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Abstract: Gas membrane separation technology is widely applied in different industry processes
because of its advantages relating to separation performance and economic efficiency. It is usually
difficult and time consuming to determine the suitable membrane materials for specific industrial
separation processes through traditional experimental research methods. Molecular simulation is
widely used to investigate the microscopic morphology and macroscopic properties of materials,
and it guides the improvement of membrane materials. This paper comprehensively reviews the
molecular-level exploration of the dominant mechanism and influencing factors of gas membrane-
based separation. The thermodynamics and kinetics of polymer membrane synthesis, the molecular
interactions among the penetrated gases, the relationships between the membrane properties and
the transport characteristics of different gases in the composite membrane are summarized and
discussed. The limitations and perspectives of the molecular simulation method in the study of
the gas membrane separation process are also presented to rationalize its potential and innovative
applications. This review provides a more comprehensive reference for promoting the materials’
design and engineering application of the gas separation membrane.

Keywords: gas separation; composite polymeric membranes; molecular simulation; membrane
morphology; transport properties

1. Introduction

Unlike the traditional gas separation processes, the novel membrane separation tech-
nology utilizes the high-molecular polymer membranes to selectively “filter” the target gas.
This technology was industrialized in the late 1970s, because of its flexible and stable oper-
ation, small size, economic viability, low energy consumption and good separability [1–3].
Membrane technology has been highly developed in the separation of liquid components
such as seawater desalination [4], oil-water separation [5] and water treatment [6], etc.
The separation characteristics of these membrane processes and their influencing factors
have been thoroughly investigated through theory, experiment and simulation. In addi-
tion, polymer membranes have been applied in different industry gas processes, such as
carbon dioxide recovery [7,8], natural gas sweetening [9,10], oxygen production [11,12],
volatile organic compound (VOC) recovery [13,14], air dehumidification [15,16], biogas
upgrading [17,18], helium recovery from natural gas [19,20], nitrogen enrichment [21,22]
and ammonia synthesis purification gases [23,24]. Under the impetus of concentration,
pressure or electric potential difference, the gas separation membrane depends on the
different penetration rate of the components in the mixture across the non-porous dense
layer to achieve the separation of each component. Generally, the non-porous membrane
(namely, the dense membrane) is very thin, and its thickness is in a nanometer scale. It
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needs to rely on the porous membrane as the support to supply adequate mechanical
strength. Therefore, the composite membranes with a porous membrane and dense layer
are usually fabricated for the gas separation process.

Some difficulties still limit the large-scale promotion of membrane separation technol-
ogy in industry, especially, the unsatisfactory permeability and separation performance
of the gas separation membrane. The gas permeation through the thin non-porous sep-
aration layer coated on a porous ceramic membrane is dominated by the characteristics
of separated gas, the membrane morphology and the material of the membrane selective
layer [8]. There is a lack of membrane design theory and unclear relationships between the
membrane material properties and the membrane morphology evident in the fabrication of
membrane materials. In most membrane separation processes, the actual membrane mate-
rials used are usually screened in the commercial membranes by experimental methods,
and these materials are usually not the most suitable choice for the application system. In
addition, the preparation of composite membranes is complicated and mainly lies in the
microstructure control of porous membranes and the thin and defect-free selective layer.
To determine the quantitative control method of the membrane preparation process, it is
necessary to explore the gas transport characteristics, the dominant mechanism and the
influencing factors of gas molecules across the dense layer and the porous membrane.

Consequently, this study aims to succinctly summarize the current state-of-the-art
on gas separation at a molecular level, and to provide an insight into the morphology
and material properties of the gas separation membrane. To reach this goal, first, the
transport mechanism of gas molecules is introduced, followed by the correlation between
the membrane morphology and the membrane properties. Second, the kinetic properties
of gas molecules in the composite membranes are reviewed and analyzed. Finally, the
limitations and perspectives of gas separation membrane technology are concluded and
discussed to promote the engineering application of the gas separation membrane.

2. The Transport Mechanism of Gas Molecules

As demonstrated in Figure 1, a typical structure of the composite membrane for gas
separation consists of a porous support membrane and a non-porous selective layer. While
the porous membrane (the pore size is up to 10 µm) possesses lower selectivity and a
high permeance, the non-porous membrane (the dense separation layer) has good selec-
tivity and weak permeance [25]. The transport mechanism of gas molecules in these two
types of membranes is quite different. The porous membranes allow the small molecules
to pass through their micro-pores, whereas the dense or nonporous membranes allow
the small molecules to be transported through the intermolecular microchannel of the
membrane materials.
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2.1. The Porous Membrane

The diversities in pore distribution and surface characteristics of membrane materials
lead to different interactions between gas molecules and membranes resulting in different
characteristics of gas transportation in the porous membrane. The flow characteristics of
gas in porous materials are determined by a characteristic parameter, the Knudsen number
(Kn). Kn is defined as the ratio of the number of molecular-molecule collisions to the
number of molecular-wall collisions. Based on the region of Kn, the molecular motions in
porous membranes are divided into three types: Knudsen diffusion, surface diffusion and
molecular sieving.

(1) Knudsen diffusion.

When the mean free path of the gas molecule is larger than the micropore diameter,
the molecular-wall collisions are much more intense than the molecular-molecule collisions.
In this case, the Knudsen diffusion is dominant with the schematic diagram as shown in
Figure 2 and the gas flux (fk, kg/(m2 s)) is described as follows [26]:

fk =
8rp

3(2πMRT)
1
2

(1)

where M is the gas molecular weight (kg/mol), rp is the membrane pore radius (m), T is
temperature (K) and R denotes the gas constant (J/mol K).
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(2) Surface diffusion.

Based on the chemical interactions with the membrane surface, gas molecules can
be adsorbed on the membrane surface. Figure 3 displays that the molecules adsorbed
on the pore wall (black dot) diffuse along the surface under the concentration gradient
in the adsorbed state. In this process, the adsorbed component diffuses faster than the
non-adsorbed component (blue dot), resulting in a difference in permeability and achieving
the separation purpose of a specific component. At low surface concentrations, the surface
flow rate of pure gas can be expressed by Fick’s law [27]. The gas flux (fs, kg/(m2 s)) is
described as follows:

fs = −ρ(1− ε)µsDs
d1

d2
(2)

where ρ and ε are the density (kg/m3) and porosity of porous media, respectively; µs is the
shape factor; d1/d2 is the membrane thickness change due to the surface adsorption; Ds is
the surface diffusion coefficient (cm2/s).
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(3) Molecular sieving.

As displayed in Figure 4, when the molecular scale is comparable to the membrane
pore size, the membrane surface can be regarded as possessing numerous micropores and
the separation based on the difference in the size of the gas molecules can be realized [28].
This is known as the molecular sieving effect, which is a relatively ideal separation method.
In order to achieve a low energy consumption and a large and high selectively mixed
separation, the thickness of the molecular sieve membrane should be controlled. However,
it is still a challenge to fabricate the defect-free microporous membranes with a thickness of
less than 20 nm under the existing membrane materials and conditions [29].
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Judging the diffusion form of small molecules across the membrane is critical to the
study of the gas separation performance of membranes at a molecular level. Knudsen diffu-
sion is the most common form of molecular transport in porous membranes during the gas
membrane separation process [30–33]. The augmentation of temperature generally leads to
a larger mean free path of gas molecules, so the temperature of the gas mixture should be
sufficiently low. At a given temperature, the Knudsen diffusion rate is positively related to
the pressure difference, so the pressure difference that drives the diffusion behavior should
be improved as much as possible. The gas with good condensability is easily adsorbed in
the pore wall, and in this case the surface diffusion is significant. The smaller pore size
and lower operating temperature result in a more significant surface diffusion behavior.
For most gases, surface diffusion always accompanies Knudsen diffusion. The adsorption
capacity and diffusion flux of gas molecules in the porous membrane are enhanced by ex-
panding the surface area, reducing the pore size and improving the membrane adsorption
performance [34]. Under a certain pressure difference, the chemisorption rate increases
with the increase in temperature, so the surface diffusion rate is improved. However, the
increase in the molecular mean free path with the temperature will cause the decrease in
the Knudsen diffusion rate. Under a certain temperature, the surface diffusion rate first
increases and shows a saturated trend, further increasing the pressure difference, while the
Knudsen diffusion rate is proportional to the pressure difference.

2.2. The Non-Porous Membrane

Non-porous membranes (inorganic or polymer materials) possess permeability, and
most are resistant to a high temperature, pressure and chemical corrosion. Common
non-porous membrane materials mainly include rubber polymers and glass polymers.
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The solution-diffusion mechanism is dominant in the gas molecules’ permeation in the
non-porous membrane. The solution-diffusion model is the most accepted mechanism to
explain the molecular transport process in pervaporation, gas permeation, reverse osmosis
and dialysis.

The driving energy of gas transport in the non-porous membrane comes from the
chemical potential difference caused by the pressure difference [35,36], concentration dif-
ference [37,38] or potential difference [39,40] between the two sides of the membrane. The
purpose of separation can be achieved according to the difference in the relative transfer
rate of the components under the operating conditions. Generally, the permeability, diffu-
sion and solution coefficients depend on the properties of membrane materials, chemical
characteristics of gases and the pressure and the temperature of gases.

As illustrated in Figure 5, according to the solution-diffusion mechanism, the gas
passes through the dense membrane as follows: (1) the adsorption process: recurrence
to molecular interaction, gas adsorption and dissolution occur on the membrane surface
(the feed side), (2) the diffusion process: driven by the pressure, concentration or potential
difference, the dissolved molecules move in the membrane layer and (3) the desorption
process: the desorption of gas molecules occurs on the other membrane surface (the
permeate side).
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Figure 5. A schematic diagram of the solution-diffusion process.

In the solution-diffusion process, as shown in Figure 6, the pressure within a membrane
layer is uniform and drops sharply at the permeable interface of the membrane [41].
Generally speaking, the gas adsorption and desorption on the membrane surface can
quickly reach an equilibrium state, while the gas diffusion process in the membrane layer
is relatively slow. The gas diffusion flux at a steady state is calculated by Fick’s law:

J =
p1 − p2

δ
Pt (3)

P = D(c) · S(c) (4)

where δ is the membrane thickness (nm); p is the pressure (Pa); P is the permeability
coefficient (Barrer); t is the travel time of molecule through the membrane (s); c is the
concentration (mol/m3); D denotes the diffusion coefficient (cm2/s); S denotes the solution
coefficient (cm3 (STP)/(cm3·cmHg)).
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3. The Relationship between Membrane Properties and Membrane Morphology

The material properties of polymer membranes largely determine the permeable
separation performance and energy efficiency of membrane gas separation technology.
The dynamic properties of the polymer, the membrane pore structure and the interaction
between the gas molecules and polymer membrane significantly influence the diffusion and
sorption of gas molecules [42]. The plasticization of polymers also significantly affects the
physicochemical properties of polymers, involving the change of molecular chain mobility
and crystallinity [43–45]. However, it remains a challenge to obtain the afore-mentioned pa-
rameters by virtue of the existing experimental characterization and measurement methods.
In view of this problem, many researchers have used molecular simulations to investigate
the physical and chemical properties of polymer membranes and the main factors that
dominate the adsorption and diffusion of gas molecules.

3.1. The Molecular Dynamics Method

Molecular dynamics (MD) mainly relies on Newtonian mechanics to simulate the
motion of molecular systems. Taking samples from different states of the molecular system,
the integral configuration of the system is calculated and the thermodynamic quantities and
other macroscopic properties of the system are obtained. The MD flow chart is depicted
below (Figure 7).
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Generally, the nanoscale phenomena and micromorphology are investigated with
a combination of the molecular dynamics method and the Monte Carlo method in prac-
tical applications. Based on the given molecular potential energy functions and certain
ensembles, Newton’s equations of motion are solved to obtain the space trajectory of each
particle, namely, the microscopic state of particles changing with time. The microstructural
characteristics and the macroscopic physical properties of the molecular system are further
calculated according to statistical thermodynamics and physics principles [47].

3.2. Physical and Chemical Properties
3.2.1. Densities

In the construction and optimization process of molecular models, the molecular
structure will gradually change and finally reach the steady state with minimum energy,
as displayed in Figure 8. In general, the polymer densities at the equilibrated state of the
membrane model are commonly calculated and compared with the experimental results
for the validation of molecular models and simulation methods [48–52]. If the steady-state
densities and the experimental results match well, the constructed molecular models can be
guaranteed as rational and accurate and are further used to explore the polymer’s properties.
In addition, the changes in polymer density also reflect the changes in the stability and
compactness of the composite membrane structure [53–55]. For example, in Figure 9a, the
increase in the number of polymer chains improves the intensity of density. The density
increases slowly over time and gradually reaches an equilibrium state [54]. This suggests
that the concentration of flexible poly-ether block amide (PEBA) chains increases over time
near the membrane. In Figure 9b, the embedding of the nanoparticle GO might destroy the
regularity of the PVA polymer chain arrangement, leading to more gaps between polymer
chains and reducing the crystallinity of the nanocomposite membranes.
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with nanoparticle loading [55].

For the nanocomposite membranes, the incorporation of the nanoparticle generally
causes the nonlinear variation of membrane density with the nanoparticle loading. The
relationship between the nanoparticle incorporation and the polymer density can provide
the inspiration for the design of nanocomposite membranes. According to the fitting curve
displayed in Figure 10a, a minimum value exists for the density of the Polyvinyl Alcohol
(PVA)–Graphene oxide (GO) membrane within the GO concentration range studied [55].
At large GO loads, the agglomeration of GO nanoparticles occurs in the PVA membrane,
leading to an increase in membrane density. Similarly, the density of Poly(methyl methacry-
late) (PMMA)–isobutyl (iBuPOSS) composites is significantly lower than that of the original
PMMA at low iBuPOSS loading, but increases rapidly when the iBuPOSS loading exceeds
a 15 wt.% (Figure 10b) [57]. This is attributed to the addition of the iBuPOSS molecules
inducing the PMMA plasticization, resulting in a more compact arrangement of PMMA
chains and a decrease in polymer density. Similar to the results in Figure 10a, iBuPOSS
nanoparticles aggregate into the PMMA membrane at the iBuPOSS loading over a 15 wt.%,
thus the density of the PMMA–iBuPOSS composites increases.
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3.2.2. The Glass Transition Temperature (Tg)

The flexibility of polymer chains significantly affects the diffusion properties of small
molecules in polymer membranes, which is usually characterized by the glass transition
temperature (Tg). The procedure for calculating Tg in the molecular simulation has been
explained in detail in many publications [48,58,59]. Tg can be obtained at the point where
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the two slopes (the fitting curve of specific volume versus temperature) intersect, as shown
in Figure 11. Two important factors influencing Tg are the strength of the chains’ interaction
and the chain flexibility [60]. The number and size of substituents influence the rotatability
of the polymer chain [61]. In general, the higher the Tg value, the weaker the migration
ability of the molecular chains.
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3.2.3. Fractional Free Volume (FFV)

The transport behaviors of small gas molecules in polymer membranes are greatly
affected by the free volume and its distribution [50,51,63,64]. As demonstrated in Figure 12,
the free volume of the equilibrated polymer membranes is commonly discussed by the feat
of the “Connolly surface” method [65]. In Figure 13, the free space and accessible volume
in the membrane model are marked and indicated. The atomic boundary of the membrane
is reconstructed by the hard spheres with van der Waals radius. The FFV of the polymer
membrane is measured by a hard spherical probe. As a hard-spherical particle rolls over the
van der Waals surface, the Connolly surface is labeled. The free volume can be calculated
according to the van der Waals volume (VVdW) divided by the Connolly surface. Generally,
FFV is defined as follows:

FFV =
(Vs − 1.3VVdW)

Vs
(5)

where Vs is the specific volume, namely, the reciprocal density [66].
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Figure 13. (a) Free space and (b) van der Waals volume in a molecular model [50].

The size and morphology of the free volume play an important role in the diffusion
behavior of small molecules in the polymer. The free volume provides the necessary activity
space for the chain motion and the diffusion space of small molecules. In general, a lower
FFV indicates fewer free volume holes in the polymer membrane, thus the distance required
for small molecules to jump between free volume holes in the membrane will be increased.
Correspondingly, the diffusion probability of small molecules in the polymer membrane
might reduce. The unreasonable distribution of free volume holes is also not conducive
to mass transfer behavior in the polymer membrane [67]. As shown in Figure 14, the free
volume holes with water and propylene as the probes were investigated by Pan et al. [68].
In the PVA–EDTMPA membrane, the free volume holes with water as the probe are almost
connected with each other, while the holes with propylene as the probe are dispersed
sparsely. The better the connectivity of free volume holes, the easier the diffusion of the gas
molecules; therefore, the water molecules possess a better diffusivity in the PVA–EDTMPA
membrane than the propylene molecules.
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In the existing research, density, temperature and the free volume fraction are com-
monly used to characterize the membrane morphology and preliminarily predict the
correlation between the membrane microstructure changes and the membrane diffusion-
separation properties. However, future research should focus on the following aspects:
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(1) the rationality and accuracy of constructed molecular models need to be compared
and verified by more physical and chemical properties of membrane materials, such as
molecular spectra or osmotic separation parameters and (2) the prediction of the correlation
between the diffusion, the adsorption properties of gas molecules and the microscopic
properties of polymer membranes is mostly based on theoretical analysis, which needs to
be supported by more experimental data. It is also necessary to develop and establish a
more refined and credible prediction method.

3.3. Interfacial Interactions

As demonstrated in Figure 15, the interlayer compatibility and complementarity of the
composite membranes are important for the diffusion properties of gas molecules. Based
on the current membrane fabrication process, three approaches to improve the structural
stability of composite membranes include: the cross-linking modification of the separation
layer [69,70], the multilayer membrane structure [71,72] and the copolymer membrane
structure [73,74]. Based on the constructed multilayer molecular model, the interfacial
compatibility can be analyzed comprehensively by the interfacial energies and the polymer
solubility parameters.
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branes: (d) CPM2 and (e) CPM3 and nanocomposite polymeric membranes (f) NCPM3/ZIF8%,
(g) NCPM3/ZIF22% and (h) NCPM3/ZIF34% [31].
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The interfacial energies of the composite membrane (Eint) can be calculated by the
difference between the potential energy of the multilayer structural membrane (Elayer,1-2)
and that of the single-layer polymer (Elayer,1, Elayer,2) [75,76]:

Eint = Elayer,1−2 − (Elayer, 1 + Elayer, 2) (6)

where Elayer,1-2 is the potential energy of the composite membrane. Elayer,1 and Elayer,2 are
the potential energies of the single-layer polymers, respectively. A negative value of Eint
indicates that there is gravity between the support membrane and the selective layer. In
addition, the greater the absolute value of Eint, the stronger the interaction between two
membrane layers.

Wang et al. [77] investigated the interfacial energies and the interfacial compatibility
between the chitosan (CS) selective layer, the bioadhesive carbopol (CP) interlayer and the
polysulfone (PS) support membrane (Figure 16a). The results in Figure 16b indicate that
the interfacial interaction of CS/CA and CS/HM–PAN composite membranes is enhanced
by the introduction of the CP intermediate layer, thus improving the structural stability.
In order to improve the interfacial stability between the polydimethylsiloxane (PDMS)
separation layer and the polyether sulfone (PES) porous membrane, Wu et al. [78] added a
bifunctional aminosilane, γ-Aminopropyltrimethoxysilane (APTMS), into the active layer,
as shown in Figure 17. The results show that no intermolecular hydrogen bond is formed
at the interface of the PDMS–TEOS-0.06 membrane and the PES membrane, indicating that
APTMS instead of TEOS is beneficial to improve the interface interaction. The introduction
of polar APTMS enhances the hydrophilicity of the PDMS layer and thus improves the
interface compatibility.
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The interfacial energy of the composite membrane arises from non-bonded interac-
tions, including the hydrogen bond, electrostatic force and van der Waals force [31,62].
Salestan et al. [35] reported that the interface compatibility of PA chains and the GQDs
in the nanocomposite membrane was enhanced due to the formation of covalent bonds
and hydrogen bonds. As depicted in Figure 18, the minimum acceptable angle and the
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maximum acceptable distance of hydrogen bonds were set to 90◦ and 2.9 Å, respectively,
in their H-bond detection study, which verified the presence of hydrogen bonds in the
structures based on Jeffrey’s categorization [79]. Due to the presence of donor and acceptor
groups in the structure of both the GQDs and the PA, a large number of hydrogen bonds
are formed between the GQDs and the PA chain functional groups. Zhao et al. [80] found
that a strong attraction existed at the interface between polyacrylonitrile (PAN) and gelatin
(GE), in which the van der Waals force was dominant. The solubility parameters, mean-
square displacement and interface energies suggested that there is a moderate interface
compatibility between the selective layer and the support membrane.
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The above literature shows that the energy analysis has important guiding significance
for the material selection and the fabrication of the composite membrane, the copolymer
membrane and the nanoparticle filled membrane. However, future research should focus
on the following aspects. (1) Although the molecular force field has been widely used
in molecular dynamics, the studies of energy analysis based on molecular force field are
not sufficiently in-depth. The analysis of energy decomposition in molecular simulation
should be combined with molecular chemistry theories to deliver reasonable and instructive
conclusions. (2) The interaction and entanglement between the polymers may show that
they possess a particular molecular morphology. Each molecule or atom in the polymer
will be affected by its surrounding molecules and will react differently under different
temperatures, pressures and strains. The effects of various operative conditions should be
investigated and considered in the construction of molecular models and the properties
investigated. (3) Due to the simple functional form of the molecular force field, the accuracy
of the energy decomposition using the molecular simulation method is still far from that
of the wave function-based method; therefore, the accuracy of the quantitative results is
poor. The potential functions of the molecular force field are rarely addressed or discussed
by researchers and this may need to be improved for specific molecular configurations in
the future.

4. Transport Characteristics

The factors affecting the transport efficiency in the gas transportation process mainly
include solubility, diffusion, the permeability coefficients and the selectivity of the polymer
membranes. These transport characteristics are closely related to the physical and chemical
properties and microstructure of the separation membranes.

4.1. Adsorption

From the perspective of thermodynamics, the gas adsorption in polymers involves
the condensation of the gases and the mixing of molecules and polymers. The solubility
coefficient (S) is dominated by the gas condensability and the interaction between the
polymer and the gas molecules. The condensability can be determined by the gas critical
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temperature. In general, the solubility coefficient (S) increases with the gas condensation
ability. The interaction between the polymer and the gas molecules can be analyzed using
the Monte Carlo (MC) simulation.

The MC simulation is a calculation method based on probability and statistical theory.
It uses random numbers to realize a statistical simulation or sampling to obtain approximate
solutions to complex problems [81]. Numerous studies [31,78,82,83] have introduced the
computational logic and procedures of the MC simulation method. The solubility coefficient
is calculated by using the GCMC method according to the change curve of the adsorbed
molecule concentration with pressure, which is generally defined as the limit slope of the
curve at zero pressure:

S = lim
p→0

(
c
p

)
(7)

where c is the concentration of the absorbed molecule in the membrane, mol/m3.
Amani et al. [48] examined the solubility of poly(urethane–urea)s (PUUs) membrane

for various gas molecules. The order of the solubility obtained is consistent with that of
the gas condensability, which is H2S > CO2 > CH4 > O2 > N2. Since H2S and CO2 are
polar gases, the solubility of H2S and CO2 is stronger than that of other gases. Five peaks
at −15.85, −7.05, −5.95, −3.25 and −18.25 kcal/mol, respectively, can be observed in
Figure 19 for CO2, CH4, O2, N2 and H2S gases. The high interaction energy of H2S with the
PUUs membrane indicates a strong affinity of the PUUs membrane with H2S, so H2S has
a high solubility in the PUUs membrane. The solubility of CH4, N2 and O2 in the PUUs
membrane is similar, but is less than that of CO2 and H2S.
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Figure 19. The adsorption energy distribution of CO2, CH4, O2, N2 and H2S gas molecules
(P = 0~10 bar, T = 298 K) [48].

In the polymeric matrix, the two key aspects of the molecular adsorption sites are
the free volume voids and the spaces between molecular chains [49]. At low pressures,
gas molecules are usually trapped by the free volume holes in the polymer membrane,
following the Langmuir and Henry’s sorption law. Meanwhile, gas molecules that are
not captured enter the spaces between the molecular chains. At high pressures, the free
volume holes are mostly occupied by gas molecules, so the Langmuir adsorption is no
longer the dominant sorption mechanism, but Henry’s sorption law becomes dominant.
As displayed in Figure 20a, the isothermal curve shows a linear upward trend, implying
that the dominant sorption mechanism is Henry’s sorption law for H2. In view of CO2,
the dual-mode sorption mechanism dominates its adsorption process. The gas adsorption
capacity gradually reaches saturation for the two gases at a high pressure, which indicates
the additional effect of Henry’s sorption. Figure 20b clearly shows CO2 and H2 sorption
sites in the polymeric membrane. Due to its small size and strong activity, the H2 molecule
has more opportunity to access the free volume holes and the spaces between molecular
chains compared with the CO2 molecule.
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Figure 20. The isotherm adsorption curves of CO2 (a) and H2 (b) in the polymer membrane; the
adsorption sites of H2 (c) and CO2 (d) in polyurethane [49].

Khosravanian et al. [53] calculated the solubility coefficients of H2- and CH4-penetrated
molecules in the poly(benzimidazoles)/nanoparticle oxides’ composites. As shown in
Figure 21, the addition on the nano-oxide materials enhanced the H2 solubility, but weak-
ened the CH4 solubility. The results indicate that the nanomaterial type is significant for
the solubility, gas transport characteristics and H2 capture in the polymer membranes.
Amani et al. [48] investigated the relationship between the solubility of gas molecules
and the critical temperature (Figure 22). The results showed that the solubility coefficient
increased with the critical temperature.
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The GCMC simulation method effectively characterizes the kinetic mechanism of the
polymer membrane adsorbing other substances from smaller spatial and temporal scales.
Based on the above literature analysis, the adsorption energy, the adsorption site and the
variation curve of molecule adsorption concentration can be used to comprehensively
analyze the difference in the adsorption properties of polymer membranes for various gas
molecules. Combined with the quantitative calculation of the solubility coefficient, the
solubility properties of polymer membranes can be effectively predicted. Nevertheless,
it is necessary to carry out in-depth research in the following aspects. (1) In the study of
the gas-membrane adsorption mechanism, the key to the MC method is to establish the
micropores’ structural model of membrane materials and the interaction model between
the gas molecules and the membrane materials. Further research is needed to simplify
appropriate adsorption models from complex practical problems. (2) The adsorption effect
of polymer membranes is affected by the pore size, temperature, pressure, environment
(such as humidity) and other important parameters. For a variety of factors, the selection
of suitable operating conditions to obtain a relatively balanced performance is also an
important direction of research.

4.2. Diffusion

The diffusivity of gas molecules in membranes is strongly affected by the free volume
and the mobility of polymer chains [31,49,62,84–87]. The connectivity, distribution and
size of free volume cavities are significant for gas molecule diffusion behavior [55,88]. The
local mobility of molecular chains affects the diffusion coefficient, which is manifested
as a change of diffusion selectivity. However, it is difficult to quantify the correlation
between physicochemical properties and the diffusion coefficient. A deep understanding
of the relationship between the physicochemical properties of membranes and diffusion is
necessary and is conducive to obtaining the correlation data through the analysis of the
free volume fraction, void size and local molecular chain motion.

Figure 23 presents the typical trajectories of CH4 and CO2 in the polyetherimide (PEI)
matrix [89] and clearly indicates the gas molecules oscillating within the free volume holes
and jumping between holes. The diffusion behavior of the gas molecules actually consists
of random local oscillations inside the microcavities and occasional jumps between two
microcavities. The oscillations amplitude is highly relevant to the size of the accessible
holes. The longer the gas molecules stay in the microcavity, the less the jump between the
microcavities, which indicates that the gas molecules have a small self-diffusion coefficient.
As evident from the gas displacements (Figure 23), the CH4 molecules had a faster motion
compared with the CO2 molecules. Thus, it can be predicted that CH4 has a greater
self-diffusion coefficient.
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The mean square displacement (MSD) of gas molecules typically includes collisions
inside the free volume and the jump between the adjacent free volume holes. As shown in
Figure 24, the result of repeated jumps is the diffuse motion of the gas molecule character-
ized by a linear MSD in time. Using Molecular Dynamic (MD) simulation, the increase in
the MSD with time is related to the diffusion coefficient, D:

Di =
1

6Nα
lim
t→∞

d
dt∑

Nα

i=1

〈
[ri(t)− ri(0)]

2
〉

(8)

where Nα is the number of diffusive atoms in the system. Usually, judging whether the
diffusion is within the normal range depends on the logarithmic plot of the MSD. When
the curve slope is close to 1, the diffusion falls within the normal range, which applies to
Einstein’s formula.
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Fei et al. [90] calculated the diffusion coefficient of H2O molecules in a poly(vinyl
alcohol) membrane. As seen in Figure 25, the increase in the interaction energy with the
pressure impedes the diffusion of water molecules, thus the diffusion coefficients of H2O
molecules decrease. Under a pressure over 10 MPa, the number of H2O molecules captured
by the PVA chains reaches saturation and the increasing trend of the intermolecular force
between H2O molecules and PVA chains becomes weak. As shown in Figure 25b, the
diffusion coefficient at different temperatures shows a downward trend with the increase
in pressure, due to the augmentation of the intermolecular force of PVA–H2O.

The molecular trajectories and the MSD change curves are conducive to judging the
motion form and jump amplitude of small molecules in the porous membrane. The quanti-
tative calculation results of the diffusion coefficient and molecular trajectory confirm each
other. These results can comprehensively analyze the factors affecting the molecular diffu-
sion coefficient. Nevertheless, the following research issues are important to investigate
in the future. (1) The study of the diffusion process of pure components cannot compre-
hensively investigate the diffusion properties of composite membranes. An investigation
into the diffusion behavior of binary or multiple mixed components is closer to the actual
situation. The research on the diffusion of mixed components has more significance for the
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separation and chemical reactions of mixtures. (2) The self-diffusion coefficient determined
by the molecular dynamics simulations is accurate in a certain range and agrees with the
diffusion coefficient measured by an experimental method. However, due to the existence
of the “slow” diffusion phenomenon in the process of a dynamics simulation, the diffusion
coefficient of molecules with a large kinetic diameter measured by the molecular dynamics
method is not accurate and the development of an advanced approach for solving this
problem is challenging work. (3) For the molecular dynamics simulation, the key problem
is to provide the accurate interaction potential energy between the molecules or atoms. The
empirical potential energy parameters cannot meet the needs of some simulations. The
calculation of the interaction energy between particles through quantum chemistry may be
an effective method to obtain the potential energy parameters and is an important direction
of future development.
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4.3. Permeability and Selectivity

Figure 26 summarizes the permeability and selectivity of water vapor and nitrogen
in various polymers at 30 ◦C. The trade-off between selectivity and permeability is a com-
mon phenomenon for most polymer membrane materials [91]. The Robeson upper bound
plot reflects the separation performance limit of the homogeneous polymer membrane
for a specific gas, which is conducive to guiding the optimization and breakthrough of
the polymer membrane structure/performance [92,93]. The two pivotal parameters in
the Robeson upper bound plot are the permeability coefficient (P) and the separation
factor (α) of the component to be separated. The permeability coefficient indicates the
speed at which the gas molecules transport through the membrane, while the separa-
tion factors indicate the separation degree of the target molecules from other molecules.
Figure 27 displays the Robeson’s upper bound of different binary gas pairs in the polymer
membranes [49,56,93,94]. The closer that the data point of the membrane is to the upper
bound line, the better the gas separation performance of the polymer membrane. These fab-
ricated membranes are attractive and suitable to be applied in industrial applications and
they are also predicted to have low initial investment and operating costs. If the data points
exceed the Robeson’s upper bound, the membrane could be considered as a candidate for a
commercial membrane. In future research, more modification methods of the membrane
material should be explored to break though the Robeson’s upper bound and promote
the polymer membranes’ performance. Referring to the molecular simulation method,
the novel microstructures of the membrane polymer (such as the copolymer membrane,
the nanocomposite membrane and the organic–inorganic composite membrane) can be
constructed to explore and predict the construction scheme of the membrane material with
a better separation performance.
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5. Conclusions and Perspectives

The exploration on the morphology and material properties of the gas separation
membrane by molecular simulation has been reviewed in this paper. Compared with the
traditional experimental methods, molecular simulation can explore the microscopic behav-
ior of small molecules and polymer chains at the atomic or molecular level. By calculating
the physical and chemical properties of the polymer membrane and the adsorption and
diffusion behavior of small molecules in the membrane, the internal relationship between
the material properties and separation performance of the gas separation membrane can be
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clarified. The relevant research results can provide a theoretical basis for the design and
application of polymer membrane materials.

However, the previous studies on the application of molecular simulation in gas
membrane separation still have several deficiencies:

(1) A large number of studies focus on the solubility and diffusion coefficients of polymer
membranes, and few studies report the relationship between membrane morphology,
properties and membrane permeability and selectivity;

(2) In most calculations, gas molecules are simplified as rigid molecules. The potential
energy equations of gas–gas and gas–membrane interactions generally only consider
L-J potential energy and coulomb force. The collision between molecules and walls
is considered as elastic collision. Based on the above assumptions, the molecular
simulation is still far from an accurate quantitative analysis of the actual membrane
separation process;

(3) The existing empirical potential energy parameters cannot meet the needs of some
simulations. The necessary potential energy parameters and suitable force field
equations are lacking. Considerable work should be undertaken in parameter selection
and molecular model building;

(4) At present, there are few commercial products of composite polymer membranes used
for gas separation. The parameters required for modeling (the material properties of
the separation layer, crystal type and microscopic shape of membrane pore, etc.) and
the experimental data for comparing simulation results are scarce.

Therefore, from the perspective of membrane materials’ design, there still are many
problems to be studied for the gas membrane separation process by using molecular simula-
tion technology. It is only through collective investigations on improving above-mentioned
aspects that membrane processes can continue to innovate and push the boundaries of
membrane separation technology. Meanwhile, some suggestions are put forward for further
exploration: (1) the rationality and accuracy of constructed molecular models need to be
compared and verified by more experimental data related to the physicochemical properties
of membrane materials, (2) the construction and optimization of the multilayer molecular
models need further research, to explore and predict the gas transport characteristics in
the composite membranes and (3) for the design of gas separation membrane materials,
molecular simulation methods and experimental methods should complement each other
in future research, to comprehensively determine the most appropriate membrane material
construction scheme for the micro and macro levels.
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Nomenclature

c Concentration (mol/m3) P The permeability coefficient (Barrer)
D Diffusion coefficient (cm2/s) p The pressure (Pa)
Ds Surface diffusion coefficient (cm2/s) R The gas constant (J/mol K)
d1/d2 The membrane thickness changes due to the surface adsorption rp The membrane pore radius (m)
Eint The interfacial energies of the composite membrane (kcal/mol) S The solution coefficient (cm3 (STP)/(cm3 kPa))
Elayer,1-2 The total energies of the composite membrane (kcal/mol) T The temperature (K)
Elayer,1 The energies of separation layer (kcal/mol) Vs The reciprocal density
Elayer,2 The energies of support layer (kcal/mol) VVdW The van der Waals volume
FFV Fractional free volume (%) Greek
fk The gas flux due to Knudsen diffusion (kg/(m2 s)) ρ The density (kg/m3)
fs The gas flux due to surface diffusion (kg/(m2 s)) ε The porosity of porous media
M The gas molecular weight (kg/mol) µs The shape factor
Nα The atoms number α The selectivity
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