cell membrane can be achieved via the
influx of salt or other osmolytes from the external medium or water efflux from the cell



Membranes 2022, 12, 1278 9 of 13

interior. Thus, one can expect that the chemical nature of the osmolyte, which may flood
the cell in an uncontrolled manner, will affect the survival and/or growth rate of the cells
with the high sterol PM. To test this hypothesis, we used three osmolytes of a different
chemical nature: sodium chloride, potassium chloride, and sorbitol. Whereas potassium,
chloride and sorbitol are major cytosolic ions, sodium is less physiological. Therefore, we
expected that while the cells with the normal PM sterol content would be equally sensitive
to all of these osmolytes, the cells with elevated PM sterol would be more sensitive to
NaCl. Hence, we estimated growth rates of a set of mutants in the media containing
0.6 M NaCl, 0.6 M KCl or 1.2 M sorbitol. These concentrations were chosen to (i) provide
equal osmotic pressures and (ii) to cause a moderate delay in the growth rates. The results
are summarized in Figure 4 with exemplary growth curves being visualized in Figure S1
(https://www.mdpi.com/article/10.3390/membranes12121278/s1). In accordance with
our prediction, the growth rate in the wild type control cells of BY4742 genetic background
was similarly delayed by all three osmolytes. Interestingly, sorbitol caused stronger growth
delays in the wild type control of W303 genetic background and in the hog1 deletion
strain. Hog1p is the key transcription factor responsible for the cellular defense against the
high osmolarity stress (reviewed in [28–30]). Possibly, this is due to the fact that, unlike
NaCl or KCl, sorbitol can be metabolized by cells and thus may cause some additional
effects distinct from its action as an osmolyte [31]. To our knowledge, the influence of hog1
deletion on sorbitol metabolism has not been studied yet. Possibly, the rate of sorbitol
catabolism is affected by the deletion thus affecting the sensitivity. We have also included
in our analysis the strains from our collection of mutants in ergosterol biosynthesis and/or
transport. Out of 17 strains (Supplementary Table S1, https://www.mdpi.com/article/10
.3390/membranes12121278/s1), three strains (∆erg4∆lam2, UPC2-1, UPC2-1∆lam2) have
displayed differential sensitivities to the three osmolytes, as depicted in Figure 4. Whereas
Erg4p catalyzes one of the final steps of ergosterol biosynthesis (reviewed in [32]), Lam2p
is a transporter, which pumps the excess of PM sterol inside the cell. Upc2p, on the other
hand, is the key transcription factor regulating the sterol biosynthesis with the mutation
rendering the sterol biosynthesis hyper-active [23]. Thus, the PM sterol concentration of
all three strains is likely to be elevated, which is consistent with our model (Figure 1). The
sensitivities of the rest of the strains were not significantly different (Table S1). In all three
cases, the sensitivity to NaCl was significantly higher than to KCl or sorbitol (Figure 4). In
other words, some of PM ergosterol disruptions caused a relative increase in the sensitivity
to NaCl. None of such mutations caused a relative increase in the sensitivities neither to KCl
nor to sorbitol. Therefore, these results are consistent with the hypothesis that alterations
in PM sterol content cause osmolyte influx upon the occurrence of hyperosmotic stress.

3.4. Yeast Cells Deficient in the Reverse Transport of Sterol from the PM Accumulate Propidium
Iodide upon Hypoosmotic Stress

Our hypothesis, illustrated by Figure 1, predicts that the PM of yeast cells with the
high PM sterol content is likely to lose its integrity upon the hypoosmotic stress, which
follows the hyperosmotic one. To test this, we subjected cells with normal or elevated PM
sterol to a mild high salt stress (0.4 M NaCl), and then transferred them into a medium
with regular ionic strength (0.05 M NaCl). We used two strains with elevated PM sterol.
One of them, UPC2-1, is a mutant carrying a hyper-active allele of the key transcription
factor, Upc2, responsible for ergosterol biosynthesis (reviewed in [2]). Another strain
has been previously characterized by our group as carrying a quadruple deletion of the
LAM 1-4 genes responsible for the reverse sterol flow from the PM thus displaying high
PM sterol [23]. To monitor the loss of integrity we added propidium iodide (PI) to the
latter solution. The results presented in Figure 5 show that, indeed, while the cells of the
control strain (W303, Figure 5) did not accumulate PI, the strain lacking the PM reverse
sterol transporters (∆lam1∆lam2∆lam3∆lam4 (lam 1234), Figure 5) displayed a significant
proportion of PI-positive cells. Unexpectedly, the mutant UPC2-1 cells did not accumulate
PI (Figure 5), despite elevated PM ergosterol [23]. Possibly, the activity of the reverse

https://www.mdpi.com/article/10.3390/membranes12121278/s1
https://www.mdpi.com/article/10.3390/membranes12121278/s1
https://www.mdpi.com/article/10.3390/membranes12121278/s1
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transporters in this mutant, Lam proteins, provided local relaxation of the PM rigidity. In
other words, despite the total elevated sterol content, even local low-sterol PM patches
might provide sufficient flexibility to allow, as shown by Figure 1, the PM shrinkage upon
the hyperosmotic stress, and in this way prevented the influx of the PI-containing external
medium, when the osmotic pressure was normalized.
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4. Discussion

The PM of eukaryotic cells typically exhibits a higher sterol content than the other
membranous organelles. It is believed that sterols contribute to the barrier function of the
PM, and, in particular, provide an additional resistance against rupturing [11]. As osmotic
pressure exerts mechanical load at the PM, one would expect that a cell would increase, not
decrease, the PM sterol content upon an osmotic stress, and this appears to be the case of
plant cells. Membranes of salt-tolerant plants have been shown to be richer in sterols than
the ones of salt-sensitive ones. Accordingly, it has been suggested that the ability to increase
the total sterol content the under salt stress may allow salt tolerant species/genotypes to
adapt to the high salt (reviewed in [33,34]). On the contrary, yeast cells decrease PM sterol
upon osmotic stress [1]. It is possible that the difference between S. cerevisiae and plants is
due to the fact that the outer surface of plant roots is sufficiently rigid to prevent the volume
expansion upon hypoosmotic stress, which may follow the hyperosmotic one. Indeed, as
illustrated in Figure 1, such a combination of stresses could lead to a massive rupturing of
the PM.

However, the latter argument does not apply to a number of unicellular species of
Dunaliella, a marine unicellular alga. These organisms are known to be adapted to high
amplitude changes in salt concentrations. While their PM sterol content is high, it is
known that they do not possess a rigid cell wall. It has been reported that they react to
fluctuations in the osmotic pressure by rapid changes in the intracellular osmotic pressure
via increasing the concentration of glycerol (reviewed in [35]). Indeed, it is generally known
that a tolerance to a dehydration is, first of all, a synthesis of osmolytes. Interestingly, when
the sterol synthesis is inhibited in Dunalliela, the glycerol biosynthesis is disrupted [36].
This points to an additional link between osmo-tolerance and sterols.

In the present study, we utilized model lipid membranes of LUVs and GUVs to com-
paratively study the effect of the osmotic stress on closed membrane envelopes in the
presence and absence of cholesterol and ergosterol. In experiments with hyperosmotic
shrinkage of LUVs, we demonstrated that sterols significantly reduce the water permeabil-
ity of the membrane. At the same time, we did not detect a rupture of the membrane upon
hyperosmotic stress in these experiments. Studies on LUVs correlated with the experiments
on GUVs: sterols (both cholesterol and ergosterol) decreased the passive membrane perme-
ability of water limiting the GUV volume change upon propagation of the hyperosmotic
front. Sterol-increased rigidity of the membrane resulted in the formation of predomi-
nantly filamentous protrusions inside the giant vesicle, in contrast to spherical protrusions
with bigger radii in sterol-free membranes. Therefore, we observed only minor changes
in the GUV volume upon hyperosmotic challenges in the case of sterol-rich membranes.
Significant changes in the GUV volume upon propagation of the hyperosmotic front may
suggest a transient formation of pores in their membranes since they require a drastic drop
in the volume/area ratio. Resealing of such pores was hampered in the case of an increased
membrane viscosity, which is known to be related to the high sterol content of the PM [37].
Whereas sterol is always present in yeast membranes, some mutants have altered levels
of PM sterol. Nevertheless, its molar fraction never reaches zero. Comparing the results
obtained on yeast and model membranes, we thus assumed that the sterol influence on
membrane properties was monotonic. In other words, the change in membrane properties
upon an increase of the sterol level, say, from 0 to 20 mol.%, is qualitatively similar to that
upon an increase of the sterol level from 30 to 50 mol.%. Thus, here we came to some
interesting contradiction. Despite sterols decrease the membrane water permeability, the
PM of cells with decreased sterol content is able to faster recover from the transient loss
of the barrier function, comparing to sterol-free ones. Therefore, successive changes from
hyperosmotic to hypoosmotic conditions might be much more harmful to the rigid and less
fluid sterol-containing membranes. This is exactly the case we observed on yeasts (Figure 5).
Noteworthy that timescales of recovering from even short (3 s) osmotic stress on GUVs
cover tens of seconds (Figure 3). This might significantly influence a yeast metabolism,
forcing cells to consume a lot of energy to maintain the PM integrity. Thus, even short
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transient changes in the osmotic gradient across the PM could have delayed effects in hours
of yeast growth, as we observed in our experiments (Figure 4).

The yeast S. cerevisiae appeared to be unique in its strategy of adaptation to osmotic
challenges. It decreases PM sterol content upon the occurrence of hyperosmotic stress. This
increases the water efflux from the cell upon hyperosmotic stress, which, obviously, if taken
separately, is detrimental for the cell’s physiology. At the same time, our data suggest that
such efflux provides an insurance in the case of the hyperosmotic stress is being followed
by the hypoosmotic one (as illustrated by Figure 1).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes12121278/s1, Figure S1: Typical growth curves of
yeast cells in YPD and in YPD containing 0.6 M NaCl; Table S1: Growth rates of a set of mutants in
absence and in the presence of the osmolytes.
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