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Abstract: An accurate model of a proton-exchange membrane fuel cell (PEMFC) is important for
understanding this fuel cell’s dynamic process and behavior. Among different large-scale energy
storage systems, fuel cell technology does not have geographical requirements. To provide an effective
operation estimation of PEMFC, this paper proposes a support vector machine (SVM) based model.
The advantages of the SVM, such as the ability to model nonlinear systems and provide accurate
estimations when nonlinearities and noise appear in the system, are the main motivations to use
the SVM method. This model can capture the static and dynamic voltage–current characteristics
of the PEMFC system in the three operating regions. The validity of the proposed SVM model
has been verified by comparing the estimated voltage with the real measurements from the Ballard
Nexa® 1.2 kW fuel cell (FC) power module. The obtained results have shown high accuracy between
the proposed model and the experimental operation of the PEMFC. A statistical study is developed to
evaluate the effectiveness and superiority of the proposed SVM model compared with the diffusive
global (DG) model and the evolution strategy (ES)-based model.

Keywords: support vector machine; regression model; proton-exchange membrane fuel cell; diffusive
model; evolution strategy; voltage–current dynamic response

1. Introduction

The faster development and integration of renewable energies and electromobility
technologies in the distribution grid have encouraged the necessity to find alternatives for
power sources. One of the ways of decarbonization is the use of hydrogen. The hydrogen fuel
cell consists of an electrochemical device that directly and continuously converts hydrogen
fuel to electrical energy directly and constantly. This device is essential to tackle climate
change and air pollution and switch to green energy. Within the different types of FCs,
the PEMFC is considered the most exciting power source for many applications, such as
transportation, mobile devices, heat, and power supplies for buildings and industry [1].
Its many advantages include low operating temperature, high power density, fast startup,
quick response, and zero emissions. Due to its benefits and applications, industry and
academia have conducted research and exploration to optimize the performance of the
PEMFC. The PEMFC is a nonlinear, multi-variable and very complex system [2]. Due to
its complicated process, a control system with good performance is required to regulate
the voltage. Therefore, many researchers have focused their interest on the modeling study
of PEMFCs.
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The models developed not only describe the physicochemical phenomena in the fuel
cells but also generate data-driven models based on the functional relationship between the
current and the voltage of fuel cells [3]. The process of a fuel cell is usually characterized by
the current–voltage curve, known as the polarization curve. There are three main types of
polarization: activation polarization, ohmic (or resistance) polarization, and concentration
polarization. The deviation of the cell potential from the ideal behavior is a direct result of
the sum of these factors over the entire load range. Fuel cells have the best performance in
the ohmic polarization region [4].

The FC model comparison based on artificial intelligence and electrical circuit models is
shown in Table 1. The models presented in [1,3,5–13] are not viable for analyzing the complete
polarization curve of an FC, owing to only considering a linear steady-state response based
only on the PEMFC ohmic polarization curve, ignoring the voltage–current dynamic response.
On the other hand, most models contemplate an analytical approach based on equations
that describe the physical system of the FC [3,9,10,14–18]. Therefore, these approaches need
several variables to evaluate the model, such as the operating absolute temperature of the
fuel cell (Tf c), the operating current of the fuel cell (i f c), the partial pressures of hydrogen
and oxygen at the input channels of the fuel cell stack (PH2 and PO2), and the resistance
of the membrane surface (Rm). However, due to implementation expenses, using multiple
variables for its evaluation increases the development costs and the requirements of the
high-processing device. Based on the above, data-driven models (or black box models)
emerge as a promising strategy for modeling multivariate, nonlinear, and complex systems
such as the PEMFC. Among the data-based models is the SVM. The main advantages of the
SVM are its stability, robustness, generality, flexibility in determining the model structures,
training capacity with limited data, and good predictive performance [13,19,20]. Therefore,
this paper proposes a PEMFC model based on SVM, considering the current as the only
input variable to the model, and the voltage as the output. The SVM is used to estimate the
non-linear V-I dynamic characteristics of a PEMFC system in all regions.

Several papers related to the PEMFC model using an SVM have been found in the
state-of-the-art review. In [13], the performance prediction of the PEMFC system of a
commercially available electrical bicycle was investigated using an SVM and an artificial
neural network. The results showed that the prediction performance of a PEMFC using an
SVM is more effective than an artificial neural network. In [3], the authors proposed a hybrid
model by combining a support vector machine (SVM) model with an empirical equation.
The SVM model was used to predict PEM fuel cell voltages showing high accuracy even
when the operating variables vary. In [21], a comparative study of random forest and
support vector regression algorithms is presented to estimate the voltage of a solid oxide
fuel cell. The results showed that the support vector regression is better than the random
forest algorithm. However, the main drawback of the support vector regression algorithm
is the small number of samples used in the validation phase. In [14], a Hammerstein model
of a PEMFC stack is built using an SVM. The use of an SVM avoids complicated differential
equations to describe the dynamic characteristics of a PEMFC stack, and it is appropriate to
model the PEMFC compared to traditional methodologies. Finally, in [2] a review of the
applications and contributions of machine learning algorithms in optimizing the PEMFC
performance is presented. According to the review, machine learning algorithms such
as SVMs have shown higher performance in constructing the data-driven model of the
PEMFC. In brief, according to the review of the state of the art, most of the models based
on machine learning do not consider the dynamic characteristic of the polarization curve,
likewise, its validation is not performed with real FC data, and they have a high cost in their
implementation. The proposed model overcomes these disadvantages with high estimation
accuracy. The main contributions of this paper are the following:

• The proposed model has been able to model the static and dynamic characteristics
of the polarization curve in all operating regions. Two different FC current profiles
have been used, with the aim to evaluate the generalization of the proposed model to
predict the fuel cell voltage under different operating conditions.



Membranes 2022, 12, 1058 3 of 14

• We provide a method to model the PEMFC based on SVM, considering a significant
reduction in the number of samples used in the training phase, compared with the
number of samples used in the training phase of the models proposed in [18,22]. In the
same way, the number of samples used in the validation phase is much higher than the
number of samples used in the validation phase of the model proposed in [21].

• Real measurements were used in the training and validation phase of the SVM model.
The data correspond to a commercial Nexa fuel cell power module, with a rated power
up to 1.2 kW.

• The proposed model is accurate. The results showed a high similarity between the
voltage predictions obtained by the SVM model and the actual data, obtaining root
mean squared errors (RMSEs) of less than 1%. Likewise, the root mean squared error
obtained with the proposed model is 62% lower than the evolution strategy [18] and
the diffusive model [22]. Therefore, the obtained results prove the effectiveness of the
proposed FC model compared with other models.

This paper is organized as follows: Section 2 presents a short description of the con-
cepts related with the SVM. The description of the proposed model is presented in Section 3.
The validation of the proposed model is present in Section 4, and finally, conclusions are
given in Section 5.

Table 1. Fuel cell intelligence model comparison.

FC Model Strategy Ref. Static
Model

V-I Dynamic
Model

Variables Used to
Evaluate the Model

Training
Complexity

Implementation
Cost

Tested with a
Real FC

SVM PEMFC [12] Tf c, i f c M H

SVR [13] i f c M H

ABC [1] i f c M M

Hybrid SVM [3] Tf c, i f c, PH2 , PO2 , Rm M H

MIMO SVM-ARX [14] Tf c, i f c, PH2 , PO2 , Rm H H

VSDE [9] Tf c, i f c, PH2 , PO2 , Rm M H

ASO [10] Tf c, i f c, PH2 , PO2 , Rm H H

ARX-RLS [15] Tf c, i f c, PH2 , PO2 , Rm L H

Electrical model [16] Tf c, i f c, PH2 , PO2 , Rm H

Electrical circuit [17] Tf c, i f c, PH2 , PO2 , Rm H

ES [18] Tf c, i f c, PH2 , PO2 , Rm H

Diffusive model [22] i f c H M

This work [-] i f c M M

2. A Multi-Output Support Vector Machine

This method was proposed in [23]. The authors use a multi-output support vector
regressor (M-SVR) to refer to their method. Let x ∈ Rd be the input vector and y ∈ RQ, the
output vector. The relationship between x and y is assumed to follow

y = W>φ(x) + b, (1)

where W =
[
w1, . . . , wQ], b =

[
b1, . . . , bQ]>, with a vector wj and a constant bj for every

output (j = 1, . . . , Q). The function φ(·) refers to a non-linear transformation to a higher-
dimensional spaceH, whereH � d.
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First, given a dataset {xi, yi}n
i=1 that is used to build the mapping from x to y, the

purpose is to find the set of parameters {W, b} that minimize the functional

J(W, b) =
1
2

Q

∑
j=1
‖wj‖2 + C

n

∑
i=1

L(ui), (2)

where C is a regularization constant, and L(ui) is known as the Vapnik ε− insensitive

loss-function, with ui =
√

e>i ei, and ei = yi −W>φ(xi)− b. As a loss function L(·), the
authors of [23] use a differentiable quadratic loss with respect to a user-defined constant, ε,
that takes into account all outputs to obtain each individual regressor wj and bj

L(ui) =

{
0, ui < ε

(ui − ε)2, ui ≥ ε.
(3)

The solution to the above-mentioned problem can also be expressed in terms of the
vector of coefficients βj for each output, which relates to the original vectors wj through
wj = Φ>βj, where Φ = [φ(x1), . . . , φ(xn)]>. The problem to be solved can then be written
as (see Ref. [23])

[
K + D−1

a 1
a>K 1>a

][
βj

bj

]
=

[
yj

a>yj,

]
(4)

where K is a kernel matrix with entries k(xi, x′i) computed from a so-called kernel function
k(x, x′). The kernel function generalizes the inner product between φ(x) and φ(x′). (In the
sense that the kernel is not necessarily a Mercer kernel, this is one that can be written as
an inner product. See [24].) Additionally, in expression (4), a = [a1, · · · , an]>, and Da is a
diagonal matrix with entries {ai}n

i=1. The terms {ai}n
i=1 are computed using [23]

ai =

{
0, ui < ε
2C(ui−ε)

ui
, ui ≥ ε

(5)

where ui was defined before.
An iteratively reweighted least squares (IRLS) procedure is proposed in [23] to

solve (4), in order to calculate the parameters β = [β1, . . . , βQ] and b.
Once we calculate the matrix β and the vector b, the prediction ŷ for a new input

vector x can be computed as

ŷ = β>kx + b, (6)

where k is a vector with entries given by {k(xi, x)}n
i=1. The kernel function k(x, x′) that is

used in this paper is the radial basis function (RBF) kernel, given as

k(x, x′) = exp
{
− 1

2σ2 (x− x′)>(x− x′)
}

, (7)

where the parameter σ2 is usually known as the bandwidth [24].

3. Proposed Model of the PEMFC Based on SVM

The proposed method is divided into two parts called the training phase and the
validation phase. In the training phase, the matrix β and the vector b of the SVM are
calculated, taking as input the real data of current and voltage from the Nexa® FC power
module. These data are called training samples. A conceptual illustration of the SVM
training phase is shown in Figure 1.
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−
+

Minimization SVM

Training 
samples

Training 
samples

Estimated
samples

Figure 1. Conceptual illustration of the SVM training.

With reference to Figure 1, the minimization block performs the calculation of β and
b by the minimization of the error function ev between the measured v and the estimated
v̂ voltage using the set of the training samples. This minimization is formulated as an
iterative procedure given by[

βp+1

(bp+1)>

]
=

[
βp

(bp)>

]
+ ηp

[
β− βp

(b− bp)>

]
, (8)

where βp and bp are the values at the iteration p. The value of ηp is computed using a
backtracking algorithm, in which, if Jp+1 > Jp, then ηp is multiplied by a positive constant
less that one, and the regressors βp+1 and bp+1 are computed again, until a decrease is
achieved in Jp+1. The algorithm stops when Jp+1 − Jp < tolerance. In this paper, the
tolerance is set to 10−9 [23]. It is worth noting that the training phase is performed offline
and it can take several seconds.

In the validation phase, the estimation of the FC voltage is performed from the validation
measurements. In an online estimation, a sample of voltage is estimated for each current
sample. Connecting with the description given for the SVM in Section 2, d = 1 and Q = 1
(i.e., x and y are scalars). Taking into account the above, (6) can be re-written as

v̂ = β>ki + b, (9)

where β is a column vector with Nt rows, Nt being the number of samples considered in
the training phase, and b being a constant value. According to (9), the estimated voltage
samples v̂ are calculated given the vector β, the scalar b (both calculated in the training
phase), and the measured current sample i. The kernel vector ki is computed using (7)
using the current vector it = [i1, . . . ik, . . . iN ]

> whose entries are the training samples of
current, and a sample of real current i. In brief, for each sample of the current i, one sample
of voltage is estimated, in this way, for N samples of the currents is formed a voltage vector
whose entries are the estimated samples of voltage v̂ = [v̂1, . . . , v̂k, . . . , v̂N ]

>.

4. Experimental Results
4.1. Dataset Measured from the PEMFC

In this work, real data taken from the Nexa® fuel cell have been used, which produces
unregulated DC power, up to 1.2 kW, from a hydrogen and air supply. LabVIEW software,
which supplies a graphical user interface to the operational status and performance of
the Nexa module [25], is provided by the Nexa power module. The experimental Nexa
PEMFC data acquisition configuration can be observed in Figure 2, employed for training
and verification of the SVM model.
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a db

c
Figure 2. Experimental data acquisition configuration used for the phases of training and validation
of the SVM model: (a) LeCroy WaveSurfer 64Xs-A oscilloscope, which saves trace data to an internal
memory location, (b) laptop computer + LabVIEW program to control the electronic load using the
National Instruments GPIB-USB-HS+ software program to monitoring the Nexa Fuel Cell, (c) Agilent
6050A Electronic load, and (d) Nexa power module from Ballard Power Systems.

To accomplish rapid acquisition, data saving on its onboard hard drive, and long cap-
ture time, the LeCroy WaveSurfer 64Xs-A oscilloscope has been employed. The oscilloscope
instantly acquires and keeps the data corresponding to the fuel cell current and voltage
signals. Furthermore, a virtual instrument is designed through LabVIEW to create the
current profiles via the DC electronic load control, utilizing its GPIB communication port
as a constant current load. Thus, the maximum sampling limitation of the Nexa software is
bypassed, performing sampling periods up to 20 µs.

Two FC load current profiles have been considered with the aim of testing the dynamic
of the SVM model. Each profile contains the training and validation sets with different
measured data. The first one was used in [22] to train and validate the diffusive global (DG)
model. The second one was used in [18] to evaluate a PEMFC model based on an equivalent
circuit, whose parameters were identified using an evolution strategy (ES) algorithm, and
also used in [22] to evaluate the performance of the DG model.

4.2. Training Phase of the SVC Model with the First FC Load Current Profile

Figure 3 shows the instantaneous measurements of the current and voltage of the
FC used to select the training samples of the SVM model. The data were sampled with
a fixed step time of 200 ms for one hour. A total of 179, 988 current and voltage samples
were obtained. The number of samples used for training has been substantially reduced to
9000 (5% of the initial data), taking samples every 2000 ms and considering only 50% of the
rest of the data, to reduce the size of the vector β of the SVM model given by (9), which is
appropriate to reduce the computational cost in the validation phase. A total of 50% of the
samples were randomly selected.

The hyperparameters of the SVM were set to the following values: C = 200, ε = 0.001,
and σ = 1.5. These values were adjusted according to numerical experiences in the training
phase of the SVM and showed a good predictive performance of the model. The root mean
square error (RMSE) index defined by (10) has been used to quantify the performance of
the SVM model.

RMSE =

√√√√√ N

∑
k=1

e2
k

N
, (10)

where ek is the error between the measured and the estimated FC output voltages and N is
the number of samples of the discrete signal v̂ = [v̂1, . . . , v̂k, . . . , v̂N ]

>. The RMSE obtained
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for the training samples is 0.3 V. The authors consider that this value confirms a satisfactory
predictive performance in SVM training. Figure 4 shows the relative error between the
measured and the estimated voltages, arranged in ascending order. As can be seen, the
SVM model presents a good predictive performance due to 99% of the data presenting
relative errors of less than 3%.
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Figure 3. Real data of the first FC load current profile used to select the training samples of the
SVM model.
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Figure 4. Relative error for each one of the estimated voltage samples used in the training phase of
the SVM model.

4.3. Validation of the SVM Model with the First FC Load Current Profile

The validation of the proposed model is carried out by the measurements shown in
Figure 5, which is different from the one used during the training phase. This current profile
is much more demanding than the one used for the validation stage because it has current
step changes that are higher in magnitude. The validation data have a fixed time step of
200 ms and have been measured during a 20 min time window. Estimated voltage samples
are calculated using Equation (9), where β is 9000× 1 vector and b = 32.2729 V. The kernel
vector ki is computed using (7), with x being the vector of training samples of the FC load
current and x′ the validation sample from the FC load current. In a real implementation,
each estimated voltage sample is computed from each real current sample. Therefore, the
entries of the vector ki must be updated for each sample. The dimension of ki is 9000× 1 .

The results obtained with the SVM model are compared with the results of the diffusive
model presented in [22], using the following indices: R-square, relative error (RE), mean
absolute error (MAE), and standard deviation (SD). The mathematical definitions of these
indices are presented in Appendix A. The statistical analysis in Figure 6 shows that the
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proposed SVM model has a low error and a high R-square value compared with the diffusive
global model.
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Figure 5. Results obtained from the voltage estimation using the proposed SVM model, (above) model
input: FC current, (medium) real and estimated voltage from the SVM model and diffusive model,
and (below) relative error between the real and estimated voltage from the SVM and diffusive models.

Figure 6. Statistical results of proposed SVM approach and the diffusive global model for the profile
shown in Figure 5.

Figure 7 shows the dynamic V-I characteristic of the PEMCF using real FC voltage and
estimated FC voltage from the SVM model. The maximum difference between the real and
estimated voltage is 3.86 V. It occurs when the FC current is 38.61 A. Note that the SVM



Membranes 2022, 12, 1058 9 of 14

model can capture the fuel cell’s dynamic characteristic, particularly at the extremes of
the curve.
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Figure 7. Dynamic V-I characteristic of the PEMFC obtained with real and estimated FC voltage
using the SVM model, from the first profile of the FC load current.

4.4. Training of SVM Model with the Second FC Load Current Profile

Figure 8 shows the measurements used to select the set of training measurements for
the SVC model, which correspond to the second FC load current profile. The data were
sampled within a period of 200 ms in [18], which is 10 times higher than the sampling in
the profile in Figure 3. However, to reduce the size of the vector β in (9), the data used
to train the SVM were re-sampled within a period of 2000 ms, and then 50 % of the data
were taken randomly to train the SVM. The total number of samples used to train the SVM
model was 2957.
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Figure 8. Measurements from the second FC load current profile, used to select the training samples
of the SVM model.
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According to numerical experience, the values of the hyperparameters of the SVM
were adjusted to C = 5000, ε = 0.001, and σ = 4. The predictive performance of the
SVM model was evaluated in terms of the RMSE index. For the training measurements,
the RMSE obtained is 0.38 V. The authors consider that the predictive performance of the
SVM model is satisfactory according to the obtained RMSE value. The relative error was
calculated for all the samples used in the training. According to the obtained results, 97%
of the relative errors calculated (i.e., 2868 values) are less than 3%.

4.5. Validation of SVM Model with the Second FC Load Current Profile

Figure 9 shows the results of the validation test. Notice the wide range of values
considered for the FC load current in the upper part of Figure 9. The estimated samples of
the FC voltage are calculated with (9), taking as input the vector β (2927× 1 vector), the
constant b = 23.17 V, and the kernel vector kx(x, x′) (2927× 1 vector) calculated with (7)
using the training samples of the input vector x and the validate sample x′ of the FC load
current. The results were compared with the DG model proposed in [22] and the equivalent
circuit of the PEMFC proposed in [22]. The results are shown at the bottom of Figure 9.
The RMSE value was calculated for all the models. The RMSE of the DG model and the
parameters adjusted by ES were 2.3273 V and 2.3116 V, respectively. Meanwhile, the RMSE
for the SVM approach is 0.87 V. This value is equivalent to 37% of the RMSE obtained with
the other approach.
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Figure 9. Real data used for validating: current load profile (above), and output voltage simulated with
parameters estimated by means of ES, the diffusive global model, and the SVM approach (below).

The statistical results of the proposed SVM model are detailed in Figure 10. These
results are compared with those from the diffusive global model and those from the ES
approach. The SVM model has the lowest error value, as it accurately represents the static
and dynamic current–voltage relation in a PEMFC.

Finally, Figure 11 shows the dynamic V-I characteristic of the PEMFC using the second
profile of the FC load current. The horizontal axis corresponds to the validation samples of
the current, and the vertical axis corresponds to the experimental and estimated samples of
the voltage. Notice that the SVM model is able to capture the dynamic characteristic of the
PEMFC. The maximum difference between the experimental and estimated voltage is 3 V
and occurs when the current is 16.5 A.
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Figure 10. Statistical results of proposed SVM approach, diffusive global model, and ES approach for
the profile shown in Figure 9.
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Figure 11. Dynamic V-I characteristic of the PEMFC obtained with real and estimated FC voltage
using the SVM model, from the second profile of the FC load current.

5. Conclusions

In this paper, an accurate and efficient support vector machine-based model has been
developed for proton-exchange membrane fuel cells. The important contribution of the
proposed modeling approach is the considerable reduction of the samples used in the train-
ing phase of the SVM model, compared with other recent PEMFC modeling mechanisms,
such as the diffusive global model and evolution strategy-based model. This reduction in
the number of samples required in the training phase reduces the dimension of the model
vectors and, therefore, reduces the computation time in the validation phase. Two FC
load current profiles have been considered to evaluate the predictive performance of the
proposed PEMFC model based on an SVM. The real measurements were taken from the
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Nexa® power module with a DC power up to 1.2 kW. The performance of the proposed
model was carried out by computing the RMSE between the estimated voltage samples and
the measured ones. The RMSE obtained for the first profile was 1 V, and for the second
profile was 0.87 V. These results are lower than those obtained with the diffusive model,
which are 1.05 V for the first profile and 2.32 V for the second profile, and the evolution
strategy model, which is 2.31 V for the second profile. Notice that, for the second profile, the
error obtained with the proposed model is 62% lower than with the other models. According
to the performance indices, the predictive performance of the proposed SVM model is better
than the DG and ES models.

Once the methodology has been validated, it would be possible to use the SVM model
to predict the voltage of the PEMFC. Results show that the proposed SVM model is able to
capture the dynamic characteristic of the PEMFC, validating the use of the SVM model in
further real applications related to its control systems. In future work, it is recommendable
to speed up the convergence in the training process by optimizing the amount of data used.
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Appendix A

Equations (A1)–(A4) are the mathematical definitions of the indices R-square, RE,
MAE, and SD, respectively, used to compare the result of the proposed method with other
PEMFC models proposed in the literature.

R-square =

N
N

∑
k=1

vk v̂k −
N

∑
k=1

vk

N

∑
k=1

v̂k√√√√√
N

N

∑
k=1

v2
k −

(
N

∑
k=1

vk

)2
N

N

∑
k=1

v̂2
k −

(
N

∑
k=1

v̂k

)2


100%. (A1)

RE =

N

∑
k=1

ek

v̂kmean
100%, (A2)

MAE =

N

∑
k=1

ek

N
(A3)

SD =

√√√√√√
N

∑
k=1

e2
k

N − 1
, (A4)

where vk represent the estimated voltage, v̂k is the measured voltage, ek is the difference
between vk and v̂k, v̂kmean is the mean value of the measured voltage, N is the number of
samples, and k represent the kth sample.
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