TechnoEconomic Comparison of Integration Options for an Oxygen Transport Membrane Unit into a Coal OxyFired Circulating Fluidized Bed Power Plant
Abstract
:1. Introduction
2. System Configuration Description and Assumptions
2.1. Reference Case: Air CoalFired CFC Supercritical without CO_{2} Capture
2.2. OxyCombustion CoalFired CFC Supercritical Plant with CO_{2} Capture
2.2.1. Case 1: Cryogenic OxygenFired CFB Supercritical Plant with CO_{2} Capture
2.2.2. Oxygen Transport Membrane Applied to OxyCombustion Process
 The Napierian logarithm of the driving force (O_{2}partial pressure ratio): the higher the difference in the partial oxygen pressure, the higher the oxygen flow rate across the membrane will be. Normally, the OTM unit achieved the oxygen flux through modes known as 4end and 3end (Table 2). In the 4end concept, the difference in oxygen partial pressure is reached by a sweep stream on the permeate side coming from the oxycombustion area. In the second mode, this driving force is accomplished by vacuum generation on the permeate side.
Type of Mode  

3End  4End  
Design  
Oxygen Separation ratio (SR)  
Definition  Oxygen fraction that passes through the membrane module from the feed side to permeate side  
Equation 
$$\mathrm{SR}=\frac{{\mathrm{y}}_{\mathrm{O}2,\mathrm{p}}{\xb7\mathrm{m}}_{\mathrm{perm}}}{{\mathrm{y}}_{\mathrm{O}2,\mathrm{f}}{\xb7\mathrm{m}}_{\mathrm{f}}}$$
 
Parameters 
 
Oxygen partial pressure ratio (${\mathsf{\pi}}_{\mathbf{m}}\mathbf{o}{\mathbf{P}}_{{\mathbf{O}}_{\mathbf{2}\mathbf{,}\mathbf{ratio}\mathbf{avg}}}$)  
Definition  This parameter corresponds to the total membrane oxygen partial pressure ratio, which can be determined as the average between feed (${\mathsf{\pi}}_{\mathrm{f}}$) and retentate (${\mathsf{\pi}}_{\mathrm{ret}}$)  
Equation 
$${\mathsf{\pi}}_{\mathrm{m}}=\frac{{\mathsf{\pi}}_{\mathrm{f}}+{\mathsf{\pi}}_{\mathrm{ret}}}{2}$$
 
$${\mathsf{\pi}}_{\mathrm{f}}=\frac{{\mathrm{P}}_{{\mathrm{O}}_{2},\mathrm{f}}}{{\mathrm{P}}_{{\mathrm{O}}_{2},\mathrm{perm}}}$$
$${\mathsf{\pi}}_{\mathrm{ret}}=\frac{{\mathrm{P}}_{{\mathrm{O}}_{2},\mathrm{ret}}}{{\mathrm{P}}_{{\mathrm{O}}_{2},\mathrm{perm}}}$$

$${\mathsf{\pi}}_{\mathrm{f}}=\frac{{\mathrm{P}}_{{\mathrm{O}}_{2},\mathrm{f}}}{{\mathrm{P}}_{{\mathrm{O}}_{2},\mathrm{perm}}}$$
$${\mathsf{\pi}}_{\mathrm{ret}}=\frac{{\mathrm{P}}_{{\mathrm{O}}_{2},\mathrm{ret}}}{{\mathrm{P}}_{{\mathrm{O}}_{2},\mathrm{SW}}}$$
 
Parameters 
 
OTM system effective area (A_{eff,}) [14,22]  
Definition  Required area to satisfy the oxygen fraction  
Equation 
$${\mathrm{A}}_{\mathrm{eff},\mathrm{Case}\text{}\mathrm{i}}\text{}({\mathrm{m}}^{2})={\mathrm{j}}_{{\mathrm{O}}_{2}}{(\mathrm{mol}/\mathrm{m}}^{2}\xb7\mathrm{s})\xb7\left({\mathrm{y}}_{\mathrm{O}2,\mathrm{p}}\xb7{\mathrm{m}}_{\mathrm{perm}}\right)$$
$${\mathrm{A}}_{\mathrm{eff},}\text{}({\mathrm{m}}^{2})={\mathrm{N}}_{\mathrm{mod}}{\xb7\text{}\mathrm{A}}_{\mathrm{mod}}$$
 
Parameters 

OxygenFired CFB Supercritical Plant with CO_{2} Capture Based on OTM Unit with 3End Mode (Case 2 and Case 3)
OxygenFired CFB Supercritical Plant with CO_{2} Capture Based on OTM Unit with 4End Mode (Case 4 and Case 5)
2.3. Assumptions
 Highpressure turbines with 85% isentropic efficiency: HP_{1}T from 306 to 51.02 bar, and HP_{2}T from 306 to 197.7 bar.
 Intermediate pressure turbines with 85% isentropic efficiency were IP_{1}T from 47.6 to 20.3 bar, and IP_{2}T from 20.3 to 11.4 bar.
 Lowpressure turbines with isentropic efficiency between 87 and 90%: LP_{1}T from 11.4 to 6.02 bar, LP_{2}T from 6.02 to 1.72 bar, LP_{3}T from 1.72 to 0.82 bar, LP_{4}T from 0.82 to 0.32 bar, and LP_{5}T from 0.32 to 0.04 bar.
 Pump operation conditions (isentropic efficiency): 6.06 bar (64.34%) in the condenser pump, 3.53 bar (55%) in the drain pump, 85.84 bar (83.33%) in the booster pump, and 318 bar (81.72%) in the boiler feed pump.
3. Assessment Method
3.1. Thermodynamic Performance Assessment
Section  Equation  Refs. 

Boiler & Steam cycle area 
$${\mathrm{P}}_{\mathrm{aux},\mathrm{i}}\left(\mathrm{kW}\right)={\mathrm{P}}_{\mathrm{aux},\mathrm{ref}\text{}\mathrm{i}}\left(\mathrm{kW}\right)\xb7{(\frac{{\mathrm{MW}}_{\mathrm{gross},\mathrm{ref}}}{{\mathrm{MW}}_{\mathrm{gross}}})}^{\mathrm{sf}}$$
 [25,26] 
Particle filtration system 
$${\mathrm{P}}_{\mathrm{F},\mathrm{i}}\left(\mathrm{kW}\right)=\frac{0.746\xb7\mathrm{Q}\xb7\Delta \mathrm{P}}{6356\xb7\mathsf{\eta}}$$
 [27,28,29] 
SCR unit 
$${\mathrm{P}}_{\mathrm{SCR},\mathrm{i}}\left(\mathrm{kW}\right)=0.150\xb7{\mathrm{Q}}_{\mathrm{B}}\xb7\left[{\mathrm{NO}}_{\mathrm{x},\mathrm{in}}\xb7{\text{}\mathsf{\zeta}}_{{\mathrm{NO}}_{\mathrm{x}}}+0.5\xb7\left({\mathsf{\Delta}\mathrm{P}}_{\mathrm{pipe}}+{\mathsf{\Delta}\mathrm{P}}_{\mathrm{catalyzed}}\right)\right]$$
 [30] 
ASU unit 
$${\mathrm{P}}_{\mathrm{ASU}}\text{}\left(\mathrm{MW}\right)=3798\xb7{10}^{3}\xb7{\mathrm{M}}_{{\mathrm{O}}_{2}}\xb7\left[\frac{0.0736}{{(100\mathsf{\phi})}^{1.3163}}+0.8779\right]\text{}\mathrm{for}\text{}\mathsf{\phi}97.5\%$$
 [31] 
Impulse blower (BL) 
$${\mathrm{P}}_{\mathrm{blower},\mathrm{i}\text{}}\left(\mathrm{kW}\right)=\frac{0.746\xb7\mathrm{Q}\xb7\text{}\Delta \mathrm{P}}{6356\xb7\mathsf{\eta}}$$
 [28] 
Cooling Water (HX_{m}) 
$${\mathrm{P}}_{\mathrm{cooling}\text{}\mathrm{water}\text{}}\left(\mathrm{kW}\right)=\frac{4.7\xb7{10}^{5}\xb7{\mathrm{M}}_{\mathrm{cooling}}}{1000}$$
 [31] 
Air vacuum pump (VP) 
$${\mathrm{P}}_{\mathrm{VP}}\left(\mathrm{kW}\right)=\mathrm{23,168}\xb7\dot{{\mathrm{m}}_{{\mathrm{O}}_{2}}\xb7}{\mathrm{P}}_{\mathrm{vacuum}}^{0.8151}$$
 [16] 
3.2. Economic Performance Assessment
Concept  Economic Parameter  Factor 

C_{1}  Main equipment Cost   
C_{2}  Auxiliary equipment Cost   
A  Total  C_{1} + C_{2} 
B  Purchased equipment Cost  1.18·A 
C_{3}  Founding Cost  0.04·B 
C_{4}  Handling Cost  0.5·B 
C_{5}  Electric system Cost  0.08·B 
C_{6}  Piping Cost  0.01·B 
C_{7}  Piping insulation Cost  0.07·B 
C_{8}  Painting Cost  0.04·B 
DIC  Direct Installation Cost  0.74·B 
C_{9}  Engineering Cost  0.01·B 
C_{10}  Construction Cost  0.2·B 
C_{11}  Contractor’s fees  0.01·B 
C_{12}  Starting construction Cost  0.01·B 
C_{13}  Performance test  0.01·B 
IIC  Indirect Installation Cost  0.27·B 
TCI  Total Capital Investment  DIC + IIC 
Section  Equation  Refs. 

Boiler and Steam Cycle Area 
$${\mathrm{C}}_{\mathrm{aux},\mathrm{i}}\left(\mathrm{MM}\$\right)={\mathrm{C}}_{\mathrm{aux},\text{}\mathrm{ref}\text{}\mathrm{i}}\left(\mathrm{MM}\$\right)\xb7{(\frac{{\mathrm{MW}}_{\text{}\mathrm{gross},\text{}\mathrm{ref}}}{{\mathrm{MW}}_{\text{}\mathrm{gross}}})}^{\mathrm{sf}}\xb7\left(\frac{{\mathrm{PCI}}_{2020}}{{\mathrm{PCI}}_{\mathrm{ref}}}\right)$$
 [26,38,39] 
Particle filtration unit (FM, HF) 
$${\mathrm{C}}_{\mathrm{filtration}\text{}\mathrm{unit}\text{}}(\$)=({\mathrm{C}}_{\mathrm{Fabric}\text{}\mathrm{filter}}+{\mathrm{C}}_{\mathrm{bags}}+{\mathrm{C}}_{\mathrm{auxiliry}\text{}\mathrm{equipment}})\xb7\frac{{\mathrm{PCI}}_{2020}}{{\mathrm{PCI}}_{\mathrm{ref}}}$$
 [27,28,29] 
SCR unit 
$${\mathrm{C}}_{\mathrm{SCR},\mathrm{i}}(\$)=\frac{{\mathrm{PCI}}_{2020}}{{\mathrm{PCI}}_{\mathrm{ref}}}\xb7{\mathrm{Q}}_{\mathrm{B}}\xb7\left[\frac{3380\text{}\$}{\mathrm{MMBtu}/\mathrm{h}}+\mathrm{f}({\mathrm{h}}_{\mathrm{SCR}})+\mathrm{f}\left({\mathrm{Q}}_{{\mathrm{NH}}_{3,\text{}\mathrm{rate}}}\right)\right]\xb7{(\frac{3500}{{\mathrm{Q}}_{\mathrm{B}}})}^{0.35}+\mathrm{f}\left({\mathrm{Vol}}_{\mathrm{catalyst}}\right)$$
$${\mathrm{Vol}}_{\mathrm{catalyst}}={\mathrm{Vol}}_{\mathrm{catalyst}}\xb7{\mathrm{CC}}_{\mathrm{initial}}$$
 [40] 
OTM membrane 
$${\mathrm{C}}_{\mathrm{OTM}}(\$)={\mathrm{C}}_{\mathrm{ref}}^{\mathrm{o}}\xb7\frac{{\mathrm{m}}_{{\mathrm{O}}_{2}}}{{\mathrm{J}}_{{\mathrm{O}}_{2}}}\text{}\xb7\frac{{\mathrm{PCI}}_{2020}}{{\mathrm{PCI}}_{\mathrm{ref}}}$$
 [41] 
ASU unit 
$${\mathrm{C}}_{\mathrm{ASU}}\text{}\left(\mathrm{MM}\$\right)=\frac{14.35\xb7{\mathrm{N}}_{\mathrm{t}}\xb7{\mathrm{T}}_{\mathrm{a}}^{0.067}}{1000\xb7{(1\mathsf{\phi})}^{0.073}}\xb7{(\frac{{\mathrm{M}}_{{\mathrm{O}}_{2}}}{{\mathrm{N}}_{\mathrm{o}}})}^{0.852}\xb7\left(\frac{{\mathrm{PCI}}_{2020}}{{\mathrm{PCI}}_{\mathrm{ref}}}\right)$$
 [31] 
Combustor Chamber (CC1_{m}) 
$${\mathrm{C}}_{\mathrm{CC}{1}_{\mathrm{m}}}={10}^{\left({\mathrm{K}}_{1}+{\mathrm{K}}_{2}\xb7\mathrm{log}({\mathrm{P}}_{\mathrm{cc}{1}_{\mathrm{m}}})+{\mathrm{K}}_{3}\xb7{\left[\mathrm{log}\left({\mathrm{P}}_{\mathrm{cc}{1}_{\mathrm{m}}}\right)\right]}^{2}\right)}\xb7{\mathrm{F}}_{\mathrm{p}}\xb7\frac{{\mathrm{PCI}}_{2020}}{{\mathrm{PCI}}_{\mathrm{ref}}}$$
 [42] 
Air Economizer (ECO1_{m}) 
$${\mathrm{C}}_{\mathrm{ECO}{1}_{\mathrm{m}}}(\$)={\mathrm{C}}_{\mathrm{HX},\mathrm{i}}^{\mathrm{o}}\xb7{\mathrm{F}}_{\mathrm{BM}}\xb7{\mathrm{F}}_{\mathrm{p}}\xb7{\mathrm{F}}_{\mathrm{s}}\xb7\frac{{\mathrm{PCI}}_{2020}}{{\mathrm{PCI}}_{\mathrm{ref}}}$$
$${\mathrm{log}}_{10}{\mathrm{C}}_{\mathrm{ECO}\_1\mathrm{m}}^{\mathrm{o}}={\mathrm{K}}_{1}+{\mathrm{K}}_{2}{\mathrm{log}}_{10}\left(\mathrm{A}\right)+{\mathrm{K}}_{3}{[{\mathrm{log}}_{10}\left(\mathrm{A}\right)]}^{2}$$
 [42] 
Heat exchanger (RGH, HX, OP1) 
$${\mathrm{C}}_{\mathrm{HX},\mathrm{i}}(\$)=\left({\mathrm{B}}_{1}+{\mathrm{B}}_{2}\xb7{\mathrm{F}}_{\mathrm{M}}\xb7{\mathrm{F}}_{\mathrm{p}}\right)\xb7{\mathrm{C}}_{\mathrm{HX},\mathrm{i}}^{\mathrm{o}}\xb7{\mathrm{F}}_{\mathrm{s}}\xb7\frac{{\mathrm{PCI}}_{2020}}{{\mathrm{PCI}}_{\mathrm{ref}}}$$
 [42,43] 
Impulse blower (BL) 
$${\mathrm{C}}_{\mathrm{blower},\text{}\mathrm{i}\text{}}(\$)=\left({\mathrm{C}}_{\mathrm{BL},\mathrm{i}}^{\mathrm{o}}\xb7{\mathrm{F}}_{\mathrm{BM}}\xb7{\mathrm{F}}_{\mathrm{s}}\right)\xb7\frac{{\mathrm{PCI}}_{2020}}{{\mathrm{PCI}}_{\mathrm{ref}}}$$
$${\mathrm{C}}_{\mathrm{BL},\mathrm{i}}^{\mathrm{o}}=\{\begin{array}{l}\frac{{\mathrm{M}}_{\mathrm{i}}}{100}\xb7{10}^{{\mathrm{R}}_{1}+{\mathrm{R}}_{2}{\mathrm{log}}_{10}\left(100\right)+{\mathrm{K}}_{3}{[{\mathrm{log}}_{10}\left(100\right)]}^{2}{\mathrm{if}\text{}\mathrm{M}}_{\mathrm{i}}\text{}\ge \text{}100\frac{{\text{}\mathrm{m}}^{3}}{\mathrm{s}}}\\ {10}^{{\mathrm{R}}_{1}+{\mathrm{R}}_{2}{\mathrm{log}}_{10}\left(100\right)+{\mathrm{K}}_{3}{[{\mathrm{log}}_{10}\left(100\right)]}^{2}{\mathrm{if}\text{}\mathrm{M}}_{\mathrm{i}}100\text{}\frac{{\mathrm{m}}^{3}}{\mathrm{s}}}\end{array}$$
 [28] 
Air vacuum pump (VP1_{m}) 
$${\mathrm{C}}_{\mathrm{VP}1\mathrm{m}}(\$)=4200\xb7{(60\xb7{\mathrm{m}}_{{\mathrm{O}}_{2}}\xb7\frac{{\mathrm{T}}_{\mathrm{in}}}{{\mathrm{P}}_{\mathrm{in}}})}^{0.55}\xb7\frac{{\mathrm{PCI}}_{2020}}{{\mathrm{PCI}}_{\mathrm{ref}}}$$
 [44] 
Multicompressor (MC1_{m}) 
$${\mathrm{C}}_{\mathrm{MC}{1}_{\mathrm{m}}}(\$)={(7900\xb7{\mathrm{HP}}_{\mathrm{ref}})}^{0.62}\xb7{(\frac{{\mathrm{HP}}_{\mathrm{base}}}{{\mathrm{HP}}_{\mathrm{ref}}})}^{\mathrm{sf}}\xb7\frac{{\mathrm{PCI}}_{2020}}{{\mathrm{PCI}}_{\mathrm{ref}}}$$
 [42] 
Air Turbine (TG_{m}) 
$${\mathrm{C}}_{\mathrm{TGm}}(\$)=\left(3644.3\xb7{\mathrm{P}}_{{\mathrm{TG}}_{\mathrm{m}}}^{0.7}61.3\xb7{\mathrm{P}}_{{\mathrm{TG}}_{\mathrm{m}}}^{0.95}\right)\xb7\frac{{\mathrm{PCI}}_{2020}}{{\mathrm{PCI}}_{\mathrm{ref}}}$$
 [45,46] 
 AC_{variable,ix} is the annual cost for each variable concept considered in each case.
 q_{variable,ix} is the makeup variable concept consumption rate considered in each case.
 C_{variable,ix} is the unit cost of each variable concept considered in each case.
 CF is the capacity factor (0.85).
 CO_{2} capture cost (C_{cap}) and CO_{2} avoidance cost (C_{av}): Key parameters were calculated with the following equations [49,50,51]:$${\mathrm{C}}_{\mathrm{cap}}[\$/\mathrm{ton}]=\frac{{(\mathrm{LCOE}}_{\mathrm{capture}}{\mathrm{LCOE}}_{\mathrm{no}\text{}\mathrm{capture}}\left)\text{}\right[\$/\mathrm{MWh}]}{\mathrm{CO}2\text{}\mathrm{captured}\text{}[\mathrm{tn}/\mathrm{MWh}]}$$
4. Results and Discussion
4.1. Process Performance Comparison
4.2. Economic Performance Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MC  Multicompressor system 
ASU  Air Separation Unit 
BL  Pressure mechanical devices 
BAT  Best Available Techniques 
CC  Combustor Chamber 
CCS  Carbon Capture and Storage 
CFB  Circulating Fluidized Bed boiler 
COP25  Conference of Parties held in Madrid 
DAC  Direct Annual Cost 
DeNO_{x}  Denitrification unit 
DeSO_{x}  Desulphuration unit 
DOE  United States Department of Energy 
ECO  Economizer (water preheater) 
FM  Fabric Filter 
GHG  Control of Greenhouse Gas 
HF  Hot Filter 
HP  Highpressure Turbines 
HX  Temperature exchange equipment 
IAC  Indirect Annual Cost 
IEA  International Energy Agency 
IP  Intermediate pressure Turbines 
IPPC  Intergovernmental Panel on Climate Change 
LCOE  Levelized Cost of Electricity 
LP  Lowpressure Turbines 
OTM  Oxygen Transport Membrane 
RH  Reheater 
SH  Superheater 
SPCCC  Specific Energy Consumption for CO_{2} captured 
SR  Oxygen separation ratio 
TCI  Total Capital Investment 
TPC  Total Production Cost 
TG  Turbine Gas 
VP  Vacuum Pump 
Symbols  
C_{Wagner}  Wagner conductivity constant, mol/cm·s·K 
d_{mem}  Membrane thickness, m 
J_{O2}  Oxygen permeation rate, mol/m^{2}·s 
F  Faraday’s constant, C/mol 
K_{Wagner}  Wagner temperature constant, K 
y_{O2}  oxygen molar fraction 
m  Molar flow, mol/s 
P  Total pressure, bar 
${\mathrm{P}}_{{\mathrm{O}}_{2}}$  Oxygen partial pressure, bar 
R  Ideal gas constant, J/mol·K 
T  Absolute temperature, K 
Greek symbols  
σ  conductivity, S/m^{2} 
${\mathsf{\pi}}_{\mathrm{Mem}}$  Oxygen partial pressure ratio of membrane, dimensionless 
Indices  
a  Air 
boiler  boiler 
el  Electronic 
i  Ionic 
f  Feed side 
memb  Membrane 
perm  Permeate side 
ret  Retentate side 
t  Theoretical 
References
 An Important Opportunity Lost as COP25 Ends in Compromise, but Guterres Declares “We Must Not Give Up”. UN News. Available online: https://news.un.org/en/story/2019/12/1053561 (accessed on 20 January 2021).
 Portillo, E.; Gallego Fernández, L.M.; Vega, F.; AlonsoFariñas, B.; Navarrete, B. Oxygen transport membrane unit applied to oxycombustion coal power plants: A thermodynamic assessment. J. Environ. Chem. Eng. 2021, 9, 105266. [Google Scholar] [CrossRef]
 Kotowicz, J.; Job, M.; Brzęczek, M. Thermodynamic analysis and optimization of an oxycombustion combined cycle power plant based on a membrane reactor equipped with a hightemperature ion transport membrane ITM. Energy 2020, 205, 117912. [Google Scholar] [CrossRef]
 Antonini, T.; Di Carlo, A.; Foscolo, P.U.; Gallucci, K.; Stendardo, S. Fluidized bed reactor assisted by Oxygen Transport Membranes: Numerical simulation and experimental hydrodynamic study. Chem. Eng. J. 2018, 377, 120323. [Google Scholar] [CrossRef]
 Portillo, E.; AlonsoFariñas, B.; Vega, F.; Cano, M.; Navarrete, B. Alternatives for oxygenselective membrane systems and their integration into the oxyfuel combustion process: A review. Sep. Purif. Technol. 2019, 229, 115708. [Google Scholar] [CrossRef]
 Tonziello, J.; Vellini, M. Oxygen production technologies for IGCC power plants with CO_{2} capture. Energy Procedia 2011, 4, 637–644. [Google Scholar] [CrossRef]
 Mancini, N.D. SystemsLevel Design of Ion Transport Membrane OxyCombustion Power Plants; MIT Library: Cambridge, MA, USA, 2011. [Google Scholar]
 Vu, T.T.; Lim, Y.I.; Song, D.; Mun, T.Y.; Moon, J.H.; Sun, D.; Hwang, Y.T.; Lee, J.G.; Park, Y.C. TechnoEconomic analysis of ultrasupercritical power plants using air and oxycombustion circulating fluidized bed with and without CO_{2} capture. Energy 2019, 194, 116855. [Google Scholar] [CrossRef]
 Maas, P.; Nauels, N.; Zhao, L.; Markewitz, P.; Scherer, V.; Modigell, M.; Stolten, D.; Hake, J.F. Energetic and economic evaluation of membranebased carbon capture routes for power plant processes. Int. J. Greenh. Gas Control 2016, 44, 124–139. [Google Scholar] [CrossRef]
 Castillo, R. Thermodynamic evaluation of membrane based oxyfuel power plants with 700 °C technology. Energy Procedia 2011, 4, 1026–1034. [Google Scholar] [CrossRef][Green Version]
 Stadler, H.; Beggel, F.; Habermehl, M.; Persigehl, B.; Kneer, R.; Modigell, M.; Jeschke, P. Oxyfuel coal combustion by efficient integration of oxygen transport membranes. Int. J. Greenh. Gas Control 2011, 5, 7–15. [Google Scholar] [CrossRef]
 Castillo, R. Thermodynamic analysis of a hard coal oxyfuel power plant with high temperature threeend membrane for air separation. Appl. Energy 2011, 88, 1480–1493. [Google Scholar] [CrossRef]
 Cai, L.; Zhang, Y.; Gao, S.; Xiao, X.; Zhang, J.; Xu, G.; Cui, L. Process simulation of a lignitefired circulating fluidized bed boiler integrated with a dryer and a pyrolyzer. Energy Sources Part A Recover. Util. Environ. Eff. 2016, 38, 190–201. [Google Scholar] [CrossRef]
 Ganesan, T.; Lingappan, S. A Survey on Circulating Fluidized Bed Combustion Boilers. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2013, 2, 4032–4042. [Google Scholar]
 Vente van, J.F.; Haije, W.G.; IJpelaan, R.; Rusting, F.T. On the fullscale module design of an air separation unit using mixed ionic electronic conducting membranes. J. Memb. Sci. 2006, 278, 66–71. [Google Scholar] [CrossRef]
 Balicki, A.; Bartela, Ł. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxycombustion technology. Arch. Thermodyn. 2014, 35, 51–63. [Google Scholar] [CrossRef]
 Engels, S.; Beggel, F.; Modigell, M.; Stadler, H. Simulation of a membrane unit for oxyfuel power plants under consideration of realistic BSCF membrane properties. J. Membr. Sci. 2010, 359, 93–101. [Google Scholar] [CrossRef]
 Médecine, F.D.E.; Et, P.; Curie, M.; Vi, P. Sun. Conference Proceeding: Coal Conversion and Utilization for Reducing CO_{2} Emission. 2011; p. 2150. [Google Scholar]
 Bose, A.C. Inorganic membranes for energy and environmental applications. In Inorganic Membranes for Energy and Environmental Applications; Springer Science + Business Media: Berlin/Heidelberg, Germany, 2009; pp. 1–319. [Google Scholar]
 Donkelaar, S.F.P.T.E. Development of Stable Oxygen Transport Membranes; University of Twente: Enschede, The Netherlands, 2015. [Google Scholar]
 Hunt, A. Experimental Investigations of OxygenSeparating Ion Transport Membranes for Clean Fuel Synthesis; Massachusetts Institute of Technology: Cambridge, MA, USA, 2015. [Google Scholar]
 Vente, J.F. The design of a full scale membrane module for the production of oxygen. Book Inorganic Membranes for Energy and Environmental Applications. In Chemistry of Materials; Bose, A.C., Ed.; U.S. Department of Energy National Energy Technology Laboratory: Pittsburgh, PA, USA, 2009; Chapter 2; pp. 1–26. [Google Scholar] [CrossRef]
 Sanusi, Y.S.; Mokheimer, E.M. ThermoEconomic optimization of hydrogen production in a membraneSMR integrated to ITMoxycombustion plant using genetic algorithm. Appl. Energy 2018, 235, 164–176. [Google Scholar] [CrossRef]
 Mancini, N.D. Mitsos a. Conceptual design and analysis of ITM oxycombustion power cycles. Phys. Chem. Chem. Phys. 2011, 13, 21351. [Google Scholar] [CrossRef]
 Haslbeck, J. Pulverized Coal Oxycombustion Power Plants. In Bituminous Coal to Electricity [Internet]; Volume 1; 2008. Available online: www.netl.doe.gov (accessed on 30 October 2022).
 Fan, S.Z.; Goidich, A.; Robertson, S.W. UltrSupercritical Pressure CFB Boiler Conceptual Design Study; Foster Wheeler Development: Atlanta, GA, USA, 2006. [Google Scholar] [CrossRef][Green Version]
 Abbott, D.C.D.J.H. Particulate Control Highlights: Research at High Temperature/Pressure; EPA600/879031b; United State Environmental Protection Agency: Washington, DC, USA, 1979.
 Agency, E.P. Air Pollution Control Cost Manual, 6th ed.; Environmental Protection Agency (EPA): Washington, DC, USA, 2002.
 Lupion, M.; Alvarez, I.; Otero, P.; Kuivalainen, R.; Lantto, J.; Hotta, A.; Hack, H. 30 MWth CIUDEN Oxycfb Boiler—First Experiences. Energy Procedia 2013, 37, 6179–6188. [Google Scholar] [CrossRef][Green Version]
 Mussatti, D.C. Sección 4 Controles de NO x [Internet]. 2000. Available online: https://www3.epa.gov/ttncatc1/dir2/cs42ch2s.pdf (accessed on 30 October 2022).
 Rubin, E.S.; Rao, A.B.; Berkenpas, M.B. Technical Documentation: Oxygenbased Combustion Systems (Oxyfuels) with Carbon Capture and Storage (CCS). Carnegie Mellon University Research Showcase @ CMU, 2007. Available online: http://repository.cmu.edu/cgi/viewcontent.cgi?article=1074&context=epp (accessed on 30 October 2022).
 Gerdes, K. Current and Future Technologies for Gasification Based Power Generation; Report: Volume 2.: A Pathway Study Focused on Carbon Capture Advanced Power Systems R&D Using Bituminous Coal; DOE/NETL2009/1389; US Department of Energy: Washington, DC, USA, 2010.
 Matuszewski, M. Cost and Performance for LowRank Pulverized Coal Oxycombustion Energy Plants. 2010. Available online: http://hub.globalccsinstitute.com/sites/default/files/publications/119786/costperformancelowrankpulverizedcoaloxycombustionenergyplants.pdf (accessed on 30 October 2022).
 Guo, Z.; Wang, Q.; Fang, M.; Luo, Z.; Cen, K. Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant. Appl. Energy 2014, 113, 1301–1314. [Google Scholar] [CrossRef]
 Vega, F.; BaenaMoreno, F.M.; Gallego Fernández, L.M.; Portillo, E.; Navarrete, B.; Zhang, Z. Current status of CO_{2} chemical absorption research applied to CCS: Towards full deployment at industrial scale. Appl Energy 2020, 260, 114313. [Google Scholar] [CrossRef]
 Tan, X. Supercritical and Ultrasupercritical CoalFired Power Generation. Business and Public Administration Studies. 2012, Volume 7, p. 53. Available online: https://www.bpastudies.org/bpastudies/article/view/170/318 (accessed on 30 October 2022).
 Bolea, I.; OrdoricaGarcia, G.; Nikoo, M.; Carbo, M. TechnoEconomics of CCS in Oil Sands Thermal Bitumen Extraction: Comparison of CO_{2} Capture Integration Options. Energy Procedia 2013, 37, 2754–2764. [Google Scholar] [CrossRef][Green Version]
 Chiesa, P.; Romano, M.C.; Furesi, F.; Tagliapietra, D. Integration of OTM in an oxyfuel circulating fluidized bed boiler coal plant. In Inorganic Membranes for Green Chemical Production and Clean Power Generation, Proceedings of the Inorganic Membranes for Green Chemical Production and Clean Power Generation Summer, Valencia, Spain, 4–6 September 2013; Editorial Universitat Politècnica de València: València, Spain, 2013; pp. 1–21. [Google Scholar]
 Christie, M.; Victor, R.; Li, J.; Van Hassel, B. Advanced Oxyfuel Boilers and Process Heaters for Cost Effective CO_{2} Capture and Sequestration. In Doe Award No DeFc2601Nt41147; 2007; pp. 1–62. Available online: http://www.osti.gov/bridge/product.biblio.jsp?osti_id=892744 (accessed on 30 October 2022).
 Mussatti, D.C.; Ravi, S.; Hemmer, P.M. Section 4 NO x Controls NO x Post Combustion. EPA Polution Control. Cost Man; EPA/452/B02001. Available online: https://www3.epa.gov/ttncatc1/dir1/cs42ch2.pdf (accessed on 30 October 2022).
 Phillip, A.; Armstrong, P.D. Development of ITM Oxygen Technology for LowCost and Applications for the Period; Topical Report; Air Products and Chemicals, Inc.: Allentown, PA, USA, 2014. [Google Scholar] [CrossRef]
 Viguri. Chemical Process Design. Topic 6.3. Economic Indicators; Department of Chemistry and Process & Resource Engineering GER Green Engineering and Resources Research Group. Universidad de Cantabria España, 2010; pp. 1–16. Available online: https://ocw.unican.es/pluginfile.php/2724/course/section/2514/topic_6.3.pdf (accessed on 30 October 2022).
 Atrens, A.D.; Gurgenci, H.; Rudolph, V. Economic Optimization of a CO_{2}Based EGS Power Plant. Energy Fuels 2011, 25, 3765–3775. [Google Scholar] [CrossRef]
 Suggala, S.V.; Bhattacharya, P.K. Real coded genetic algorithm for optimization of pervaporation process parameters for removal of volatile organics from water. Ind. Eng. Chem. Res. 2003, 42, 3118–3128. [Google Scholar] [CrossRef]
 Xiong, J.; Zhao, H.; Zhang, C.; Zheng, C.; Luh, P.B. Thermoeconomic operation optimization of a coalfired power plant. Energy 2012, 42, 486–496. [Google Scholar] [CrossRef]
 Xiong, J.; Zhao, H.; Zheng, C. Thermoeconomic cost analysis of a 600MWe oxycombustion pulverizedcoalfired power plant. Int. J. Greenh. Gas Control 2012, 9, 469–483. [Google Scholar] [CrossRef]
 Huang, Y.; Wang, M.; Stephenson, P.; Rezvani, S.; McIlveenWright, D.; Minchener, A.; Hewitt, N.; Dave, A.; Fleche, A. Hybrid coalfired power plants with CO_{2} capture: A technical and economic evaluation based on computational simulations. Fuel 2012, 101, 244–253. [Google Scholar] [CrossRef]
 Veatch, B. Final StartUp Modifications Report for the JEA LargeScale CFB Combustion Demonstration Project, Combustion. 2004.
 Cormos, A.M.; Cormos, C.C. TechnoEconomic evaluations of postcombustion CO_{2} capture from sub and supercritical circulated fluidised bed combustion (CFBC) power plants. Appl. Therm. Eng. 2017, 127, 106–115. [Google Scholar] [CrossRef]
 Berghout, N.; Broek, M.V.D.; Faaij, A. Technoeconomic performance and challenges of applying CO_{2} capture in the industry: A case study of five industrial plants. Int. J. Greenh. Gas Control 2013, 17, 259–279. [Google Scholar] [CrossRef]
 Hashim, S.; Mohamed, A.R.; Bhatia, S. Oxygen separation from air using ceramicbased membrane technology for sustainable fuel production and power generation. Renew. Sustain. Energy Rev. 2011, 15, 1284–1293. [Google Scholar] [CrossRef]
 Rubin, E.S. Understanding the pitfalls of CCS cost estimates. Int. J. Greenh. Gas Control 2012, 10, 181–190. [Google Scholar] [CrossRef]
 Hanak, D.P.; Powell, D.; Manovic, V. TechnoEconomic analysis of oxycombustion coalfired power plant with cryogenic oxygen storage. Appl. Energy 2017, 191, 193–203. [Google Scholar] [CrossRef][Green Version]
 Wei, X.; Manovic, V.; Hanak, D.P. TechnoEconomic assessment of coal or biomassfired oxycombustion power plants with supercritical carbon dioxide cycle. Energy Convers. Manag. 2020, 221, 113143. [Google Scholar] [CrossRef]
 Asif, M.; Gao, X.; Lv, H.; Xi, X.; Dong, P. Catalytic hydrogenation of CO_{2} from 600 MW supercritical coal power plant to produce methanol: A technoeconomic analysis. Int. J. Hydrogen Energy 2018, 43, 2726–2741. [Google Scholar] [CrossRef]
 Seltzer, A.; Wheeler, F.; Group, P. Economic Analysis for Conceptual Design of OxygenBased PC Boiler; Foster Wheeler Power Group, Inc.: Livingston, NJ, USA, 2005. [Google Scholar]
 Chiesa, P.; Consonni, S.; Napoletano, S.; Romano, M. Descarbonized Electricity Production from Coal by Means of Oxygen Transport Membranes. In Proceedings of the Fourth Annual Conference on Carbon Capture and Sequestration, Washington, DC, USA, 2–5 May 2005. [Google Scholar]
Cases  Characteristic  

Boiler  Combustion Type  Treatment Gases  Characteristic ITM Unit  
DeSO_{x}  DeNO_{x}  Filtration System  * Driving Force  ** Heating System  *** Location into OxyCombustion  
Reference  CFB  Conventional  Into boiler  SCR  FM       
1  CFB  Cryogenic oxygenfired  Into boiler  SCR  FM      DTG 
2  CFB  Membranebased oxygenfired  Into boiler  SCR  FM  3end mode  Combustor with natural gas  DTG 
3  CFB  Membranebased oxygenfired  Into boiler  SCR  FM  3end mode  Heat exchange with steam cycle from the oxyfuel process  DTG 
4  CFB  Membranebased oxygenfired  Into boiler  SCR  FM  4end mode  Combustor with natural gas  DTG 
5  CFB  Membranebased oxygenfired  Into boiler  SCR  HF  4end mode  Heat exchange with flue gas from the oxyfuel process  DHF 
Case  OTM Unit  
${\mathsf{\pi}}_{\mathbf{Mem}}$  SR  Feed Side (Temperature, Pressure)  Retentate Side (Temperature Conditions, ΔP)  
2  3  70%  850 °C, 15 bar  Isotherm conditions, 0.05 bar  
3  3  70%  850 °C, 15 bar  Isotherm conditions, 0.05 bar  
4  10.5  70%  m_{feed} = 3.6·m_{FG} (kg/s), T_{feed} = T_{FG} + 200 °C, 15 bar  Isotherm conditions, 0.23 bar  
5  10.5  70%  m_{feed}=1.3·m_{FG} (kg/s), T_{feed} = T_{FG} − 100 °C, 15 bar  Isotherm conditions, 0.23 bar  
Case  Multicompressor (MC1_{m})  
Outlet pressure  Stages numbers  Isentropic efficiency  Mechanical efficiency  Refrigeration system  
2  15 ÷ 15.5 bar  2  82%  90%  40%·W_{compressor}  
3  40%·W_{compressor}  
4  40%·W_{compressor}  
5  30%·W_{compressor}  
Case  Air Turbine (TG_{m})  Pressure mechanical devices (BL1_{m})  
Outlet pressure  Isentropic efficiency  Mechanical efficiency  Outlet pressure  Isentropic efficiency  Mechanical efficiency  
2  1 bar  85%  98%  1.12 bar  85%  90% 
3  
4  
5  
Case  HX1_{m}  HX2_{m}  HX3_{m}  
ΔP  Cold stream outlet temperature  ΔP  Cold stream outlet temperature  ΔP  Hot stream outlet temperature  
2  3%·inlet pressure (bar)  600 °C  3% inlet pressure (bar)  88 °C  3% inlet pressure (bar)  20 °C 
3  660 °C  88 °C  
4  600 °C  575 °C  
5  725 °C    
Combustor Chamber (CC1_{m})  OP  Air Economizer (ECO1_{m})  
Case  Outlet temperature  Loss power  ΔP  Cold stream outlet temperature  Hot stream outlet temperature  
2  850 °C  10%·Q_{inlet} KW  3%·inlet pressure (bar)  350 °C  320 °C  
3      
4  850 °C  10%·Q_{inlet} KW      
5      3% inlet pressure (bar)  350 °C 
Main Plant Data  Reference Case  Case 1  Case 2  Case 3  Case 4  Case 5 

Coal flowrate (kg/s)  105.5  105.5  105.5  105.5  105.5  105.5 
Coal lower heating value (MJ/kg)  20.45  20.45  20.45  20.45  20.45  20.45 
Gross power output (MW_{el,gross})  863  863  863  863  863  863 
Gross power efficiency (%)  38.4  38.4  38.4  38.4  38.4  38.4 
Combustion area & Steam cycle (MW_{el})  36.524  25.574  23.419  23.149  23.435  22.733 
Particles unit control (MW_{el})  0.937  1.087  1.087  1.087  0.798  5.611 
DeNOx (MW_{e})  2.296  2.021  2.021  2.027  2.084  2.020 
Cryogenic ASU load (MW_{el})    174.372         
OTM unit (MW_{e})      172.195  193.420  172.885  61.764 
Total equipment load (MW_{el})  39.757  203.054  198.722  219.683  199.202  92.128 
Net power output (MW_{el,net})  823.493  660.196  664.528  643.567  664.048  771.122 
Net efficiency (%)  38.2  30.6  30.8  29.8  30.8  35.7 
Efficiency drop (%points)    7.57  7.37  8.34  7.39  2.43 
Carbon capture rate (%)  100  89.8  100  93.5  100  
CO_{2} capture rate (kg/s)  0  208.5  209.0  209.0  211.2  211.3 
SPCCC (kW_{el,net} h/kg CO_{2} captured)    0.88  0.88  0.86  0.87  1.01 
CO_{2} specific avoided emissions (kg CO_{2}/MW_{el,net} h)    916.61  788.21  916.61  836.77  916.61 
Membrane area (m^{2})      413,000  409,000  562,000  530,000 
J_{O2} permeation rate (10^{−6} mol/cm^{2}·s)      1.32  1.33  1.02  1.19 
Specific membrane area (m^{2}/kW_{el,net})      0.62  0.64  0.85  0.69 
Economic Values  Reference Case  Case 1  Case 2  Case 3  Case 4  Case 5 

Total Capital Investment (TCI)_M$_2020  1250  2018  1955  1708  1845  1944 
Specific capital cost ($/kW_{el,net})  1523  3056  2942  2654  2779  2520 
Annualized Total Capital Investment (TCIa)_M$_2020/y  118  190  185  161  174  183 
Direct Annual Costs (DAC)_M$ 2020/y  134  140  141  140  140  146 
Indirect Annual Costs (IAC)_M$ 2020/y  15  16  16  16  16  16 
LCOE ($_2020/MWh)  44  71  70  67  68  61 
C_{cap} ($2020/t)    23.10  21.98  18.73  19.79  16.57 
C_{av} ($2020/t)    30.21  29.56  25.13  26.29  18.55 
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portillo, E.; Gallego Fernández, L.M.; Cano, M.; AlonsoFariñas, B.; Navarrete, B. TechnoEconomic Comparison of Integration Options for an Oxygen Transport Membrane Unit into a Coal OxyFired Circulating Fluidized Bed Power Plant. Membranes 2022, 12, 1224. https://doi.org/10.3390/membranes12121224
Portillo E, Gallego Fernández LM, Cano M, AlonsoFariñas B, Navarrete B. TechnoEconomic Comparison of Integration Options for an Oxygen Transport Membrane Unit into a Coal OxyFired Circulating Fluidized Bed Power Plant. Membranes. 2022; 12(12):1224. https://doi.org/10.3390/membranes12121224
Chicago/Turabian StylePortillo, E., Luz M. Gallego Fernández, M. Cano, B. AlonsoFariñas, and B. Navarrete. 2022. "TechnoEconomic Comparison of Integration Options for an Oxygen Transport Membrane Unit into a Coal OxyFired Circulating Fluidized Bed Power Plant" Membranes 12, no. 12: 1224. https://doi.org/10.3390/membranes12121224