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Abstract: We report on a direct correlation between the macroscale structural variations and the gas
sorption capacities of an ion gel. Here, we chose 1-ethyl-3-methylimidazolium bis(trifluoromethyl
sulfonyl)imide ([Emim][TF2N]) and poly(vinylidene fluoride)-co-hexafluoropropylene (PVDF-HFP)
as the ionic liquid and host polymer, respectively. The CO2 sorption in the thin films of the IL-polymer
was measured using the gravimetric method. The results of our experiment showed that the trend in
CO2 uptake of these mixtures was nonlinearly correlated with the content of IL. Here, we highlight
that the variations in the molecular structure of the polymers were the main reason behind the
observed trend. The presented data suggested the possibility of using the composition of mixtures
containing IL and polymers to realize a synergistic gain for gas sorption in these mixtures.
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1. Introduction

Macromolecules and their mixtures are essential for the development of media used
in membrane-based separation. Among various polymer mixtures, those containing ionic
liquids (IL) present an interesting class of materials with many applications [1]. Over
the past two decades, many studies have been devoted to investigating the properties of
these mixtures [2–4]. Because IL are widely explored as reversible CO2 absorbents and
their mixtures have been considered selective solvents for CO2 sorption [5,6], polymeric
membranes containing IL gained substantial attention [7]. In the simplest form, mixing IL
with polymers and casting films from these mixtures led to the development of membranes
that are referred to as supported ionic liquid membranes (SILMs) [8,9].

The use of IL within polymeric domains was first explored for developing ionogels [10]
and later in SILM systems [11]. Using PVDF-based SILM for CO2 separation, it was
observed that the solubility of CO2 in SILM could be improved twofold when compared
with that of IL [12]. When confining IL in a lyotropic liquid crystal, a similar observation
was made [13]. The above observations pointed to the possibility of tuning gas sorption
capacities in IL phases by mixing IL with complex fluids. Classical theory suggests that
preparing such mixtures can lead to a reduction in the cohesive forces of the IL phase and in
the energy required to form a cavity for the guest gas molecules [14]. Additionally, ordering
the IL close to a solid wall is frequently reported and is thought to be the explanation for
the enhanced solubility of gas in IL in confinement [15–20].

Herein, we report on the significance of the composition of a well-known poly-
mer gel composed of poly (vinylidene fluoride-co-hexafluoropropylene) and 1-ethyl-3-
methylimidazolium bis(trifluoromethyl sulfonyl)imide on its CO2 sorption capacities. We
note that the swelling of polymers and configuration changes that led to the structural
variation in polymers were responsible for the observation of a 1.5-fold enhancement in
the CO2 sorption in these mixtures. By controlling the composition of the mixture, we
demonstrated a clear macrostructure-to-function relationship for CO2 solubility in these
mixtures. Utilizing carbon-based additives as nucleating agents, we further explored the
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role of crystallinity and structure of the samples in CO2 sorption. The results suggested
that the suppression of the β-phase in the polymer had a pronounced effect on the CO2
sorption capacity of the samples.

2. Materials and Experiments
2.1. Materials

The imidazolium-based ionic liquids (1-ethyl-3-methylimidazolium bis(trifluoromethyl
sulfonyl)imide ([Emim][TF2N]) with a purity of ≥98% and poly(vinylidene fluoride-co-
hexafluoropropylene) (PVDF-HFP)) with an MW of ~400,000 g/mol and triethyl phosphate
(TEP) with a purity of ≥99% were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Graphene nanoplatelets (GNPs; Grade 4, purity > 99%, average platelet size > 2 µm, average
thickness ~8–15 nm, surface area ~500–700 m2/g, CAS Number #7782-42-5) were purchased
from Cheap Tubes Inc (Grafton, VT, USA). A carbon dioxide gas tank (CO2, Coleman
Instrument grade, purity > 99.99%) was acquired from Matheson Tri-Gas, Inc (Lincoln, NE,
USA). The polished 6 MHz Gold AT quartz crystals (QCs) were purchased from Phillips Tech
(Greenville, NC, USA). The quartz crystal microbalance (QCM) sensor (Phoenix Temperature
Monitoring Sensor System with an Eon-LT Monitor) was purchased from Colnatec Inc.
(Gilbert, AZ, USA). The silicon wafer (type P, boron dopant (B), resistivity ~0.005–0.02,
thickness ~500 µm, virgin test grade, orientation of <100>, diameter of 5.08 cm, single-side
polished) was purchased from the University Wafer (South Boston, MA, USA).

2.2. Sample Preparation

Mixtures of polymers and ionic liquids with different compositions were prepared for
the study of CO2 sorption. First, a mixture of 10 wt % PVDF-HFP in TEP was prepared.
The mixture was heated to 100 ◦C and stirred at 400 rpm for 24 h. Then, the solution was
cooled to room temperature. The polymeric mixtures of PVDF-HFP with 10, 30, 40, 45, 50,
and 55 wt % of [Emim][TF2N] were prepared by adding a stock solution to the 6-dram
capped glass vials (VWR, Radnor, PA, USA, Borosilicate Glass Vials). Then, the mixture
was weighed on an analytical balance (Sartorius, Bohemia, NY, USA, MSA225P100DI Cubis
Analytical Balance) and a known amount of IL was added to each solution to obtain the
desired composition. All mixtures were stirred and heated at 310 rpm and 95 ◦C on a
hotplate (Heidolph Inc., Wood Dale, IL USA) for 24 h before they were further used in an
experiment. The three main mixtures used for the sorption study contained 10, 30, and
50 wt % of IL in the mixture, from which the mixture of 50 wt % was chosen to investigate
the effect of graphene nanoplatelets (GNPs). The mixtures containing 10, 30, 40, 45, 50,
and 55 wt % of IL were used to establish a calibration line for the composition. For a
mixture of PVDF-HFP/ionic liquids/graphene nanoplatelets, the polymeric mixture of
PVDF-HFP/GNP was first prepared. Briefly, different amounts of GNPs were weighed and
transferred to the vials, then polymer solutions with known compositions were added. The
mixtures were stirred and heated for 24 h at 310 rpm and 95 ◦C, respectively. In the second
step, to reach a target composition of 50 wt % of IL, a known amount of IL was added to
the vial. The mixtures were additionally stirred and heated for 24 h at 310 rpm and 95 ◦C,
respectively.

For the thin-film preparation, the solutions were heated and stirred at 95 ◦C and
310 rpm, respectively, for 24 h. Spin casting of solutions was performed on various
substrates such as silicon wafers, QCM substrates, and microscope glass slides; the details
of the spin-coating conditions are given in Section S1.3 of the Supplementary Materials.
Specifically, silicon wafer substrates were used for the polarized microscope and growth rate
measurements, QCM substrates were used for the CO2 capture, and glass slide substrates
were used for the Fourier-transform infrared spectroscopy (FTIR) measurement. The
substrate was first heated at 60 ◦C for half an hour and then left for 71.5 h at 110 ◦C.

Similar to the thin-film preparation, to prepare thick films, all solutions were heated
and mixed at 95 ◦C and 310 rpm, respectively, for 24 h. Solutions were then poured
directly into aluminum-based casting wells with a 1 cm diameter and a 1.5 mm depth. The
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following steps were taken to cast the films: the cast polymer was transferred to a heating
vacuum oven preset at 60 ◦C; then, the oven temperature was ramped to 90 ◦C at a ramp
rate of 1.3 ◦C/min and the wells were left in the oven for two hours and 30 min. Then, the
oven temperature was increased to 150 ◦C at a ramp rate of 1.4 ◦C/min and the samples
were heated for 24 h to remove the residual TEP. At this point, the oven temperature was
decreased to 110 ◦C. It was evacuated using a rotary vane pump and then the drying
process continued for another 72 h. The samples were kept in the vacuum oven until they
were used for measurement. The thick films were prepared for the X-ray diffraction (XRD)
measurement.

2.3. Characterizations

The macroscale structural variations in the films were evaluated by observing the sam-
ples under an Olympus BX51 polarizing microscope equipped with a Mettler Toledo FP900
thermal system with a temperature range of room temperature to 375 ◦C. Additionally, the
films’ topography was evaluated using atomic force microscopy (AFM). The AFM was
performed using a Bruker Dimension Icon AFM (Billerica, MA, USA) in tapping mode
with a range of 15 µm. The Bruker Dimension Icon AFM was operated under ambient con-
ditions using a commercial silicon microcantilever tip on a nitride lever in ScanAsyst-Air
mode. Both height and in-phase images were obtained using a scan rate of 0.988 Hz and
512 samples/line. The degree of crystallinity of the films was evaluated by using the X-ray
diffraction (XRD) method. The XRD measurements were performed on Rigaku SmartLab
(Rigaku Co., Tokyo, Japan).

The measurement of CO2 absorption was conducted by using both dynamic and static
methods. The dynamic method was adopted from a previous report [21]. A high-pressure
chamber equipped with a quartz crystal microbalance (QCM) was used to measure the
gas sorption within the film using the gravimetric. The static method was a variation
of the pressure drop approach [22,23]. Because obtaining reliable data for IL via the
dynamic approach was challenging, we only relied on the results from the static method
and compared those results against the reported data in the literature [24].

Before each experiment, the QCM’s placeholder was cleaned with acetone and purged
with nitrogen gas to remove solvent residues. The test samples that were spin-coated on the
QCM were weighed on an analytical balance (Sartorius, Bohemia, NY, USA, MSA225P100DI
Cubis Analytical Balance), and its weight was recorded with two digits past decimal
point. Then the samples were loaded into the QCM placeholder. Initially, the system was
evacuated using a rotary vane pump and the chiller’s temperature was set. When the
frequency of the coated film on the QCM was stabilized (~3.5 h in continuous vacuum),
the frequency and temperature of the module were logged via Eon-LT software. The
pressure of chamber was also recorded in LabVIEW. Then, the pressure was set on the
pressure regulator and CO2 was introduced into the system. The ranges for pressure
and temperature set points were between 50 and 250 psi and 10 and 40 ◦C, respectively.
For a desorption, the QCM sensor was heated at 60 ◦C for 20 min while the system was
continuously evacuated.

3. Results and Discussion

The CO2 absorption capacities of the polymer–IL films were measured; the data are
presented in Figure 1A–C. The average values for the CO2 uptake slightly decreased as
we increased the IL content of the mixture; however, this trend was reversed when the
IL content was above 30%. In this range, the increase in CO2 uptake was nonlinearly
correlated with the IL content. For example, for a mixture of 50 wt % IL in the polymer
at 200 psi and 10 ◦C, the specific molar sorption was 1.18 ± 0.06 mol/kg while the molar
sorption for the polymers and IL were 0.6 ± 0.08 and 1.28 ± 0.08 mol/kg, respectively.
When further examining the data, we noted that the measured values for CO2 sorption
in the polymer samples had a large uncertainty when compared with the CO2 sorption
values for the samples containing IL. Given that the PVDF-HFP was a semicrystalline
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polymer, we attributed the standard deviation in the CO2 sorption in the polymer to the
polymorphism of the samples [25]. In the samples that contained [Emim][TF2N], which
is a known plasticizer of PVDF-HFP, this variability was not pronounced. This minor
variability was attributed to the role of IL in suppressing film crystallinity. It was also
reported that the addition of salts to PVDF-HFP favored the formation of one polymorph
over the others, which loosely translated into having a more homogenous film compared
to the neat polymer.
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Figure 1. The effect of adding IL on the equilibrium absorption capacity of PVDF-HFP:IL mixtures at
three different pressures of (A) 100, (B) 150, and (C) 200 psi. Each data point is the average of four
measurements presented with one standard deviation. (D) Polarized microscopy images showing
the spherulites grown from different mixtures with various IL content. A scale bar is applicable to
all subfigures.

To gain further insight into the effects of the composition of a mixture on the film
structure, we conducted optical microscopy. PVDF-HFP is well known for demonstrating
birefringence under polarized light [26]; therefore, we used a polarized microscope for
this purpose. Figure 1D presents the morphology of polymeric films as a function of their
compositions. As shown, a birefringence of PVDF-HFP appeared as the weakest compared
to other samples. As the content of IL in the film was increased, a stronger birefringence
was apparent and the spherulitic domains became more discernible. This change matched
the data reported in the literature and was attributed to the preferential assembly of the
polymer lamellae into the edge-on configuration [27,28]. Additionally, in Figure 1D shows
that with an increase in the concentration of the IL in the film, the spherulites became larger
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in size. Here, IL molecules swelled polymers and altered the polymer structures. Thus,
larger spherulites were observed.

To further probe the film structure at the submicron level, we conducted atomic force
microscopy (AFM) experiments; these data are presented in Figure 2 and the details of the
sample preparation are described in Section S3.1.2 of the Supplementary Materials. As
shown in Figure 2A, the morphology of the PVDF-HFP consisted of dendrites composed
of small short multibranched structures, which are typically associated with flat-on lamel-
lae [29]. The lamellae originated from spherulite centers and aggregated into small fibrils in
dense clusters. When the IL content was increased to 10 wt % (Figure 2B), the dendrite-like
patterns were replaced by refined and tiny fibrils. The fibrils grew parallel to each other
and formed a stack of fibrils near the nuclei center. To better visualize this variation, the
in-phase images are presented in Figure S7 of the Supplementary Materials. By increasing
the IL content above 30%, the tiny fibrils from the spherulites’ center became omnipresent
(see Figure S7). These results suggested that the addition of IL favored the formation of
edge-on oriented lamellae [28,30], which led to a transition in the polymer’s structure that
explained the changes in the birefringence and swelling, as shown in the optical images
presented in Figure 1D.
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Motivated by the previous works on the effect of the inclusion of carbon allotropes
within IL and polymer phases [31,32], we used graphene nanoplatelets (GNPs) as an
additive to our mixtures and probed the variations in CO2 uptake and the film structures.
For the control experiment, we chose 50 wt % IL in the polymer and to this mixture added
a small amount of GNPs ranging between 0.1 and 0.4 wt %. Figure 3A shows the CO2
absorption capacity for the different mixtures. For pressures of 100 and 200 psi, we observed
a monotonic decline in the absorption capacity of the mixtures as a function of their GNP
content, suggesting that CO2 interaction with the film was weakened as the GNP content
was increased. As with the polymer–IL mixtures, we evaluated the morphology of the films
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under a polarized microscope to elucidate the effect of GNP content. Figure 3B(i–iv) present
polarized images of samples prepared with different amounts of GNPs ranging from 0 to
0.4 wt %. The figure shows that when GNPs were added to the polymeric mixtures, the
density and size of the spherulitic domains is changed. This observation matched the one
reported in the literature [33].
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) 100 psi. (B) Structural
variation observed under polarized microscopy. Here, the concentrations of GNPs were: (i) 0, (ii) 0.1,
(iii) 0.2, and (iv) 0.4 wt %. The control sample was a mixture of 50 wt % PVDF-HFP:IL to which
various amounts of GNPs, as noted, were added. The error bar in Figure A represents the average
values of CO2 uptake for five different samples presented with one standard deviation. A scale is
applicable to all panels of Figure 3B.

To establish a relationship between the structures and CO2 absorption capacities of
the polymeric films, we studied the thin films’ structures and properties using different
characterization methods. We first examined the growth rate and average size of the
spherulites grown from different mixtures. The spherulite growth rate was obtained from
the slope of the plots of radii of spherulites as a function of time, which is illustrated in
Figure 4A. The size of the spherulitic domains, as shown in Figure 4B, was determined
using the polarized optical images shown in Figures 1D and 3B–E; more details on the
experimental preparations and calculations are available in Section S3.2 of the Supplemen-
tary Materials. As shown in Figure 4A, we observed that the content of IL and GNP in the
mixtures governed the growth rate and size of the spherulites. When the concentration
of IL was increased to 30 wt %, the nucleation of the spherulites was delayed; increasing
the IL content further to 50 wt % shifted the onset time of the growth backward. We at-
tributed this change to the plasticization effect of IL; the addition of IL beyond the swelling
capacity of polymer [34,35] enhanced the mobility of the PVDF-HFP chain while the latter
led to an enhanced nucleation rate for the spherulites [36]. In contrast, the growth rates
were depreciated.
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Concurrent with these changes, as shown in Figure 4A, we noted that the slower
growth kinetics of the polymer in mixtures containing only the polymer and an IL led to
the formation of larger spherulites. Figures 4B and 1D clearly demonstrate these changes.
A reduction in the growth rate is often associated with the thermal mobility of chains,
resulting in a longer time for the chains to fold into lamellae. This phenomenon facilitates
branching and reduces the macroscopic growth rates [37]. Our calorimetry data, which are
presented in Section S3.5 of Supplementary Materials, supported this point. In contrast to
the polymer–IL mixtures, for the GNP-containing mixtures, a reduction in the spherulite
growth rate as a function of the GNP content was attributed to the existence of GNPs
and their agglomerates within the polymers, which restrained the mobility of the polymer
chains. This trend has been reported for other nanocomposites [38]. When GNPs were
introduced to the mixtures, the required activation energy for the chains to pack from the
surface significantly increased [39]. The interaction between the partial positive charge
on the C-H bonds of the PVDF-HFP and the negative charge on the surface of the GNPs
created a higher free-energy barrier for nucleation, which slowed the crystallization kinetics
of the polymer chains [40]. However, when the GNP content was increased, the increase
in the nucleation density led to the indiscriminate growth of lamellae. As a result, we
observed a larger number of spherulites with smaller sizes. This behavior was in line with
a previous observation [41].

To gain more information on the films’ compositions, we analyzed the films using
Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Figure 5A
presents a comparison of the IR spectra of the polymeric films. The assignment of the
vibrational bands is presented in Section S3.3 of the Supplementary Materials. The charac-
teristic band at the wavenumbers of 612 and 875 cm−1 were assigned to the α-phase and
β-phase of the PVDF-HFP, respectively. Additionally, three distinct bands were assigned to
the SO2 vibration of the IL. The peak appeared at 1348 cm−1, which corresponded to an
antisymmetric SO2 vibration mode of the IL; this was used to estimate the IL content of
the films. The procedure to estimate the composition of polymer–IL film using the FTIR
signal is reported in Section S3.3 of the Supplementary Materials. Figure 5B presents the
XRD pattern of these films; the predominant peaks at 2θwere equal to ~18◦, 20◦, and 27◦,
which corresponded to the α-phase (020), β-phase (200), and α-phase (200) of the PVDF-
HFP, respectively [41,42]. The small broad peak at 38◦ corresponded to the α-phase (021)
diffraction [43]. The peak at 27.5◦ represented π–π spacing of the GNPs [44]; this diffraction
peak became stronger as the concentration of GNP was increased. A clear change in the
diffractograms was observed as the compositions were varied. We attributed this change
in the structure of the polymer to the strong van der Waals (vdW) interaction between the
imidazolium cations of the IL and the negative dipoles of the CF2 groups of the PVDF-HFP,
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which controlled the crystallization kinetics and stabilized the formation of the α-phase of
the PVDF-HFP [45,46].
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Additionally, we estimated the degree of crystallinity and the β-phase of the films;
the detailed procedures are presented in Section S3.4 of the Supplementary Materials. As
shown in Figure 5C, increasing the IL content led to a reduction in the β-phase, which was
in line with a previous report [47]. Furthermore, increasing the IL content enhanced the
flexibility of the polymer chains and resulted in a reduction in the degree of crystallinity
of the PVDF-HFP [42]. The latter was confirmed by the broadening of the XRD peaks,
which was an indication of an increase in the volume of the disordered domains within the
films [48,49]. Notably, the addition of GNPs led to a reduction in the degree of crystallinity
but favored the formation of the β-phase. Here, we expected that the interaction between
partial positive charges on the C-H bonds of the PVDF-HFP and the negatively charged
surfaces of the GNPs led to a higher probability of the formation of “all-trans” segments
of the PVDF-HFP [50,51]. As shown in Figure 5C, a reduction in the crystallinity of the
polymer–IL films initially led to an increase in the CO2 absorption capacity of the films.
Upon the addition of GNPs, although the degree of crystallinity was further reduced, the
trend of the CO2 absorption was reversed. In this case, it was expected that the GNPs
would induce a variation in the dispersion of the IL within the polymer matrix, weakening
the solvation interactions. A similar observation when dealing with GNPs in complex
fluid mixtures suggested that the addition of GNPs weakened the interactions between
the components of the mixtures [39]. Here, we believe that the observed configurational
changes of the PVDF-HFP due to the addition of GNPs resulted in an increase in the
effective cohesion of the IL phase through reducing the polymer–IL interaction. As a result,
the CO2 absorption in these films was decreased.

To gain more quantitative information about the CO2 sorption in the films, we esti-
mated the enthalpies of absorption of the CO2 in the polymeric films. Figure 6 presents the
variations in the natural logarithm of pressure at steady states as a function of the inverse
temperature for a 1.75 and 2.75 equivalent excess molar concentration of CO2 (mole CO2
per kg of IL). The isosteric enthalpies of absorption were estimated from the linear fits
to the Clausius–Clapeyron equation [52] and are presented in the graph; additional data
at different mole uptake are presented in Section S2.3.3 of the Supplementary Materials.
Here, at the constant excess molar concentration of CO2, a systematic increase in the en-
thalpy of absorption as a function of the GNP concentration was noted. From a design
perspective, sorbents that require a higher heat of regeneration (enthalpy of absorption) and
provide a lower capacity for gas absorption are not attractive [53]; however, the observed
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trends pointed to the sensitivity of the configurational properties of these mixtures to
their compositions.
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4. Conclusions

In summary, we demonstrated the effects of the macrostructures of an ion gel on
its CO2 sorption capacity as a function of its composition. We observed a significant
enhancement in the CO2 sorption capacity for the IL in the polymer phase. The CO2
sorption increased nonlinearly with increasing IL content. This nonlinearity of the CO2
sorption was not only based on the hole-filling process, but it was also strongly influenced
by both interactions of CO2–Polymer–IL and the swelling behavior of the polymer. In
addition, we observed a strong impact of an addition of a carbon allotrope; even at a small
mass fraction, this addition led to a structural change at the macroscale that reduced the
CO2 sorption capacity. Finally, the latter result of the heat of sorption highlighted the
nonideality of these mixtures and the opportunity to choose the mixture composition as a
design parameter with macroscopic fingerprints and tune the gas sorption properties of
these mixtures.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/membranes12111087/s1, Figure S1: (A) FTIR fingerprint of polymeric films; the red box
indicates the range used for developing a calibration curve for estimating films’ composition; (B) the
established calibration curve for estimating the film composition cast from known mixtures; Figure S2:
A schematic of an experimental apparatus for the dynamic method. The QCM flange shown in this
figure only displays for the representative. Please refer to an experimental apparatus for an accurate
dimension. Figure S3: Typical pressure and frequency traces, collected from the QCM module. Here
the data is collected at 10 ◦C and the pressure set points were 100,150, 200 psi. (A) Bare and (B) coated
QC with 50:50 wt % PVDF-HFP:IL; Figure S4: (A) A schematic of the gas manifold and the component
of the apparatus used for measurement using static method. (B) Typical pressure trajectory gathered
from the cell. The pressure approached a plateau after ~10 h; Figure S5: The effect of adding IL on
the equilibrium absorption capacity of PVDF-HFP:IL (GNP) mixtures at three different pressures
of (A) 100, (B) 150, and (C) 200 psi. Each data point is the average of four measurements presented
with a standard deviation. (D) Polarized Microscopy Images showing the spherulites grown from
different Polymer/IL mixtures with various GNP content; Figure S6: Enthalpy of adsorption of
polymeric mixtures. (A) PVDF-HFP:IL with various concentrations of IL. (B) Polymeric mixtures
of 50:50 PVDF-HFP:IL with various concentrations of GNP; Figure S7: AFM inphase images of the
sample spin-cast from different solutions of Polymer:IL as specified in the figure: (A) 0 wt. % IL, (B)

https://www.mdpi.com/article/10.3390/membranes12111087/s1
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10 wt. % IL, (C) 30 wt. % IL, (D) 50 wt. % IL. Arrows indicates the lamella direction: a yellow arrow
indicates the orientation of fibrils of the edge-on lamellae, while a red arrow indicate the flat-on
filbrils; a white arrow indicates the small fibrils; Figure S8: An overview PLM analysis is performed
in 4 steps: (1) pre-processing image by scaling and selecting an image region; (2) an image classifier
model is applied to obtain a resulted image from the “Trainable Weka Segmentation”; (3) an image
threshold process is applied to a selected class based on users’ defined classes; (4) binary convert
process is applied to separate segmented regions whereas white color corresponds to a selected
region. (A) an original PLM image. (B) a scaled image. (C) an image after the training was completed.
(D) trained images with separated labels were created. (E) a binary image for post-processing; Figure
S9: (A) Evolution of spherulites from a thin film of 50:50 PVDF-HFP:IL coated on a silicon wafer and
heated with a heating rate of 2 ◦C/min; the red line indicates the radius of the selected spherulite.
All figures have the same scale. (B) Spherulite growth rate curve. Each data point; Figure S10: (A)
FTIR spectra of polymeric mixtures; the red box indicates the frequency region, containing α-, β-,

and
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