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Abstract: The main idea of membrane distillation is to use a porous hydrophobic membrane as a
barrier that isolates vapor from aqueous solutions. It is similar to the evaporation process from
a free water surface but introduces solid–liquid interfaces and solid–vapor interfaces to a liquid–
vapor interface. The transmembrane mass flux of a membrane-distillation process is affected by the
membrane’s intrinsic properties and the temperature gradient across the membrane. It is interesting
and important to know whether the evaporation process of membrane distillation is faster or slower
than that of a free-surface evaporation under the same conditions and know the capacity of the
transmembrane mass flux of a membrane-distillation process. In this work, a set of proof-of-principle
experiments with various water surface/membrane interfacial conditions is performed. The effect and
mechanism of membrane-induced evaporation are investigated. Moreover, a practical engineering
model is proposed based on mathematical fitting and audacious simplification, which reflects the
capacity of transmembrane flux.

Keywords: membrane distillation; transmembrane flux capacity; saturated vapor layer; porous
membrane; evaporation rate

1. Introduction

Evaporation is a basic interfacial thermodynamic process of converting water from
the liquid phase to the vapor phase through the transfer of heat energy [1–3]. During the
evaporation process, the escaping molecules accumulate as a vapor above the liquid, while
many of the molecules return to the liquid. There is a saturated vapor layer above the
liquid [4]. The saturated vapor pressure of water is a function of temperature, as described
by the Clausius–Clapeyron equation [5,6]. The evaporation rate is mostly affected by
the saturated layer or the saturated deficit among all the physical parameters. It can be
significantly enhanced by breaking the saturated layer above the liquid.

Many of the applications for evaporation are intimately familiar to us. A typical
application is a thermal-energy-based desalination. Saline water is heated up to a certain
temperature to produce water vapor, which is then condensed to liquid water. Commonly
employed thermal desalination processes include multi-stage flash (MSF) [7] distillation
and multi-effect distillation (MED) [8,9]. The heated saline water is usually discharged
to a chamber maintained below the saturation vapor pressure of the water. Breaking
the saturated layer of water vapor is a significant and effective route to improve the
specific distillation capacity. The specific evaporation rate of MSF distillation is about
300 kg/m2/h [10].

An interesting way of breaking the saturated layer above water is membrane dis-
tillation (MD). It is a thermally driven separation process in which separation is driven
by phase change [11]. A hydrophobic membrane presents a barrier for the liquid phase,
allowing the vapor phase to pass through the membrane’s pores [12,13]. The driving force
of the process is the partial vapor pressure difference commonly triggered by a temperature
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difference [14,15]. The porous membrane directly contacting the heated water covers a
certain area of the free water surface, which should suppress the specific evaporation rate.
However, the thin membrane may also break or disturb the saturated vapor layer above
the water surface [16], which may lead to an enhancement of evaporation.

It is important and necessary to ask these questions: (i) Does a porous membrane on
the surface of water enhance or suppress the evaporation rate? (ii) Is there a theoretical
maximum value of the transmembrane mass flux of an MD process? (iii) How is the capacity
of the transmembrane mass flux of an MD process characterized? In this work, free-surface
evaporation and transmembrane evaporation are compared under various conditions.
A set of proof-of-principle experiments with various interfacial conditions is performed.
Comparisons between membrane-induced evaporation and free-surface evaporation are
investigated. The dominant factors, mechanisms, and mass transfer capacities are discussed
in detail.

2. Experimental Section
2.1. Membranes

Polytetrafluoroethylene (PTFE) (Guangzhou Cleverflon New Material Technology
Co., Ltd., Guangzhou, China) membranes were used for evaporation barrier and MD tests.
The nominal mean pore size of the membranes was 0.22 µm. The surface morphology
was characterized by Scanning Electron Microscope (SEM) (FEI, QUANTA 450, Hillsboro,
OR, USA). The thickness was 60 µm, measured by a digital micrometer (211-101F, Guiling
Guanglu Measuring Instrument Co., Ltd., Guiling, China). The apparent water contact
angle of the test membranes was 155 ± 3◦, measured by a goniometer (YIKE-360A, Chengde
Yike Experimental Instrument Co., Ltd., Chengde, China). The porosity was around
85%, according to the gravimetric method [17].

2.2. Evaporation Test System

The evaporation rates from water surface with and without a porous membrane cov-
erage under various conditions were characterized by a test module made of polymethyl
methacrylate (PMMA), as shown in Figure 1 and Figure S1 of Supplementary Materi-
als. There are two chambers in the module, a heating chamber circulating at the lower
side with hot solution as the feed, and a cooling chamber at the upper side circulating
with cooling water. The sizes of the two chambers are 100 mm × 50 mm × 65 mm and
100 mm × 50 mm × 25 mm, respectively. The two chambers can be separated and assem-
bled to test the evaporation rates with different configurations. In the sealing gasket, there
is a small void space (4 mm × 4 mm × 2 mm) connected to the head space of the heating
chamber. A miniature electric fan (Figure S1 of Supplementary Materials) was positioned
in this space to generate a convection flow for disturbing the saturated layer above the
liquid surface in the head space. To facilitate in-process visual observation, an aqueous
solution of 2.0 wt% copper sulfate (CuSO4) (Tianjin Kemiou Chemical Reagent Co., Ltd.,
Tianjin, China) was circulated in the heating chamber, because of its blue color. Deionized
water was circulated in the cooling chamber. The two circulations can be distinguished
based on color. Peristaltic pumps (BT100-2J, Baoding Longer Peristaltic Pump Co., Ltd.,
Baoding, China) were used to circulate the liquids slowly and smoothly, with flow rates of
300 mL/min to avoid fluctuation at the interface. The reported values of this work were
averaged over three times measurements.
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Figure 1. Schematic diagram and experimental module for the tests of evaporation rate with various
conditions. (a) Schematic diagram of the experimental system that can be used for the tests of free
evaporation, membrane-covered evaporation, and membrane distillation. (b) Exploded view of the
experimental module. (c) Design and dimensions of the experimental test module.

2.3. Free-Surface Evaporation

As shown in Figure 2a, the free-surface evaporation was tested using a module without
a cooling chamber. The surface of the copper sulfate solution in the chamber was exposed
to the atmosphere. The surface area for evaporation was 50 cm2. The temperature of the
copper sulfate solution as the feed was maintained at 80 ± 1 ◦C by circulating it through
the chamber and a heating water bath with a slow flow rate at 300 mL/min to avoid surface
fluctuation. The temperature of ambient air was 23 ± 1 ◦C. The distance between the liquid
surface and the upper edge of the chamber varied from near-zero to 20 mm, by tuning
a valve on the circulating tube. To disturb or reduce the saturated layer above the water
surface, a miniature electric fan (Figure S1 of Supplementary Materials) forced a convective
flow onto the test surface, which reduces gas-phase transport resistance.
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(c,f,i) membrane distillation. The temperature of feed in the chamber was maintained at 80 ± 1 ◦C,
by circulating the solution through the chamber and a heating water bath with a slow flow rate
at 300 mL/min to avoid surface fluctuation. The temperatures of ambient air and coolant were
maintained at 23 ± 1 ◦C. The inset figure is a miniature electric fan that generated convection flow to
disturb the saturated layer above the liquid surface in the head space.

2.4. Membrane-Covered Evaporation

To investigate the effect of a porous membrane on evaporation, a membrane was
supported by meshes and positioned above the pool surface along the top edge of the
heating chamber, as shown in Figure 2b. The surface area of the porous membrane was
50 cm2. A miniature electric fan generated convection flow above the liquid surface and
below the membrane, which maintained the premembrane concentration as approximately
equal to the saturated water vapor. The temperatures of the feed solution and ambient air
were maintained at 80 ± 1 ◦C and 23 ± 1 ◦C, respectively. There was also an electric fan
above the membrane, generating convection flow to minimize gas-phase mass transport
barriers and isolate the test membrane’s resistance. In the heating chamber, the gap between
the porous membrane and the liquid surface varied from zero to 20 mm.

2.5. Membrane Distillation

In the MD tests, the two chambers were assembled together with the porous mem-
brane as a barrier isolating the CuSO4 solution (feed) and deionized water (coolant), as
shown in Figure 2c. The flow rates of the feed and coolant were 300 mL/min. The tem-
peratures of feed and coolant were maintained at 80 ± 1 ◦C and 23 ± 1 ◦C, respectively.
The temperatures at inlets and outlets of the chambers were measured and recorded by
thermal couples and temperature monitors. The mass changes of the feed and coolant were
measured and recorded by two digital mass balances.

3. Results and Discussion
3.1. Free-Surface Evaporation and Transmembrane Evaporation

The process of evaporation from a free water surface is a classical thermodynamics
question and has attracted the attention of engineers and scientists for a long time. Many
efforts have focused on the evaluation of the evaporation rate from a free water surface,
including theoretical derivations, simulations, and experimental estimations. Among all
the studies, the driving force of evaporation is recognized as the vapor pressure gradient
near the water surface, which follows the same mass transfer principle to the MD processes.

J = B(p1 − p2) (1)

where J is the evaporation rate or mass transfer flux, p1 and p2 are the values of the
vapor pressure related to their local temperature governed by the Antoine equation, and
B is the mass transfer coefficient. For a given condition with certain water and ambient
temperatures, the B factor describes the capacity of mass transfer.

To study the effect of porous membranes on the evaporation process, a set of proof-
of-principle experiments with various interfacial conditions is performed, as shown in
Figure 2. Figure 2d illustrates a free-surface evaporation process that can be characterized
by the one-dimensional steady-state diffusion process (Equation (2)) [16], which is also
described in Figure S2 of Supplementary Materials. The evaporation rate is significantly
affected by the gap (∆z) between the water surface and the chamber’s upper edge. It is
slightly affected by the temperature term, which is in the range of about 310 K to 350 K for
common MD processes. The theoretical estimation (dash line) indicates the suppression
of the potential evaporation rate by the saturated vapor layer above the water surface. By
neglecting the saturated layer, ∆z = 0, the evaporation rate should be infinite.

J = 1.18 × 10−9 Mw

R∆z
T0.75(p1 − p2) (2)
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where J is the evaporation rate or mass transfer flux from a free water surface. p1 and p2 are
the saturated vapor pressure corresponding to the water surface and ambient temperatures,
respectively. ∆z is the distance from the water surface to the chamber’s upper edge. Mw is
the molecular weight of water. R is the ideal gas constant. T is the temperature of the water
in the chamber.

It is a classical thermodynamics phenomenon that a saturated vapor layer above
the water surface suppresses the rate of evaporation and mass transfer near the liquid–
vapor interface. The experimental data show that the evaporation rate is a finite value
(~9 kg/m2/h) when ∆z = 0, which also reveals the existence of the saturated layer and its
suppression effect. To reduce gas-phase transport resistance, a miniature electric fan forces
a convective flow onto the test surface. The mass transfer flux increases slightly, indicating
the disturbance and reduction, which still exist, of the saturated layer (Figure 2g). The
values of the evaporation rate are on the same scale as the values in previous reports [18–22].

The vapor transport of the free water surface is based on molecular diffusion. It is
clear that, for the free water surface, molecular diffusion is the only mechanism governing
the vapor transportation, and it mainly depends on the water temperature. It governs the
vapor transfer from any free surface of liquid. As a result, at any distance above the free
water surface, the vapor transport is only governed by the molecular diffusion through the
surface-adjacent saturated vapor layer (the mass transfer boundary layer).

As shown in Figure 2b,e,h, when a porous membrane is placed above the water sur-
face, ∆z > 0, the mass transfer flux is smaller compared to the evaporation from the free
water surface. This is because the porous membrane increases the total gas-phase transport
resistance, by introducing the transmembrane diffusion resistance, and decreases the effec-
tive evaporation area of the water surface in the meantime. When the membrane directly
contacts the water surface, the evaporate rate, which is the transmembrane flux under this
condition, is larger than that without the membrane coverage. The porous membrane may
break the original steady-state of the saturated layer, leading to the enhancement of the
mass transfer flux from the liquid phase to the vapor phase.

To further investigate the effect of the porous membrane on evaporation, cooling water
circulation is added into the experimental configuration (Figure 2c,f). The cooling water
directly contacts the membrane on the downstream side. The intrinsically hydrophobic
property makes the membrane non-wettable by liquid water. The vapor phase molecules
diffuse through the membrane, condense into liquid immediately, and cannot come back to
the feed side in the chamber. When there is a gap between the membrane and the hot water
surface, the mass transfer flux is suppressed similarly to the case shown in Figure 2b,e,h.
Notably, there is a significant increase in the mass transfer flux through the membrane, when
the membrane contacts both the hot and cold sides, even with an unneglectable coverage of
the evaporation surface. This is a typical direct contact membrane distillation (DCMD) process.
It is believed that the membrane breaks or shortens the saturated layers on both the upstream
and downstream sides and generates a new steady-state mass transfer process through the
pores of the membrane. It is one of the promising routes for increasing the evaporation rate
by MD compared to free-surface evaporation under the same operating conditions.

When the membrane covered the liquid surface, the saturated layer (boundary layer)
is also covered by the membrane and remains just at the membrane pores. The transport
mechanism of the vapor is governed by the Knudsen diffusion in addition to molecular
diffusion (as given in Equation (3)). It is believed to provide an extra amount of vapor
transport, as shown in Figure 2h,i.

DCMD, through the cooling water, offers a mechanism for withdrawing the vapor
that has crossed the membrane faster than when just a membrane is placed above the water
surface without cooling water circulation; thus, the flux of the DCMD was the highest, as
shown in Figure 2h,i.

From another side, the presence of a miniature electric fan is an unaffected parameter
when the membrane is covering the water surface; the distance change above the water
surface (∆z) is also an unaffected parameter, as shown in Figure 2h,i. While the miniature
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electric fan is an affective parameter of the free water surface because it acts to push the
vapor away from the water surface, so the evaporation water is continuously compensating
for the pushed vapor to keep the vapor pressure on the water surface, as shown in Figure 2g.

Moreover, with the existing distance above the water surface (∆z), the mass transfer
flux of the free water surface is larger than that of the two modes of the membrane-covered
surface, and the latter had the same results for mass transfer flux because of the membrane
barrier that the vapor escapes, even with the presence of the miniature electric fan, as
shown in Figure 2g–i.

3.2. Diffusion Capacity through a Porous Membrane

When a porous membrane is infinitely close to or in direct contact with the surface of
hot water, the saturated layer above the surface is disturbed or broken, and the dominant
factor suppressing the evaporation rate and the transmembrane flux is the membrane.
The transport behavior in the pores of a membrane is confined by the physical properties,
including pore size, porosity, and thickness. According to the existing studies of MD,
thermodynamic diffusion governs the capacity of transmembrane permeation flux. The
mechanisms of both the Knudsen diffusion and molecular diffusion are expected to be
operative in a common MD process, which can be considered as a transition diffusion (as
shown in Figure S3 of Supplementary Materials).

J =

(1.18 × 10−9 p
pa

ε

τδ

Mw

R
T0.75

)−1
+

(
εd

3τδ

(
8RT

πMW

) 1
2 Mw

RT

)−1−1

(p1 − p2) (3)

where ε is porosity, τ is tortuosity, δ is thickness, and d is the mean pore size of the porous
membrane. p and pa are the total pressure and the partial pressure of the air in the pores
of the membrane, respectively. D is the diffusion coefficient of the vapor in the air, which
can be calculated by the Fuller equation. p1 and p2 are the values of the saturated vapor
pressure of the hot side and cold side, respectively.

In Equation (3), the tortuosity (τ) and thickness (δ) of a membrane relate to the diffusion
path length, which acts as a resistance factor to diffusion. Assuming an infinitely thin porous
membrane was applied in a DCMD process, the permeation flux could be a huge value.
This is similar to the evaporation condition that directly from a free water surface without a
saturated layer above it. Theoretically, it is a possible route to enhance the evaporation rate
with a thin porous membrane by breaking or shortening the saturated layer.
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However, the theoretical values of mass flux estimated based on the mechanism of
thermodynamic diffusion are much larger than the values from the literature and exper-
imental data of this work, as shown in Figure 3. The difference is more obvious at high
temperatures. There should be resistance factors for evaporation and transport, other than
the thermodynamic diffusion of the water molecules in the pores.

3.3. Dialectical Effect of Porous Membrane on Evaporation

In an MD process, the evaporation surface is usually taken as the surface directly
contacting a membrane. However, the surface area of the membrane is not an effective area
for evaporation when there is still a part of the water surface covered by the solid part of
the porous membrane, which leads to a reduction in the apparent evaporation rate. For
a free-surface evaporation process, there is only one interface, which is the liquid–vapor
interface (Figure 4a). For an MD process, a porous membrane is loaded onto the water
surface; the interfaces include the solid–liquid interface, the solid–vapor interface, and the
liquid–vapor interface, as illustrated in Figure 4b. The solid–liquid interface acts as a barrier
for free-surface evaporation. The apparent evaporation rate is enhanced at the liquid–vapor
interface but is suppressed at the solid–vapor interface and solid–liquid interface. The porous
membranes commonly applied in MD processes are fibrous membranes with irregular
pores, e.g., nonwoven fibrous membranes (Figure 4c,d). There are also investigations on
membranes with regularly cylindrical pores (e.g., track-etched pores [23], as shown in
Figure 4e) for MD application. Nonwoven fibrous membranes usually have a larger specific
porosity compared to membranes with regularly cylindrical pores.
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Figure 4. Interfaces introduced by a porous membrane. (a) Free-surface evaporation with the liquid–
vapor interface. (b) Liquid-surface-contacting porous membrane introduces solid–liquid interface
and solid–vapor interface. (c) Morphology of nonwoven fibrous membrane via electrospinning.
(d) Morphology of commercial PTFE porous membrane via film-stretching. (e) Morphology of
track-etched porous membrane with regularly cylindrical pores. (f) The ratio of the liquid surface
uncovered by a porous membrane to the total liquid surface area is related to membrane porosity,
according to Poisson theory.

According to the Poisson distribution theory, the ratio (Ω) of the uncovered water
surface area (effective water surface for evaporation) to the total water surface can be
estimated by Equation (4) [24]. It does not depend on the depth of the membrane immersed
in the water or the height of the water in the pores but only depends on the porosity
(ε) of the membrane. The uncovered area increases with the porosity of a porous membrane.
For membranes with the same porosity, a nonwoven fibrous structure leaves more water
surface area uncovered for evaporation, especially with a smaller porosity (Figure 4f). A
larger uncovered area leads to a larger liquid–vapor interfacial area, resulting in a higher
apparent evaporation rate, while a larger solid–liquid interfacial area results in a more
significant barrier effect on the evaporation rate.
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Ω =

{
exp(−(1 − ε)), (irregular pores)
ε, (regular pores)

(4)

3.4. Transmembrane Flux Capacity of MD

Among all these evaporation processes, including free-surface evaporation and membrane-
based evaporation, the fundamental driving force is the saturated vapor pressure difference,
which is generated by the temperature difference between the bulk liquid water and the
downstream target location. The B factor describes the capacity of the evaporation flux at
various temperatures under a certain operating condition.

The saturated vapor pressure can be estimated by the Antoine equation as a
function of temperature only. The common MD processes are operated with the feed
temperature in the range of 40–80 ◦C. The relation between the saturated vapor pressure
and temperature can be well-fitted by Equation (5), which is a fitting trendline for the
Antoine equation with an R-squared value larger than 0.95 (Figure 5a). It is also interesting
to notice that the fitting equations are in the same form by using Celsius Temperature
and Absolute Temperature, but only with different constants: 1000 and 0.001, respectively
(Figure S4 of Supplementary Materials).

p = 1000 exp (T/20), (Temperature : ◦C) (5)
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Figure 5. A practical coefficient characterizes the transmembrane flux capacity of MD. (a) The
saturated vapor pressure estimated according to Antoine relation and its fitting lines as functions of
local temperatures only, with the unit of ◦C. (b) The relation between transmembrane mass flux and
feed temperature with various practical capacity coefficients (B̃), according to Equation (6). (c) The
distribution of calculated B̃ values in various MD configurations and free-surface evaporation from
the literature data (see Table S1 of Supplementary Materials). (d) The examinations of Equation (6)
for the various literature data and the corresponding B̃ values.

The saturated vapor pressure is a small value in a relatively low temperature range
(e.g., 20–30 ◦C, 3–5 kPa) but a significantly larger value in a relatively high temperature
range (e.g., 60–90 ◦C, 20–90 kPa). Commonly, in an MD process, the temperature at the
cooling side is in the range of 20–30 ◦C. It should be practicable to neglect the term of the
saturated vapor pressure in a low temperature range. The flux change can be revealed by a
corrected B̃ value in Equation (6), for further simplification.

J = 3.6 × 106B̃exp (T/20), (Temperature : ◦C) (6)
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where the unit for J, the transmembrane flux, is kg/m2/h, the unit for the pressure term is
Pa, and the unit for B̃ is kg/m2/h/Pa or s/m.

At this point, B̃ is the practical coefficient indicating the capacity of the mass flux
escaping from liquid water as the feed or the capacity of the transmembrane mass flux.
Importantly, it is a parameter independent of temperature. It comprehensively integrates
many inherent transport behaviors of free-surface evaporation or an MD process. More-
over, it reflects a useful engineering property for the analysis and characterization of
transmembrane mass flux.

As shown in Figure 5d, the B̃ values fit the experimental data in this work and the
reported data in the literature well [25–29]. To the best of our knowledge, for various
MD processes and configurations, the B̃ values are generally in the range of 5 × 10−8 to
20 × 10−8 s/m (Figure 5b). Among the basic configurations of MD, DCMD is the sim-
plest and most commonly used configuration capable of producing a reasonably high
flux. The reported values of mass flux across the porous membrane vary in a wide range.
Figure 5c shows the distribution of calculated B̃ values in various MD configurations from
the literature data, which is described in detail in Table S1 of Supplementary Materials.

4. Conclusions

The saturated layer above the water surface is the dominant factor affecting the
evaporation flux. To enhance the flux, introducing a porous membrane that directly
contacts the water surface a reasonable route to breaking or shortening the saturated layer.
In a DCMD configuration, a porous membrane introduces new liquid–vapor interfaces
with a shortened saturated layer in the pores, which should enhance the evaporation
flux. However, it also introduces new solid–liquid interfaces and solid–vapor interfaces,
which suppress the mass flux due to the water surface coverage, vapor diffusion resistance,
and the existence of the saturated layer in the pores. Therefore, the transmembrane mass
flux in an MD process is still a finite value, but it shows significant potential with the
development of thin porous material fabrication. it is a potential route to further enhance the
transmembrane flux for a fixed water surface by applying much thinner porous membranes.
Considering the many interacting parameters that affect the transmembrane flux in an
MD process, a practical engineering equation was proposed based on mathematical fitting
and audacious simplification, which was examined and deemed suitable to describe the
values and trending of the MD processes. In addition, the temperature-independent
B̃ factor reflects the capacity of the transmembrane flux in an MD process, which is a useful
parameter for the analysis and estimation of MD performance in terms of mass flux.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes12121231/s1, Figure S1: A lab-scale evaporation test
system and the different assembly configurations of the core module for the tests of evaporation
ratios; Figure S2: (a) Schematic diagram of evaporation from a free water surface as the interface
between liquid and gas. (b) The mass transfer flux from a free water surface under various values of
gap distance and RH values; Figure S3: The value of Knudsen number calculated from water vapor
temperature and membrane pore size.; Figure S4: The saturated vapor pressure estimated according
to Antoine relation and its fitting lines as functions of local temperatures only, with the unit of ◦C
and K, respectively; Table S1: The values of transmembrane mass flux and the calculated B̃ values of
various membrane distillation processes from related references. References [26,27,30–66] were cited
in the Supplementary Materials.

https://www.mdpi.com/article/10.3390/membranes12121231/s1
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