
Citation: Ouma, C.N.M.; Obodo,

K.O.; Bessarabov, D. Computational

Approaches to Alkaline

Anion-Exchange Membranes for Fuel

Cell Applications. Membranes 2022,

12, 1051. https://doi.org/10.3390/

membranes12111051

Academic Editor: Chih-Liang Wang

Received: 15 September 2022

Accepted: 21 October 2022

Published: 27 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

membranes

Review

Computational Approaches to Alkaline Anion-Exchange
Membranes for Fuel Cell Applications
Cecil Naphtaly Moro Ouma, Kingsley Onyebuchi Obodo * and Dmitri Bessarabov *

HySA-Infrastructure, Faculty of Engineering, North-West University, Private Bag X6001,
Potchefstroom 2520, South Africa
* Correspondence: ko.obodo@nwu.ac.za (K.O.O.); dmitri.bessarabov@nwu.ac.za (D.B.)

Abstract: Anion-exchange membranes (AEMs) are key components in relatively novel technologies
such as alkaline exchange-based membrane fuel cells and AEM-based water electrolyzers. The
application of AEMs in these processes is made possible in an alkaline environment, where hydroxide
ions (OH−) play the role of charge carriers in the presence of an electrocatalyst and an AEM acts
as an electrical insulator blocking the transport of electrons, thereby preventing circuit break. Thus,
a good AEM would allow the selective transport of OH− while preventing fuel (e.g., hydrogen,
alcohol) crossover. These issues are the subjects of in-depth studies of AEMs—both experimental and
theoretical studies—with particular emphasis on the ionic conductivity, ion exchange capacity, fuel
crossover, durability, stability, and cell performance properties of AEMs. In this review article, the
computational approaches used to investigate the properties of AEMs are discussed. The different
modeling length scales are microscopic, mesoscopic, and macroscopic. The microscopic scale entails
the ab initio and quantum mechanical modeling of alkaline AEMs. The mesoscopic scale entails using
molecular dynamics simulations and other techniques to assess the alkaline electrolyte diffusion in
AEMs, OH− transport and chemical degradation in AEMs, ion exchange capacity of an AEM, as well
as morphological microstructures. This review shows that computational approaches can be used to
investigate different properties of AEMs and sheds light on how the different computational domains
can be deployed to investigate AEM properties.

Keywords: alkaline anion-exchange membranes; microscopic; mesoscopic; macroscopic;
computational approaches

1. Introduction

When it comes to clean and efficient energy technologies for a sustainable future,
fuel cells (FCs) are attracting increasing attention. To date, when it comes to research,
development, and deployment, it is the low-temperature proton-exchange membrane fuel
cells (PEMFC) that dominate, especially within the automotive sector [1,2]. However,
alkaline anion-exchange membrane fuel cells (AAEMFCs) have been proposed as a possible
challenger to PEMFCs—they have several functional attributes that make them direct
competitors to PEMFCs [3]. Compared to PEMFCs, AAEMFCs can create opportunities
for cost reduction, mainly due to the switch in operating conditions from an acidic to an
alkaline environment/medium [4]. Alkaline media in AAEMFCs create an environment
where inexpensive nonprecious metals [4] can be utilized as catalysts, in sharp contrast to
PEMFCs which usually utilize expensive precious metals such as platinum-group metals
as catalysts due to the acidic operating conditions. In addition, oxygen reduction under
alkaline conditions in AAEMFCs is more effective compared to in PEMFCs under acidic
conditions. An alkaline medium is also less corrosive and hence creates room for innovation.
Figure 1 illustrates the difference between an AAEMFC and a PEMFC.
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Figure 1. Schematic comparison between an AAEMMFC and a PEMFC.

An AAEMFC also uses hydrogen as fuel, with oxygen as an oxidant. The reactions
that take place at the electrodes are the following:

H2+2OH– → 2H2O + 2e–

at the anode,
O2+2H2O+4e– → 4OH–

at the cathode, and the overall reaction in the AAEMFC is

2H2+O2+2OH– → 2H2O.
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In AAEMFCs, the alkaline anion-exchange membrane (AAEM) is usually the key
component that determines the performance of the AAEMFC [5,6]. It is for this reason that
AAEMs have been/are being extensively investigated, both theoretically and experimen-
tally. Investigations into catalysts for electrode (anode and cathode) applications have also
been carried out

A good AEM must have high ionic conductivity, good mechanical, and thermal
stability, and not be too costly. Thus, before AAEMFC technology can mature to the level of
its PEMFC counterpart and gain a significant share of the FC power market, some issues
need addressing, e.g., AAEM functional head groups, polymer structures, and membrane
preparation methods.

Several excellent reviews exist in the literature on AAEMs and even AEMFCs [7–11].
Additionally, there are also reviews on the different modeling length scales as applied
to the different applications [12]. This review succinctly focuses only on computational
studies geared towards AAEM functional head groups, polymer structures, and alkaline
electrolytes, among other topics—membrane preparation is not considered. Research into
AAEMs stems from the need to develop suitable AAEMs for high-pH and high-temperature
environments [1,12–17]. This review only focuses on AAEM application in AAEMFCs by
zeroing in on how and where the computational techniques have been used and how they
have informed research and development. Other reviews have aimed at giving a broad
view of how computational techniques can be used to investigate AAEMs [12]. This review
attempts to show that computational approaches have indeed been useful in studying the
different properties of AAEMs. This review, however, only focuses on AEMs as applied to
fuel cells and not AEMs as applied in electrolyzers. AEMs as applied in electrolyzers are
beyond the scope of this work and hence were not considered.

The outline of this review is as follows: In Section 2 a brief overview of AAEMFCs
is given; in Section 3 the different modeling length scales are summarized followed by
how they have been applied to investigate the different properties of AAEMs for AAEMFC
application; and Section 4 concludes.

2. Alkaline Anion-Exchange Membrane Fuel Cells (AAEMFCs)

The pivotal role of AAEMs is the transportation of hydroxide ions (OH−), produced
at the cathode electrode, to the anode electrode. At the anode, the ions release electrons
after undergoing a chemical reaction with the fuel. The AAEM is also responsible for
inhibiting fuel crossover and the occurrence of a short circuit that acts as a selective barrier
separating the anode and the cathode; and it also serves as an electrical insulator. Within
an AAEM are polymer chains with positively charged functional groups; electroneutrality
is maintained by mobile anions [18–20]. In an AAEM, it is the positively charged functional
groups attached to the polymer backbone (see Figure 1) that are responsible for the mo-
bility/diffusion of OH− through the membrane. The following types of functionalized
positively charged end groups have been commonly used in development efforts pertain-
ing to AEM functional groups: quaternary ammonium, imidazolium, benzimidazolium,
pyridinium, phosphonium, and pyrrolidinium [21].

Despite the numerous efforts geared towards the development of high-performance
AAEMs, their application in AAEMFCs has been inhibited by the AAEMs’ low ionic con-
ductivity and alkaline stability. Several studies have addressed these issues, experimentally,
theoretically, or computationally [22–24]. There are instances where computational studies
have been used to complement and/or augment experimental observations [24–26]; such
studies have been used to either make predictions or to gain insights before commencing
with experimental investigations. Over the past decade, there has been a noticeable increase
in computational studies on AAEMs. As seen in Figure 2, computational techniques are
contributing to studies investigating the properties of AAEMs even though experimental
studies still dominate, hence the need to explore their capabilities and contributions.
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3. Computational Studies of AAEMs

Arising from the need to understand how the properties of AAEMs can be improved,
good use has been made of computational studies. Because of the diverse nature of
computational techniques, they are often described or defined in terms of time and length
scales. Some scales often overlap as they may require inputs from other scales, below or
above. Figure 3 and Table 1 show the different computational techniques that can be used
to model the properties of AAEM and AAEMFC components. Table 1 also shows and
compares how the different modeling length scales have been used in previous studies to
investigate AAEM properties.
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Table 1. Application of different modeling length scales in AAEM studies.

Scale Tools Reference Phenomena

Density
functional theory
(DFT)

DFT [13,22–24,26–28]
Chemical stability, alkaline stability, polymers interactions,
OH– adsorption and diffusion, OH– transport,
nucleophilic attack, HOMO and LUMO energy

Molecular
dynamics (MD)

Coarse-grained MD,
first-principles MD, ab initio
MD, classical MD, force fields,
ReaxFF (reactive MD)

[8,29–42]
OH– mobility and transport mechanism, cation head
groups, polymer backbones, ionic conductivity,
hydration (water uptake), ion exchange capacity (IEC)

Mesoscale
simulations

Coarse-grained MD,
dissipative particle dynamics [19,43–49] Alkaline stability, water uptake, IEC, hydrated

morphology and microstructure, ionic conductivity

Machine learning [50–56] Alkaline stability, polymer configurations, catalysts,
OH– transport

3.1. Atomistic/Quantum Chemistry Studies of AAEMs

Atomistic and quantum chemistry studies employ quantum mechanical calculations to
investigate the properties of AAEMs for AAEMFC applications. Density functional theory
(DFT), in particular, has been used to investigate the properties of AAEMs and, in some
cases, used to complement experimental investigations when it comes to gaining insight
into the chemical stability of cationic polymers in alkaline media, as will be explained in
the sections that follow below.

DFT calculations have been used to investigate the chemical stability of N3-substituted
(methyl, butyl, heptyl, dodecyl, isopropyl, and diphenyl methyl groups) imidazolium-
based AAEMs that included both water and ethanol as solvents [26]. The DFT calculations
were used to optimize the molecules as well as to understand the interaction between
the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital
(HOMO) energies of the cations and OH− ions, respectively. The calculations revealed that
the HOMO energies of the OH− were lower than the LUMO energies of the imidazolium
cation(s). This resulted in the cations inhibiting the nucleophilic attack from the OH− (see
Figure 4). The nucleophilic attack phenomenon is associated with LUMO energies being
used to determine the alkaline stability of the imidazolium cations.
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sion from [24]. Copyright 2020 Elsevier.

Transition state search calculations, also based on DFT, were used to confirm the
nucleophilic attack—the most stable cation in alkaline solution at high temperatures ob-
tained for DFT calculations was consistent with experimental observations in the same
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study. Si and coworkers [27] also investigated the alkaline stability of imidazolium cations
experimentally and theoretically using DFT calculations (Figure 5). In their study, dif-
ferent substituents and substitution positions were considered, namely, imidazolium
cations with butyl groups at various substitution positions (N1-, C2-, and N3-), 1-butyl-2,3-
dimethylimidazolium ([N1-BDMIm]+), 2-butyl-1,3-dimethylimidazolium ([C2-BDMIm]+),
and 3-butyl-1,2-dimethylimidazolium ([N3-BDMIm]+).
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Results of DFT calculations were consistent with experimental observations: C2 sub-
stitution (Figure 6) influenced alkaline stability, and there was high alkaline stability in the
case of a butyl group-substituted imidazolium cation ([C2-BBMIm]+).
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DFT calculations have also been used to investigate the nucleophilic attack/reaction
in the stability of imidazolium- and benzimidazolium-based polyelectrolytes for AAEMs
and also to confirm experimental results [22]. The molecules considered were 3-butyl-1-
methylimidium (BMI) and 3-butyl-1-methylbenzimidium (BMBI) (see Figure 7).
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It is evident from Figure 8 that BMBI has lower LUMO energy than BMI, indicating
that BMBI will be susceptible to OH− nucleophilic attack and hence will exhibit low or
poor stability in alkaline media.
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Copyright 2017 Elsevier.

In another study [13], the alkaline stability of AAEMs in various alkaline media was
investigated—alcohols (methanol, ethanol, propanol, and ethylene glycol) were used as
fuel in the AAEMFCs. Here too, DFT calculations were used to obtain the LUMO energies
of the cations, and, through this, cations with lower alkaline stability were identified. The
results were consistent with experimental observations in the same study (Figure 9). The
study also investigated the solvent effects with water, methanol, ethanol, and DMSO. In
this case, DFT calculations revealed that the lower the dielectric constant of the solvent, the
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lower the alkaline stability of the cations. This was applied to explain the degradation of
cations observed experimentally.
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Figure 9. Molecular structures of cationic compounds investigated by Sun and coworkers. Reprinted
with permission from [13]. licensed under CC BY-ND 4.0.

Adsorption energies obtained from DFT calculations have also been used to explain
catalyst deterioration [24], where achieving a decrease in adsorption energies of ionomers
on the catalyst was suggested as a way of improving the performance of an AAEMFC.
The same study also used DFT calculations to generate descriptors that were used to
determine cation stability in alkaline media. A similar observation was made by Sun
and coworkers[13] (see Figure 10) was also made by Maurya and coworkers [57] while
investigating the interaction of the catalyst and the polymer electrolyte using DFT.
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The chemical stability of the polymer backbones of AAEMs in alkaline media has
also been investigated using DFT calculations [23]. Mohanty and coworkers, while investi-
gating the chemical stability of different polymer backbones—using poly(arylene ether)s,
poly(biphenyl alkylene)s, and polystyrene block copolymers as representative polymer
structures—observed from DFT calculations that the enhanced long-term alkaline stability
of AAEMs can be achieved using polymers without aryl ether bonds, i.e., all-carbon-based
polymers. The reason offered is that electron-withdrawing groups near the aryl ether bonds
accelerate the chemical degradation of the polymer backbone.

Recently, You and coworkers [28] used DFT calculations to complement their exper-
imental study to investigate the alkaline degradation pathways of polymers. The DFT
calculations in their study provided insight into why it is also important to consider the
local backbone morphology of the polymer in the rational design of high-performance
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AAEMs that are chemically stable. This observation was made while using a one-pot,
two-step process for synthesizing high-performance AAEMs [28]. In this instance, DFT
offered insight into what was not previously known.

3.2. Molecular Dynamic Studies of AAEMs

DFT calculations, although fruitful in providing insight into and complimenting
experimentally observed phenomena, are computationally expensive and cannot be used
to investigate large systems or systems with many atoms. Calculations based on DFT are
ground-state calculations in that they consider a system only in its ground state. Yet, most
systems are never in their ground state. In cases where this is so, molecular dynamics
(MD) calculations can be used. Even though MD calculations are not as accurate as DFT
calculations when it comes to calculating some properties of a system, they are useful in
providing insight into how a system dynamically evolves as a function of time, temperature,
and pressure. MD calculations are computationally less expensive and thus can be used to
investigate larger systems (systems larger than those that can be investigated using DFT
calculations). When it comes to investigating the properties of AAEMs and AAEMFCs,
MD calculations have also proven to be useful, and in many instances have been used to
augment/compliment ab initio DFT calculations [29,35,36].

For AAEMFCs and AAEMs, experimental studies have not provided insight into the
role of water when it comes to influencing ion diffusion, even though it has been implied
that there exists a relationship between the water content and ionic conductivity [8,37,38].
The mobility of hydrated H+ and OH− is usually high in alkaline media; thus, it was
assumed that their mobilities are similar [38,57]. Some of the proposed ways through
which OH− is transported include the Grotthuss [8] and vehicle mechanisms [38,39]. These
two OH− transport mechanisms are illustrated in Figure 11.
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Takaba and coworkers [38] employed MD calculations in the investigation of OH−

transport in AAEMs, particularly through poly(arylene ether sulfone ketone)s. They used
two flavors of MD calculations, namely, classical MD and first-principles MD (FPMD),
also commonly known as ab initio MD. The AAEM considered in the study contained
quaternized ammonio-substituted fluorenyl groups (QPE) shown in Figure 12, and they
used classical MD to understand how the OH− ionic conductivity was impacted by the
number of QPE repeat units. The observation made was that the conductivity of OH− was
not significantly influenced by increasing the number of QPE units. This observation was
consistent with experimental observations.
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Figure 12. The QPE monomer used for classical molecular dynamics and first-principles molecular
dynamics. Reprinted with permission from [38]. Copyright 2017 Elsevier.

They also used radial distribution functions (RDFs) obtained using classical MD to
study the hydrated QPE and deduced the possibility of the existence of an interaction
between the OH− and ammonia groups—it was through this process that vehicle trans-
portation was investigated. In the study, Grotthuss transport was investigated using force
field (FF) MD, and the two transport mechanisms (Figure 11) showed that OH− transport
was similar to that of protons in a PEM. Figure 13 shows the size of the unit cells used for
the MD calculations. Such systems would be computationally expensive if they were to be
investigated using DFT calculations.
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A similar study was conducted by Wang and coworkers [40]. In their study, they
considered the OH− transport in polynorbornene AAEMs. Using RDFs calculated from
the MD for amorphous cells of polynorbornene, they investigated the relationship between
the polynorbornene microstructure and OH− transport. Using ReaxFF reactive MD calcula-
tions, Zhang and van Duin [41] showed that OH− diffusion improved with the hydration
of AAEM microstructures in some cases, and thus it is considered important to balance
membrane stability and conductivity. In their study, ReaxFF MD calculations were carried
out on three functionalized poly(phenylene oxide) (PPO) AAEMs at two hydration levels
(see Figure 14). The three AAEMs investigated were PPO–trimethylamine (PPO-TMA),
PPO–dimethylbutylamine (PPO-DMBA), and PPO–dimethyloctylamine (PPO-DMOA).
It was observed that the diffusion of OH− increased with the swelling of the membrane
microstructure affected by hydration because water molecules formed hydrophilic channels
that mediated OH− transport.
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Enhanced OH− conductivity in AAEMs has also been investigated in the case of
monocationic and dicationic side chains, both experimentally and theoretically, using MD
calculations. Several properties were investigated, including the alkaline stability and
physiochemical and electrochemical properties [42]. In the case of dications, there was
improved ionic conductivity and a better water uptake and swelling ratio of the mem-
branes. Furthermore, the results of the MD calculations were consistent with experimental
observations, namely, that the vehicular transport mechanism of OH− was favored over
the Grotthuss mechanism.

Chen and coworkers [30] investigated the effect of one (SQ) and two (GQ) quaternary
ammonium-functionalized poly (ether ether ketone)/s on the ionic conductivity as well as
the ion exchange capacity (IEC). Using coarse-grained MD calculations, they observed that
improved ionic conductivity in GQ does not depend on the self-diffusion coefficients but
rather on an increased IEC in GQ, and that the improved alkaline stability of GQ can be
attributed to water molecules wrapping around the OH−. In another study of theirs [35],
MD calculations were used to investigate the role of cationic groups in water sorption in
AAEMs when it comes to steric hindrance and π-conjugation, in the case of trimethylam-
monium, 1-methylimidazolium, and tris(2,4,6-trimethoxyphenyl) phosphonium cations. It
was reported that cations play a key role in ionic conductivity—both the steric effects and
π-conjugation reduced cationic hydration, which, in turn, also reduced ionic conductivity.



Membranes 2022, 12, 1051 12 of 19

DFT and MD calculations have been used to investigate how OH− diffusion is in-
fluenced by water in fully swollen AAEMs as well as how the IEC influences the OH−

diffusion in AAEMs [29]. In the study of Di Salvo and coworkers, both modeling length
scales, DFT and MD calculations, were used to complement each other (Figure 15). DFT
was used to investigate the effect of membrane hydration and different IECs. The results
were found to be consistent with experimental observations. In addition, DFT calculations
were used to inform the boundary conditions of the MD calculations in that they were
used to identify the critical IEC range where the membrane overswells. This range was
subsequently used to obtain the OH− diffusion coefficient using MD calculations, and the
results were in good agreement with experimental observations.
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Park and coworkers [31] used MD calculations to investigate the role of functional
groups in channel morphologies for ionic conductivity as well as the chemical stability of
AAEMs. Dubey and coworkers [32] employed empirical FF-based classical MD calculations
to investigate and predict the solvation structure around the OH− in the vehicular transport
mechanism. This was done to utilize empirical FFs to overcome the limitations of ab initio
calculations and the transferability of potentials while investigating OH− transport in
AAEMs. The chemical stability of cations and water in AAEMs has also been investigated
using MD simulations [33]. Dekel and coworkers [33] observed a reduction in nucleophilic-
ity due to the wrapping of water molecules around the OH−. In their study, experimental
observations were used to corroborate the MD calculations. Yang and coworkers [34] while
investigating poly(biphenyl N-methylpiperidine) (PBP)-based AAEMs have used both MD
and DFT to complement their experimental study. In the study, the role of different quater-
nary ammonium cations on the backbone of PBP was investigated. The structure–activity
relationship was investigated using MD calculations which showed that the performance
of an AAEM depends on its structure. This is because the water channels that form in the
microstructure of the PBP-based AAEM influence ionic conductivity and in turn the overall
performance of an AAEMFC. In the same study, DFT calculations showed that the poor
performance of PBP-based AAEMs emanated from the alkalinity (low basicity) as well as
cation hydrophily.

3.3. Mesoscale Studies of AAEMs

Mesoscale simulations apply MD calculations in instances where the domains are
too large when it comes to explicitly accounting for individual atoms and molecules in
systems. It is akin to extending the applicability domain of MD simulations to explain
the mesoscopic properties of a system. Mesoscale simulations have been used extensively
to investigate polymer systems [43]. The most common technique used for mesoscale
simulations of polymers is dissipative particle dynamics (DPD) [43]. The DPD mesoscopic
simulation method has been used to investigate different mesoscopic structures of hydrated
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AAEMs [19,44–46]. Membrane degradation, as a result of the OH− nucleophilic attack
of cationic groups in AAEMs, is known to lead to a decrease in both the IEC and ionic
conductivity [47,48]. Molecular simulations have been used to gain fundamental insights
into AAEMs, with the aim of either accelerating experimental investigations or the rational
design of high-performance AAEMs. As mentioned earlier, OH− transport in AAEMs is
influenced by several factors.

The morphology of hydrated AAEMs can be predicted using coarse-grained (CG)
simulations at an affordable computational cost. However, because all the chemical inter-
actions are lost in CG calculations, the key to the accuracy of CG simulations lies in FF
construction [46]. Despite the application of DPD in modeling AAEMs, several issues have
had to be addressed to make it applicable in terms of understanding the morphological
properties of AAEMs. These include the inclusion of screening effects and electrostatic
charges that are usually overlooked in DPD, as well as accurately representing the actual
chemical species in the DPD force. DPD uses all-electron MD simulations to fit its model
parameters. Of note, however, is the fact that all the modeling length scales have their
merits. Atomistic calculations are plagued by computational costs, despite their accuracy
in predicting properties, and FF construction plagues the accuracy of CG simulations even
though they efficiently capture the morphology of the AAEMs [46].

Sepehr and coworkers [19] investigated the hydrated morphology and microstruc-
ture of a triblock copolymer functionalized with alkyl-substituted quaternary ammonium
groups in AAEMs using DPD. The copolymer was parametrized until the experimentally
reported morphology was obtained. DPD simulations revealed that it was the degree of
hydration that controlled the morphology of the AAEM copolymer. The morphology was
observed to transform from perforated and interconnected lamellae to perfect lamellae to
bicontinuous domains when the water content was varied from low to high (Figure 16). The
observations made from the DPD calculations were consistent with experimental observations,
particularly with regards to hydrophilic phase swelling upon hydration of the AAEM.

Figure 16. AAEM morphology simulated at different hydration levels. Reprinted with permission
from [19]. Copyright 2017 American Chemical Society.

Lee [46] used DPD to investigate different side chains that could enhance the ionic
conductivity; they looked at how hydration levels and IEC influence the mesoscale mor-
phology of hydrated PPO-TMA, functionalized with tetramethylamine groups. In the study,
the pathway for ion transport was expanded via the use of spacers tethered to PPO-TMA. It
was observed from the mesoscale simulations that both the IEC and hydration levels played



Membranes 2022, 12, 1051 14 of 19

a direct role in the diffusivity of the water molecules as well as the anions. Furthermore, the
addition of the spacers intensified phase segregation and the formation of water clusters,
whose size depended on the amount of hydration as well as the spacers’ length. This
study also offered insight into why there was retardation in the OH− diffusivity due to the
presence of water clusters.

In a follow up study, using mesoscale simulations, Lee [45] investigated the effect of
alkyl side-chain modification on the ionic conductivity of PPO-TMA. In the study, a coarse-
grain model of OH− was used to track ionic conductivity as well as diffusion coefficients
in situ as the calculation progressed. It was observed that ionic conductivity improved as a
result of alkyl side-chain modification due to the hydrophobicity of the chains, which is
required to mediate ion transport. Of note is that increased conductivity in the order of
26%–48% was observed. This was attributed to the microstructure of the polymer backbone
being lamellar upon side-chain modification as well as the water channels that formed.

In yet another study, Lee [45] used mesoscale simulations to investigate the hydration
of AAEMs with side-chain compositions of triblock copolymers. Aliphatic and aromatic
polymer backbones, hydrophobic and hydrophilic spacers, and cation groups (single and
multiple) were also considered in the study. Here, it was concluded that it is possible to
improve the morphology of AAEMs and anion transport at high hydration levels through
the use of hydrophilic spacers.

Luo and coworkers [49] investigated the mesoscale morphology of quaternary ammonium-
tethered triblock copolymers. From mesoscale calculations, they observed that morphology
was controlled by the degree of functionalization, the level of hydration, and the styrene con-
tent/percentage. Various meso-structure morphologies were observed when these parame-
ters were varied: lamellar (perfect, crossed, and imperfect) and gyroid-like morphologies
and the disordered, bi-continuous, and coexisting hollow micelles and layered structures.

The morphology of cation-functionalized AAEMs based on the triblock copolymer and
polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene have also been investigated using
mesoscale DPD calculations [44]. Polystyrene and polyethylene functionalization was used
to investigate hydrophilic and hydrophobic phases. In this study too, an increase in hy-
dration levels resulted in morphology transformation from perforated and interconnected
lamellae to perfect lamellae and eventually to a disordered bi-continuous morphology. An
analysis of the calculated RDFs revealed that water distribution was influenced by the
functional group, but the functional group had little effect on the polymer backbone.

3.4. Application of Machine Learning in Modeling Properties of AAEMs for AAEMFCs

Different modeling lengths and time scales have, of late, been used to generate descrip-
tors for the rational design of novel materials. The descriptors have, in turn, been used to
predict the properties of other novel materials when used as inputs for innovative modeling
approaches such as training machine learning models. Machine learning (ML) coupled
with artificial neural networks has been used to predict materials that would have other-
wise been computationally intractable using DFT calculations. This is because a material’s
configuration space is expansive to investigate using quantum mechanical calculations.
Quantum mechanical calculations have been mostly used, due to their accuracy, when it
comes to describing material properties.

The success of using DFT-calculated descriptors in the ML prediction of materials is
evident in catalysts for the hydrogen evolution reaction (HER), for example. Experimental
observations have also been used as descriptors in ML models, and, in some cases, de-
scriptors obtained using DFT calculations and experiments have been used in the rational
design of materials.

AAEMFCs have many complex components—including electrodes, polymers, and
binding electrolytes, amongst others—all of which offer an opportunity for deploying ML
models to investigate different systems. For example, there are several suitable cationic
groups, and there are unlimited polymer configurations and ionomer conformations. There
are also innovative approaches that can be used to improve particular properties of poly-
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mers (as addressed in the previous Sections 3.1–3.3). All these properties cannot be ex-
hausted using the modeling approaches described. This then calls for the use of ML models
in some cases. As was indicated in Figure 2, AAEM and AAEMFC research is a very
active field—numerous publications have appeared annually over the past decade. All the
information contained in these publications can be used to generate descriptors for use in
ML models.

The use of ML has already been applied to PEMs using a database consisting of
789 data points that were obtained from only 30 publications (out of the many publications
in the literature on the topic) [50]. This indicates that the deployment of ML models in this
area of study is still in its infancy, but with great growth potential. Other ML studies have
been carried out on different aspects of PEM electrolyzers [51–53]. The different aspects
investigated are the HER [52] and oxygen evolution reaction catalysts as well as the anode
porous transport layer (PTL) [51]. In the case of PTLs at the anode in polymer electrolyte
water electrolyzers, 2000 images from X-ray computed tomography and CFD calculations
were used to investigate oxygen transport using ML. Use was made of 18,000 configurations
to investigate binary catalysts for cathode application in the case of the HER using ML [52].
DFT-generated descriptors for 15 transition metals were used to investigate anodic OER
reactions using ML [53]. ML was also used to investigate transition metal dichalcogenides
for HER applications using millions of datasets in a materials database [54].

AAEMs are also attracting attention when it comes to using ML to predict the OH−

ionic conductivity. The scheme that was followed by Zhai and coworkers[55] is presented
in Figure 17. In their study, a deep learning algorithm was used to predict the OH− conduc-
tivity of AAEMs from data extracted from published experimental studies. Keywords such
as “anion exchange membrane” and “poly (2,6-dimethyl-1,4-phenylene oxide)/PPO” were
used to source relevant publications from the Web of Science database. Only 64 papers
were found that address PPO grafted with cationic groups.
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The classification of cationic groups using the various descriptors extracted from the
publication took place through the scheme shown in Figure 18.

Three prediction models were used to make OH− conductivity predictions. These
models were trained and tested. The trained models were then used to predict ionic
conductivities for cationic groups that were not used in developing the models. However,
the study did not go as far as considering polymer degradation.

Zou and coworkers [56] also used ML models, with five different algorithms and
data from published literature between 2010 and 2020, to predict the chemical stability
of AAEMs for AAEMFC applications. There are 86 publications that report experimental
observations on conductivity retention. A database consisting of physical and chemical
properties, membrane degradation, and the structure of polymers was constructed. Ham-
mett substituent constants were used to quantify the chemical structures and the different
AAEMs were classified using digital polymer structures. A decision tree was used to rank
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AAEMs with high alkaline stability, with the decision tree also suggesting spacers in the
cases where unstable polymer backbones were introduced. Of the five ML models used,
rapid and accurate predictions were obtained when an artificial neural network model
was used. Thus, the use of ML in making predictions is likely to reduce the number of
experiments that otherwise need to be carried out, to then better understand and design
high-performance AAEMs.
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3.5. Consistency of Modeling Length Scales with Experiments

As has been indicated in the respective Sections 3.1–3.3, computational techniques
have been used to investigate the properties of AAEMs and have in some instances either
offered insights on experimentally observed phenomena or have reported results consistent
with experimental observations. Results from DFT calculations have been consistent
with experimental observations as reported by [13,22,27,28] when it comes to alkaline
stability in the case of a butyl group-substituted imidazolium cation [13,27], a nucleophilic
attack/reaction [22], and the alkaline degradation pathways of polymers [28]. In the case
of alkaline degradation pathways, DFT calculations provided insight into the importance
of considering the local backbone morphology of the polymer in the rational design of
high-performance AAEMs, which had not been revealed from experimental observations.

MD calculations have also been used to provide insights into the implied relation-
ship between the water content and ionic conductivity [8,37,38]. Because the mobility
of hydrated H+ and OH− is high in alkaline media, their mobilities were assumed to
be similar [38,57], with some experimental studies proposing that OH− was transported
through either the Grotthuss [8] or vehicle mechanisms [38,39]. The MD calculations re-
vealed that the vehicular transport mechanism of OH− was favored over the Grotthuss
mechanism [38,42]. Consistency with experimental observations has also been observed
in cases where MD calculations have been used to investigate the alkaline stability and
physiochemical and electrochemical properties [42]; IEC influence on OH− diffusion in
AAEMs, membrane hydration, and different IECs [29]; the chemical stability of cations
and water [33]; and the structure–activity relationship [34]. Mesoscale calculations have
also been used to provide insights on the hydrated morphology and microstructure of a
triblock copolymer functionalized with alkyl-substituted quaternary ammonium groups
in AAEMs using DPD. DPD simulations revealed that it was the degree of hydration that
controlled the morphology of the AAEM copolymer. This observation was consistent with
experimental observations.
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4. Conclusions

This review has addressed the capability of computational approaches in investigating
the properties of AAEMs. In investigating different properties of AAEMs, the following
topics have been discussed: different computational length scales that span quantum me-
chanical calculations using DFT; different flavors of the MD calculations; and mesoscale
calculations. The application of different modeling length scales in AAEM studies is sum-
marized in table form (Table 1). DFT calculations are limited by computational cost when
it comes to investigating AAEM properties in large systems (systems with many atoms)
despite being highly accurate in describing the membrane properties of AAEMs and AAEM-
FCs. The accuracy of MD calculations is sensitive to force field construction; thus, care
should be taken in defining the actual interaction of the systems. DPD mesoscale calcula-
tions have been used to investigate the morphology of AAEM microstructure as a function
of hydrogenation levels and IEC. ML has also been used to predict high-performance
AAEMs as well as AAEM properties.
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