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Abstract: A recurring motif in soft matter and biophysics is modeling the mechanics of interacting
particles on fluid membranes. One of the main outstanding challenges in these applications is the
need to model the strong coupling between the substrate deformation and the particles’ positions as
the latter freely move on the former. This work presents a thin-shell finite element formulation based
on subdivision surfaces to compute equilibrium configurations of a thin fluid shell with embedded
particles. We use a variational Lagrangian framework to couple the mechanics of the particles and
the substrate without having to resort to ad hoc constraints to anchor the particles to the surface.
Unlike established methods for such systems, the particles are allowed to move between elements
of the finite element mesh. This is achieved by parametrizing the particle locations on the reference
configuration. Using the Helfrich–Canham energy as a model for fluid shells, we present the finite
element method’s implementation and an efficient search algorithm required to locate particles
on the reference mesh. Several analyses with varying numbers of particles are finally presented
reproducing symmetries observed in the classic Thomson problem and showcasing the coupling
between interacting particles and deformable membranes.

Keywords: interacting particles; lipid membranes; subdivision finite element; Helfrich–Canham
model; model for protein–membrane interaction

1. Introduction

A two-dimensional interacting assembly of particles embedded, yet free to move,
on a deformable fluid membrane is a recurring motif in material science, soft-matter,
and biophysical systems. This type of assembly serves as a model to understand diverse
phenomena, such as protein packing on viral capsids [1], cellular processes such as endo-
/exo-cytosis [2], and crystallization on curved geometries [3–6]. In these applications,
the two-dimensional (2D) nature of the structure is often critical to the application function.
Ever since the discovery of graphene, it has been well known that 2D materials have unique
electronic, mechanical, and optical properties, which distinguish them from their bulk 3D
counterparts [7]. Consequently, in recent decades there has been significant interest in
synthesizing and characterizing novel 2D materials with tailorable properties. Colloidal
particles, owing to their versatility and tunability, are playing a significant role in this
regard [8–10].

In addition to the practical applications noted above, 2D particle assemblies on thin
substrates are also adopted to probe fundamental questions on the structure of matter.
Numerous, particle-based experimental studies have focused on understanding crystal
structures and defects on curved geometries [11–17]. Curvature and geometrical frustration
induce crystalline states not found in flat geometries. For instance, while on flat infinite
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substrates, particles under isotropic repulsive interactions arrange themselves in a regu-
lar hexagonal lattice, on curved substrates (especially for a sufficiently large number of
particles) the arrangements invariably contain crystal defects [11,18].

Despite growing interest and advances in numerical methods to model colloids on
two-dimensional surfaces, most studies have focused on rigid geometries, i.e., the substrate
cannot deform in response to the forces exerted by the particles. Some studies do consider
the adhesion effects of colloidal particles on the shape of the substrate [19,20], but remain
focused on the local distortion effects. Long-range and cooperative interactions between
particles and substrates have largely not been explored.

A significant challenge in studying such particle systems using computational models
is the coupled interaction between the particles and the deformable substrate. Since the
particles are constrained to move on the substrate whose shape is itself determined by
particle interactions, the configuration of the particles and the substrate’s shape cannot
be independently determined. This poses unique computational challenges. Current
approaches impose constraints to anchor the particles on the substrate [21] or artificially
restrict the particles to lie at the nodes of the mesh used to discretize the substrate [22,23].
Relying on constraints to force particles on the substrate is computationally expensive and
cumbersome to implement, while restricting the particles’ positions to the nodes of the
substrate mesh imposes undue restrictions on the allowed particle/substrate equilibrium
configurations. In a recent work [24], we developed an alternative method that is efficient
and does not introduce approximations or spurious constraints in modeling the particles–
substrate interactions. In this Lagrangian approach, we parametrize the location of the
particles using coordinates mapped on the reference configuration. Together with the
deformation mapping of the substrate, these reference coordinates constitute the system’s
degrees-of-freedom. To obtain the actual particles’ locations on the deformed substrate, we
compose the reference coordinates with the substrate’s deformation map. Thus, constraints
are not required to anchor the particles to the surface. We applied this framework to
study interacting particles on a spherical fluid shell, employing a spectral Galerkin method
and accordingly discretizing the surface deformation map using a spherical harmonic
expansion. To circumvent computational issues stemming from the in-plane fluidity of
the substrate [25–27], a radial graph ansatz [28] was implemented. According to this ansatz,
the displacement is parametrized along the radial direction from the center of the reference
sphere. This is similar to the Monge representation used for flat membranes [29–31].

Although novel and effective in modeling the particle–substrate coupled interactions
correctly, this approach presented two key limitations. The radial graph ansatz implies that
only radial displacements from the spherical reference state can be computed. This restricts
the equilibrium configurations that can be obtained, precluding severely distorted shapes
as the ones appearing during endo-/exo-cytosis of cells and budding of viral capsids.
An example of such a state in multi-phase lipid vesicles is shown in Figure 2h of [32]. The
second major limitation regards the use of the spectral Galerkin method. As spherical
harmonics have to be computed using recursive algorithms, this approach is computa-
tionally expensive, especially when high order terms are required to better represent the
deformed configuration. In addition, the number of spherical harmonics needed up to
order ` grows quadratically (i.e., (`+ 1)2), leading to a rapid rise in computational cost
as higher accuracy is sought. The global nature of these functions and the coordinate
singularities at the sphere’s poles also requires very high-order quadrature rules. Finally,
due to Gibbs-type oscillations, the method is inadequate when equilibrium configurations
present sharp shape changes.

Even though our studies have so far focused on “zero temperature” equilibrium
states, where thermal fluctuations do not play a role, the ultimate application of the
computational models lies in finite-temperature studies, often simulated using Monte
Carlo methods. Indeed, for many biophysical and soft-matter systems at physiologically
relevant temperatures, thermal fluctuations play an important role. However, applying
the spectral Galerkin method in Monte Carlo simulations is not straightforward. Monte
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Carlo simulations typically perturb the system’s degrees-of-freedom with “moves” that
must satisfy the detailed balance condition. In spectral methods, the degrees-of-freedom are
the mode coefficients that do not have a clear physical interpretation and enforcing detailed
balance is not straightforward. A finite element approach with nodal displacement degrees
of freedom, on the other hand, is amenable to standard Monte Carlo approaches, and can,
therefore, be easily adapted to simulate finite-temperature systems.

In this article, we extend our previous work and remove the limitations described
above. We adapt the Lagrangian particle formulation to the context of C1 conforming
thin shell finite elements [33] that use interpolation functions based on a Loop subdivision
scheme [34,35]. The Loop subdivision finite element scheme requires only displacement
degrees of freedom while retaining C1 continuity of the shape functions across elements.
This is necessary to compute the curvatures terms appearing in the thin-shell elastic energy
and the mapping of the particles from the reference to the deformed mesh (as described
in Sections 2.2 and 2.3, this step may require the evaluation of the deformation gradient
tensor at the interface between elements). Furthermore, this finite element method (FEM)
is widely used in lipid membrane studies [25–27] and including the Lagrangian particle
approach into this framework can help other researchers in the area.

In addition to merging the Lagrangian particle formulation with thin-shell FEM
and removing the radial graph ansatz, an essential contribution of the present work are
the details of the search algorithm used to locate the particles on the reference mesh.
Since, in our Lagrangian approach, the particle positions are parametrized in the reference
configuration, the search for the elements to which each particle belongs is carried out only
on the reference mesh.

This paper is organized as follows. In Section 2.1, we present the variational formu-
lation of the substrate-particles system. We model the fluid substrate using the Helfrich–
Canham energy and the particle interactions using pair-wise isotropic potentials. The in-
plane fluidity of the substrate poses computational challenges, which are addressed using
the gauge-fixing procedure proposed in [27]. In Section 2.2, we present the Lagrangian formu-
lation for the gauge-fixed formulation of the Helfrich–Canham energy. We present the weak
form of the equilibrium equations which are then used to discretize the system. We briefly
comment on the implementation aspects of the Loop subdivision FEM method relevant
to the present problem in Section 2.3. In Section 2.4, the details for the proposed search
algorithm are provided. Finally, in Section 3, we discuss the details of a validation study
and the results of representative analyses to showcase the presented method.

2. Materials and Methods

This work considers a system consisting of a topologically spherical fluid shell with
N mutually interacting particles. The particles are embedded in the substrate but can
freely move along its surface. We focus on equilibrium configurations and assume that
the particles do not experience in-plane viscous forces. Since the particles cannot leave the
surface, the substrate can exert only normal forces on the particles and vice versa. This
model system (Figure 1) is motivated, for example, by the study of interacting proteins em-
bedded on lipid membranes. Note that, following studies in the computational biophysics
literature, in this work the term “membrane” is often used to refer to a fluid shell, despite
the difference in connotations of the two terms in continuum mechanics.
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Figure 1. Schematic showing the deformed configuration of the membrane embedded with particles.
Particle i has position vector xi.

2.1. Model Formulation

Without loss of generality, we assume that the substrate’s undeformed configuration
is a unit sphere (S2). Let us denote the surface of the deformed configuration as ω ⊂ R3

and f : S2 → ω as the deformation map of the deformed surface. We model the bending
elastic energy EHC of the substrate using the Helfrich–Canham energy [36]:

EHC =
∫

ω
κ(H − C0)

2 + κgK da , (1)

where H and K are the mean and Gaussian curvatures of ω with κ and κg their associated
bending stiffnesses, and C0 is the preferred curvature. Helfrich–Canham energy is a
widely used model for lipid membranes, and the energy (1) is expressed as an integral
on the current configuration ω with da being its area measure. This is in line with the
observation that a lipid membrane behaves like a two-dimensional fluid, and, consequently,
has no preferred in-plane reference configuration. Since the stretching modulus of a
lipid membrane is significantly larger than the bending moduli, the membrane is usually
approximated as area-preserving [37]. This incompressibility condition is enforced through
the area constraint: ∫

ω
da = 4π . (2)

We model particle interactions with a pair potential Φ(r), where r represents the 3D
Euclidean distance between the interacting particles. The total interaction energy is thus
given by:

U(x1, · · · , xN) =
N

∑
i=1

N

∑
j>i

Φ(||xi − xj||) , (3)

where xi represents the 3D position of particle i on the membrane and || · || denotes the
standard Euclidean norm. In this work, we will explore various potentials, including
Coulombic, harmonic, and Lennard–Jones interaction potentials (see Section 3).

The (Helmholtz) free energy E of the system is given by:

E = EHC + U(x1, · · · , xN)− pV , (4)

where p is the internal osmotic pressure on the substrate and V is the enclosed volume.
The area constraint in Equation (2) must be additionally imposed. In the simulations
presented in this work, we do so using a penalty method. Alternatively, the area constraint
can be enforced using a Lagrange multiplier, which can be numerically implemented using
the Augmented Lagrangian method.
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Remark 1. Instead of a fixed pressure applied on the membrane, it is common to constrain the
volume enclosed in its interior [25,26]. Under such a formulation, we define a non-dimensional
parameter v := V/V0 that measures the fraction of volume enclosed by ω with respect to the volume
enclosed by the unit (reference) sphere (V0 = 4π/3). Thus, we impose the condition:

1
3

∫
ω

f · d da =
4πv

3
, (5)

where d is the outward pointing (unit) normal to surface ω and f is the deformation map. The in-
tegral on the left side computes the total volume enclosed by ω, and has been obtained using the
divergence theorem:

∫
V div f dv =

∫
ω f · d da, where div f = 3. When required, this volume

constrained formulation is employed in the simulations presented in Section 3.

2.1.1. In-Plane Fluidity

In-plane fluidity, also known as reparametrization invariance, is a defining material
symmetry for fluid shells. For instance, in lipid membranes it arises because lipid molecules
can freely move on the surface facing very little resistance, conferring to the membrane a 2D
fluid-like behavior. In the Helfrich–Canham model, fluidity manifests as reparametrization
invariance of the energy shown in Equation (1). This can be inferred from the dependence
of the energy solely on differential geometrical quantities, which are independent of the
chosen parameterization of the surface. Thus, unlike the case of solid shells, in-plane
fluidity of fluid membranes implies that the latter does not have a prescribed “reference
configuration”.

A consequence of in-plane fluidity is that the tangential components of the Euler-
Lagrange equations vanish identically [37,38]. Only the normal components of the Euler–
Lagrange equations contribute to the equilibrium equations and, thus, the equations are
inherently underdetermined. It can be shown that equilibrium configurations, when they
exist, belong to an equivalence class of solutions [27]. Members of this class are different
parametric representations for the same surface and are related to each other by a diffeomor-
phism map between the parameter spaces. Since there are infinitely many diffeomorphisms
between spherical surfaces, they give rise to a grossly redundant solution space. This
causes significant challenges in numerical simulations where spurious zero-energy shear
modes [26] and severe mesh distortions [25] are commonly reported.

Remark 2. Note that, although the system considered here includes particles in addition to a fluid
substrate, the analysis presented above still applies. In-plane fluidity remains the material symmetry
for the problem. This is because the particles are free to move on the surface of the membrane
and they lack preferred reference positions. This is evidenced by Equation (3), where the particles’
interaction energy only depends on the current particles’ locations, i.e., {xi}. Thus, reparametrizing
the surface will neither change the positions of the particles nor their interaction energy. Therefore,
U is reparametrization invariant, and so is E in Equation (4). As the numerical issues noted in the
previous paragraph will also plague the membrane–particle system, in the next section we describe a
strategy to circumvent these issues.

2.1.2. Gauge-Fixing Procedure

Several numerical schemes have been developed to address computational issues
stemming from reparametrization invariance. Some methods impose local area incom-
pressibility (instead of global area constraint) [26] to suppress zero-energy modes, while
others [25,39] dampen tangential motion by introducing ad hoc in-plane energies whose
contributions are iteratively decreased to zero. Monge representation [29] or a radial graph
ansatz [28,40]—where the surface is parametrized using a single unknown function—have
also been used to circumvent reparametrization invariance. In this work, we employ
the gauge-fixing procedure recently proposed in [27], which is computationally efficient for
topologically spherical surfaces and does not require any iterative reduction in ad hoc
energy terms that change the physics of the model. In this approach, reparametrization
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invariance is viewed as a form of gauge symmetry, a symmetry of a physical theory whose
energy/action functional is invariant under certain continuous group of transformations.
Gauge theories always contain redundant degrees of freedom and have underdetermined
Euler–Lagrange equations. Additional constraints ought to be imposed to break this re-
dundancy in what constitutes the gauge-fixing procedure. We shall now summarize this
procedure for spherical fluid membranes as presented in [27].

The gauge-fixing procedure entails supplementing the free energy E (cf., Equation (4))
with an additional term, i.e.,:

Ẽ = E + EHM , (6)

where the second term is the harmonic map energy given by:

EHM =
∫

ω

1
2

gαβhαβ da . (7)

Here, gαβ (α, β = 1, 2) are the (contravariant) components of the metric tensor of the
deformed surface ω, and hαβ are the (covariant) components of the metric tensor of the
reference surface S2. Although it might seem that by adding EHM (Equation (7)) to the
free energy, we are modifying the surface constitutive law, this is not the case. Despite
the additional harmonic map term in Equation (6), at an equilibrium state, EHM does not
alter the Euler-Lagrange equations of the Helfrich–Canham energy. To see this, let us first
note that the tangential components of the Euler-Lagrange equation due to E are trivially
zero [37,41]. Thus, the only contribution to the Euler–Lagrange equations of (6) in the
tangential direction is due to EHM. The tangential variation of EHM is explicitly given
by [27]:

δ||EHM =
∫

ω
hαβ

[ 1
√

g
∂µ

(√
ggαµ

)
+ gµγΥα

µγ

]
vβ da , (8)

where Υ··· is the Christoffel symbol corresponding to the metric tensor h and vβ is the
tangential variation along ω. The term in the brackets in Equation (8) (for each
β ∈ {1, 2}) is the tangential component of the Euler-Lagrange equations of the harmonic
map. The normal component is given by:

δ⊥EHM =
1
2

∫
ω

hαβ

[
2bαβ − 2Hgαβ

]
w da , (9)

where w is a smooth variation normal to ω.
It has been shown in Theorem 3, Appendix D of [27] that

Theorem 1. If
1
√

g
∂µ

(√
ggαµ

)
+ gµγΥα

µγ = 0, for α ∈ {1, 2}, (10)

then δ⊥EHM ≡ 0 for all smooth variations w.

That is, if an equilibrium state satisfies the tangential component of the Euler–Lagrange
equations due to EHM, then the contribution to the normal component of the Euler–
Lagrange equations due to EHM is trivially zero. Thus, the normal component of the
equilibrium equation that determines the lipid membrane’s shape remains unmodified.
In other words, at equilibrium, the harmonic map energy only contributes to the Euler–
Lagrange equations’ tangential components and, in doing so, provides the constraints
necessary to prevent arbitrary tangential motions. The equilibria for the gauge-fixed and
the original formulation are identical.

The principal advantage of the gauge-fixing procedure is that adding the harmonic
map energy EHM in Equation (6) does not change the physics of the problem. Furthermore,
the gauge-fixed formulation is computationally more efficient than the previously men-
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tioned iterative formulations, since no additional energy terms are included that need to
iteratively be reduced to zero.

The gauge-fixing procedure developed in [27] only includes EHC while E (c.f.,
Equation (4)) also includes the particle interaction energy, U. However, this inclusion
does not affect the gauge-fixing procedure as the only relevant fact is that the energy is
reparametrization invariant. In light of Remark 2, we note that since the particles are also
“fluid-like”, Ẽ is also reparametrization invariant and the gauge-fixing procedure can be
applied to the present problem.

One notable feature of Equation (6) is that unlike E (which was invariant under
arbitrary reparametrizations of the surface), the gauge-fixed formulation, i.e., Ẽ , is invariant
under conformal reparametrizations of the surface. Thus, the gauge-fixing procedure does
not break completely the reparametrization invariance symmetry. It has been shown in [27]
that configurations that remain in the equivalence class are related by the six-dimensional
Möbius group of transformations. These six modes can be viewed as the rigid translation
and rotation modes of the sphere [42]. The three translational modes can be constrained by
imposing the “zero-mass” constraint [27]:∫

ω
R(X1, X2) da = 0 , (11)

where R(X1, X2) is a parametrization of the reference sphere. The three rotational modes
can, in theory, be fixed by landmark constraints [43]. In practice, however, we found that
reliable results (presented in Section 3) could be obtained without any landmark constraints
when we used the L-BFGS [44] numerical minimization algorithm.

2.2. Lagrangian Particle Formulation

One of the challenges in discretizing Ẽ is that the particles must always lie on the
surface ω that is itself determined by the configuration of the particles. The shape of the
surface and the arrangement of the particles are inextricably coupled, and one cannot be
solved independently of the other. In [24], we have developed a variational Lagrangian
formulation to address this challenge. In this formulation, the particles’ 3D positions on
ω are parametrized by the particles’ coordinates Xi on the reference surface S2, which,
therefore, become the particles’ degrees of freedom. Since the particles are fluid-like and
do not have a preferred reference configuration, Xi have no physical significance. To
obtain the actual 3D position xi of the particles, we compose Xi with the deformation map
f : S2 → ω, i.e., xi = f(Xi). This is illustrated schematically in Figure 2. Here, xi is the
position of particle i on ω, the relevant variable that appears in the interaction energy U
(see Equation (3)). Using the Lagrangian formulation, we can write the free energy in
Equation (4) with respect to the reference surface as:

E [X1, · · · , Xn, f] =
∫

S2

[
κ(H − C0)

2 + κgK
]

J dA− pV + U(f1, f2, · · · , fN) , (12)

where J =
√

g/
√

G is the Jacobian determinant, expressed in terms of g and G, the de-
terminants of the metric tensor of ω and S2, respectively, and we adopted the notation
fi := f(Xi). The area measure on S2 is denoted as dA. The degrees-of-freedom for the
system are X1, · · ·XN , and f, which are explicitly indicated in (12).

Equilibrium configurations are determined by finding critical points of (12) (or, the
gauge-fixed formulation (6)). In a variational setting, this requires taking the variations
of (12) with respect to the degrees-of-freedom, viz., f and Xi (i = 1, · · ·N). Let η(X) denote
the variation in f(X) and θi the variation in Xi. As discussed in [24], care must be taken
while computing the variation in fi = f(Xi). For each i ∈ {1, 2, · · · , N} we obtain:

δfi = δ[f(Xi)] = η(Xi) +∇f(Xi)θi , (13)
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where ∇f is the deformation gradient tensor expressed in terms of the surface gradient
∇(·). Using basis vectors aα := ∂f/∂Xα (α = 1, 2) for the tangent space to ω at X, we can
write∇f(X) = gαβaα ⊗ aβ, where gαβ are the contravariant components of the metric tensor
(defined explicitly in the next section). We see from (13) that δfi has two contributions: the
first one accounts for variation in the position of the substrate, and the second one accounts
for the variation of the particle positions in the reference configuration θi, which are pushed
forward to the current configuration by the deformation gradient tensor. Note that all the
tensor and vector fields in (13) are evaluated at Xi.

Figure 2. Reference and deformed configurations. The formulation degrees of freedom are the defor-
mation mapping f(X) and the particle positions Xi (i ∈ {1, 2, · · · , N}) in the reference configuration.

Weak Form

In this section, we derive the weak-form for the gauge-fixed formulation, cf. (6), (7),
and (12). For clarity, we shall begin by recalling some notation and important differential
geometry identities that we will use to derive the weak form. Much of what we present
in this section, especially concerning the weak form for the gauge-fixed Helfrich–Canham
energy, can be found in [27]. The computation of the first variation of the particles-substrate
energies using the Lagrangian formulation discussed in the previous section is based on
our previous work [24].

The basis for the tangent space of ω at X (parametrized by X1 and X2) is spanned by

aα := f,α =
∂f

∂Xα
∈ R3, α ∈ {1, 2} , (14)

where we use (·),α = ∂(·)/∂Xα. The components of the metric tensor of ω are given in
terms of the Euclidean dot product in R3 by

gαβ = aα · aβ .

The dual basis vectors of aα are denoted as

aα := gαβaβ ,

where gαβ are the contravariant components of the metric tensor and we used the Einstein
summation convention on the repeated indices. This convention is employed in the
following discussion as well. The unit normal field to ω is given by

d =
a1 × a2√

g
,

where we have used the identity
√

g = ||a1 × a2||.
The components of the second fundamental form of ω are given by

bαβ = −d,α · aβ = d · aα,β .
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The mean and Gaussian curvatures can then be computed as, respectively:

H =
1
2

bα
α = −1

2
aα · d,α , K = det(bα

β) , (15)

where, as per convention, tensor indices are lowered or raised by multiplying with gαβ or
its inverse gαβ.

To derive the weak form of the gauge-fixed functional, Ẽ , we compute its variation
δẼ with respect to η (the variation in f) and θi (the variation in Xi). It follows from
Equation (6) that

δẼ = δE + δEHM . (16)

The first variation on the right side is computed by taking the variations of all the
contributing terms in Equation (4). To do so, let us first define the following quantities:

nα = [κ(H − C0) + 2κgH]gαβd,β + [κ(H − C0)
2 + κg(K− bν

βaβ · d,ν)]aα+

γ
√

aaα − 1
3

pV[(f · d)aα − (f · aα)d] , (17)

mα = [−κ(H − C0)δ
α
β + κg(bα

β − 2Hδα
β)]a

β , (18)

where δα
β is the Kronecker delta and γ is the Lagrange multiplier enforcing the area con-

straint (see Equation (2)). It can be shown (see [25,27] for details) that:

δE =
∫

S2

[
nα · δaα + mα · δd,α −

1
3

pVd · η
]

JdA+

N

∑
i=1

N

∑
j>i

Φ′(rij)
(fi − fj)

||fi − fj||
· (δfi − δfj) , (19)

where rij = ||fi − fj||, and the variations δaα and δd,α are given by [26]:

δaα = η,α , (20)

δd,α = −[aβ
,α ⊗ d + aβ ⊗ d,α] · η,β − [aβ ⊗ d] · η,βα , (21)

where ⊗ is the tensor product of vectors in R3. The last term in Equation (19) was obtained
by taking the variation of U, cf. Equation (3), using xi = f(Xi). Equation (19) can be further
simplified using Equation (13) to obtain:

δE =
∫

S2

[
nα · δaα + mα · δd,α −

1
3

pvd · η
]

JdA+

N

∑
i=1

N

∑
j>i

[
[gij · η(Xi)− gij · η(Xj)] + [gij · aα(Xi)θ

α
i − gij · aα(Xj)θ

α
j ]

]
, (22)

where θα
i (α = 1, 2) are the components of θ, i.e., θi := θα

i aα, and

gij := Φ′(rij)
(fi − fj)

||fi − fj||
. (23)

The second term on the right side of Equation (16) can be evaluated by taking the
variation of Equation (7), leading to [27],

δEHM =
1
2

∫
S2

hαβ

(
− 2gαγaβ + gαβaγ

)
· η,γ J dA . (24)
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Finally, the weak form of the equilibrium equations is given by the condition:

δE + δEHM = 0 , (25)

for all admissible variations η : S2 → R and θα
i ∈ R, (i = 1, 2, · · · , N and α = 1, 2).

If requested, the area constraint (Equation (2)) must also be imposed.
We conclude this section with a remark. A minimization solver cannot be employed

to compute the equilibria of Ẽ using the weak form in Equation (25). Indeed, since EHM
does not need to be positive, a minimizer of Ẽ is not necessarily the minimizer of E . That
is, the gauge-fixing procedure of adding EHM to the energy could potentially turn local
minima into saddle points and local maxima. To circumvent this problem, in the numerical
results presented in Section 3, we minimize instead:

Ê := E + λg(EHM)2 + µ1

( ∫
S2

J dA− 4π
)2

+ µ2

∣∣∣ ∫
S2

R(X1, X2)J dA
∣∣∣2 , (26)

where the harmonic map energy appears as the second (squared) term. The coefficient λg
is a parameter that controls the strength of the harmonic map energy. The last two terms
are the area (Equation (2)) and “zero-mass” (Equation (11)) constraints, which are imposed
using a penalty formulation with parameters µ1 and µ2. The weak form associated with
this modified functional is given by:

δE + (2λgEHM)δEHM + λ1

∫
S2

aα · ηα J dA + λ2

∫
S2

R(X1, X2)aα · ηα J dA = 0 , (27)

where λ1 = 2µ1(
∫

S2 J dA− 4π) and λ2 = 2µ2
∫

S2 RJ dA. The last two terms in Equation (27)
were obtained by taking the variations of the last two terms in Equation (26) and using
the identity for variation in J, viz., δJ = Jaα · ηα. The terms δE and δEHM appearing in
Equation (27) are given by Equation (22) and Equation (24), respectively. If instead of a fixed
pressure p, a volume constraint (Equation (5)) was to be imposed, then the corresponding
penalty term must be added to Equations (26) and (27).

2.3. Loop Subdivision Finite Element Method for Thin Shells

To discretize Equation (26) and its weak form Equation (27), we employ a Ritz–
Galerkin approach. Due to the dependence of EHC on the mean curvature H, this dis-
cretization step requires the use of shape functions that ensure C1 continuity across the
elements. Furthermore C1 continuity across the elements is also required due to Lagrangian
particle formulation adopted here. Indeed, mapping particles, described in terms of their
reference positions, to the deformed mesh (where the interaction energies must be cal-
culated) requires the evaluation of the deformation gradient tensor, potentially also at
the interface between elements. To satisfy the C1 continuity requirement, we employ the
thin-shell finite element method based on (Loop) subdivision surfaces first proposed in [33]
for solid shells. This approach achieves C1 continuity solely using the nodal displacement
degrees-of-freedom of a triangular mesh. The shape functions are box-splines defined
in terms of barycentric coordinates on an element. Unlike traditional finite elements, these
functions are supported on a ring of neighbors around a given element (e.g., see Figure 2
in [26]). Despite having non-local support, this method is very efficient and it has been used
to solve a variety of shell problems, including problems on fluid shells [25–27]. Explicit
details of this method, including its implementation, can be found, for example, in [26,33].

A quirky feature of the method is that the shape functions are explicitly defined only in
a triangular element belonging to a regular patch, i.e., a (triangular) element whose vertices
have all valence equal to six. Elements that are not regular are called irregular. Evaluating
shape functions at a point inside an irregular element is not straightforward. The element
must be subdivided (using the Loop scheme [34]) as many times as required so that the
point of interest (e.g., the location of a quadrature point or of a particle) is inside a regular
(subdivision) element. Repeated subdivisions may be performed by explicitly multiplying



Membranes 2022, 12, 960 11 of 20

nodal coordinates with appropriate matrix operators. However, this subdivision step can be
computationally cumbersome depending on the number of required subdivisions. In [35],
an elegant and efficient implementation has been proposed to evaluate shape functions on
irregular elements without any explicit matrix operator multiplications. Sets of functions
called eigenbasis required for these calculations have been tabulated in [45] for a variety of
nodal valences.

The distinction between regular versus irregular elements is particularly relevant to
our problem for two reasons. Firstly, since we consider topologically spherical surfaces, it
is well known that it is impossible to triangulate such a surface only with regular elements.
According to Euler’s theorem, at least 12 nodes with valence five are needed to cover
topologically spherical surfaces. Secondly, while computing a particle’s 3D coordinates,
it is necessary to evaluate the shape functions at arbitrary points on the surface. Some
of these points could potentially be inside an irregular element or at the edges of one.
Explicit subdivision by multiplying nodal degrees-of-freedom by the subdivision matrix
(see Equation (70) in [33]) would be inefficient as this step must be performed for every
particle on an irregular element and at each step of the minimization iteration. In our
implementation, we therefore employ the eigenbasis discussed in [35,45] to evaluate shape
functions efficiently.

2.4. Search Algorithm

Computing the discretized energy and the weak form requires to evaluate the shape
functions at the coordinates of the particles. For example, this can be seen in Equation (22),
where the variation η and function aα appearing inside the summations must be evaluated
at Xi (i = 1 · · · , N). Since the shape functions are defined piece-wise over each element,
an important step in the finite element implementation consists in identifying the element
to which a given particle belongs. Mapping the particles to their corresponding element
will necessarily involve searching over the mesh elements. This section will present an
efficient search algorithm for this purpose.

We distinguish between two types of coordinates to parametrize particle positions—
global coordinates and local coordinates. Global coordinates are defined continuously on the
entire reference surface. In the formulation presented in Section 2.2, Xi are the particles’
global coordinates. Since the reference surface is spherical, we can use spherical coordinates
for the global coordinates, i.e., Xi = (ϑi, φi), where ϑi is the co-latitude angle of particle i
measured from the positive z-axis and φi is its azimuthal angle. Local coordinates, on the
other hand, are defined per element. For the Loop subdivision finite element scheme, we
use barycentric coordinates (u, v, w) (with u + v + w = 1) as local coordinates to locate
particles on a given triangular element.

The goal of the search algorithm is to map the global coordinates of a given particle
to its local (barycentric) coordinates on an element. The inputs to the algorithm are the
mesh (nodes and connectivity information) and global coordinates of a given particle.
The algorithm’s outputs are the local coordinates and the index of the triangular element.
The local coordinate and the index will then be used to evaluate the shape functions needed
in computing E and ∂E (Equations (12) and (22)).

Note that if we determine the (index of the) element containing the particle, then
we can determine the local coordinates using the ray-triangle intersection algorithm (see
Appendix A). Thus, the critical step in the search algorithm is to determine the element
containing a given particle. This can be naively achieved using a brute-force approach: loop
over all elements for each particle and determine if an element contains the particle using
the ray-triangle intersection method. However, this approach is inefficient as it involves
many failed and unnecessary searches.

Instead, a computationally efficient approach would be to bin the elements into
subgroups depending on their relative proximity in 3D (i.e., construct a hash table). Then,
given a particle position, we can use its coordinates to quickly identify the subgroup it
belongs to and only search in the elements belonging to that subgroup using the ray-triangle
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intersection algorithm. For all the elements in the subgroup to which the particle does not
belong, the ray-triangle intersection algorithm will return barycentric coordinates outside
the expected [0, 1] interval.

To construct the hash table, we divide R3 into MX × MY × MZ rectangular boxes,
in the X, Y, and Z direction, respectively. We begin by scaling the mesh such that it spans
the boxes. The scale factors must be stored for use later in the ray-triangle intersection step.
Although optional, this step allows to use integer arithmetic in the next steps, therefore
improving efficiency. We index each box with a tuple of integers (p, q, r), where p, q, and r
are the minimum X, Y, and Z coordinates of points in the box. We then associate to each
box the list of triangular elements that intersect the box. This is done using two loops as
illustrated in Algorithm 1. We first loop over all the elements in the mesh and determine all
the boxes a given element intersects. This list is called f aceList in Algorithm 1. Next, we
invert f aceList to associate each box with all the elements contained (even partially) in that
box. Note that an empty box (i.e., not containing any face) is not listed in the final hash
table. The resulting hash table that associates a given box with all the faces it intersects is
stored in boxList.

Algorithm 1 Hash table algorithm.

Input: ver ← vertices, con← connectivity, MX , MY, MZ ← Integers
Output: A hash table with entries {box : f ace1, f ace2, . . . } for each box.

scale ver s.t. the mesh spans MX MY MZ boxes
for f ace in con do

v1, v2, v3← coordinates of three vertices of f ace
Xmin ← floor[min(v1X , v2X , v3X)], Xmax ← ciel[max(v1X , v2X , v3X)]
Ymin ← floor[min(v1Y, v2Y, v3Y)], Ymax ← ciel[max(v1Y, v2Y, v3Y)]
Zmin ← floor[min(v1Z, v2Z, v3Z)], Zmax ← ciel[max(v1Z, v2Z, v3Z)]
listOfBoxes = all boxes with index (p, q, r) with p ∈ [Xmin, Xmax], q ∈ [Ymin, Ymax], r

∈ [Zmin, Zmax].
Append { f ace : listO f Boxes} to the temporary dictionary data-structure f aceList.

end for
for box in all boxes do

for f in f aceList do
if box ∈ f .VALUES() then

Construct a hash table boxList with entries {box : f } or append f to
box.VALUES() if entry with box key already exists.

end if
end for

end for
Return boxList

Once the hash table boxList is generated, the search algorithm that converts global
to local coordinates consists of the following steps. We first use the global coordinates
to determine the box in which the particle lies. This is a straightforward calculation as it
entails using integer arithmetic. Then, the identified box is passed to the hash function,
which returns the list of triangles associated with it. Finally, the ray intersection algorithm
is used to search through the list of elements in the identified box. This final search returns
the index of the triangle which contains the particle and the particle barycentric coordinates
in the identified element. The overall search strategy is schematically shown in Figure 3.
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(#i,�i)

Figure 3. Schematic of the search algorithm used to convert the global coordinates (ϑi, φi) of particle
i to its local barycentric coordinates (ui, vi, wi). The algorithm first locates the list of faces/element
IDs (schematically highlighted in red) in the hash table (generated by Algorithm 1) and then searches
this list with the ray-triangle intersection algorithm to compute the barycentric coordinates and finds
the element ID.

The choice of the number of boxes (determined by MX , MY, and MZ) will determine
the algorithm’s efficiency. At one extreme, MX = MY = MZ = 1 (i.e., the mesh is contained
in a single box) corresponds to a hash table with only one box containing all the faces. In this
case, determining the particle barycentric coordinates and element would be equivalent
to a brute-force search. The other extreme, consists in choosing large values for MX, MY,
and MZ, so that few elements are contained in each box. In this case, the hash table will
contain a large number of entries with the same elements contained in many boxes. This is
also inefficient. Although MX, MY, and MZ should be chosen depending on the number
of elements used to discretize the domain of interest, in our numerical examples we have
noticed that the efficiency of the search algorithm is not highly sensitive to these parameters.
For most of the results presented in Section 3, we use a finite element mesh with 2562 nodes
and 5120 triangular elements, and we adopt MX = MY = MZ = 15. The resulting hash
table (which does not include empty boxes) contained 1111 entries, each entry containing
an average of 16 elements.

We conclude this section by noting that, due to the Lagrangian particle formulation,
the particles’ global positions in the reference configuration are the input to the search
algorithm. As a result, the hash table generated using Algorithm 1 needs to be computed
only once for a given discretization of the reference sphere. Even as model parameters are
modified, which, in turn, changes the substrate shape and the organization of the particles,
the hash table does not need to be updated. Thus, the Lagrangian particle approach
combined with this search algorithm offers a significant reduction in computational effort.

3. Results and Discussion

We now present computational results generated using the finite element formulation
described above. We obtain these results by minimizing the discretized form of (26) using
the weak form (27) with a gradient-based L-BFGS minimization solver [44]. A random
initial state was used to initiate minimization. Unless otherwise stated, for all the results pre-
sented here, we used an icosahedrally symmetric spherical triangular mesh with 2562 nodes
and 5120 elements. The chosen penalty parameters (cf., (26)) were µ1 = 1000, µ2 = 1000
and the preferred curvature C0 was set equal to zero. Unless indicated otherwise, no vol-
ume constraint was imposed and the internal pressure was set to zero. Since the system’s
topology was not allowed to change, the value of κg does not influence the equilibrium
state, a fact attributed to the Gauss–Bonnet theorem. Recall that the parameter λg weighs
the effect of the harmonic map energy and since this parameter appears as a penalty in
Equation (26), a larger value is ideal but can cause slow convergence. In the following
simulations, the value λg was chosen to aid convergence. We remark that, once computed,
the equilibrium configuration is not affected by the value λg.

Before presenting our results we note that caution should be exercised while visualiz-
ing the substrate/particle system, especially when coarser meshes are used. As shown in
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Figure 4a, when 642 nodes (and 1280 elements) were used to simulate a system with N = 3
particles, the particles seem to lose contact with the surface. That is, the particles appear
to lie inside the triangular enclosure, hovering below the surface, despite the Lagrangian
particle framework being designed to prevent such situations. The cause of this appar-
ent discrepancy stems from the visualization scheme used. In Figure 4a, only the nodal
positions are used to generate the surface. However, the actual surface used by the Loop
subdivision finite element scheme is the surface generated using box splines [34]. When
this fact is taken into account, the discrepancy is resolved (see Figure 4b).

(a) (b)

Figure 4. (a) Apparent loss of contact between particle and surface while visualizing the system using
the underlying triangular mesh. (b) Actual surface shape after interpolation using Loop subdivision
box splines (the underlying triangular mesh, shown in blue, is reported for reference).

To validate the proposed method, we computed equilibrium configurations of particles
interacting via pair-wise Coulombic interactions, i.e., Φ(r) = 1/r. The results of our
simulations are presented in Figure 5. For these simulations, we chose κ = 1 and λg = 10.
We observe that the system replicates the symmetry configurations of the classical Thomson
problem [46], which would correspond to the large bending stiffness limit. In the figure, we
have employed the Schönflies notation for the symmetry groups: Dnh represents an n-fold
dihedral symmetry with a horizontal mirror plane, Oh represents octahedral symmetry, etc.

N=3

D3h (Triangle)

N=4

Td (Tetrahedron)

N=5

D3h (Triangular  
         bipyramid)

N=6 N=7

Oh (Octahedron)
D5h (Pentagonal  
       bipyramid)

N=8 N=9 N=10 N=11 N=12

D4d (Square 
antiprism)

D4d (Gyroelongated 
square bipyramid)

D3h (Triaugmented 
triangular prism)

C2v (Edge-contracted 
icosahedron)

Ih (Icosahedron)

Figure 5. N particles interacting via Coulomb electric potential over a spherical surface with high
bending stiffness. This case study approaches the classic Thomson problem where electric charges
interact on a rigid sphere. The same symmetries computed in the Thomson problem are obtained for
N = 3 to N = 12 [46], providing validation of the proposed approach. The finite element mesh used
to discretize the underlying deformable substrate is shown together with lines (blue) to highlight the
symmetry state of the computed particles (red) positions.

Figure 6 shows the effect of changing the bending stiffness κ for N = 12 particles
interacting via a Lennard–Jones potential Φ(r) = ε[(re/r)12 − 2(re/r)6]. In these simula-
tions ε = 0.1, λg = 2, re = 1.3, and the particles are initially arranged in an icosahedrally
symmetric configuration. κ was initially set equal to 3 and was gradually decreased while a
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numerical continuation scheme used the equilibrium configuration computed at each step
as the initial guess for the subsequent step. As the bending stiffness κ decreases, a “stel-
lated” particles/substrate configuration emerges, demonstrating the ability of the proposed
formulation to model large shape changes and deformation of the coupled system.
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Figure 6. Particle−substrate configurations obtained while gradually decreasing the bending stiff-
ness κ. The system is composed of N = 12 particles interacting via Lennard–Jones potential and
originally arranged in an icosahedral configuration. As the substrate bending stiffness decreases,
the system configuration evolves from spherical to “stellated”, demonstrating that the proposed
formulation can be employed to study large changes in the deformation and configurations of the
particle/substrate system.

The proposed formulation could be employed to study pinching of the substrate due
to the particle interactions. We demonstrate this ability by analyzing a system with N = 40
particles interacting via a harmonic interaction potential V = (r− re)2/2, with re = 0.8.
The other simulations parameters are κ = 1, λg = 5, and a volume constraint is also
included. The state shown on the left of Figure 7 corresponds to a reduced volume v = 0.95
(cf., Equation (5)), while the state on the right corresponds to a reduced volume v = 0.90.
These pinched states are reminiscent of viral budding or exo-cytosis. We note that it
would not be possible to model the pinched neck state (shown in Figure 7, right) using the
radial graph ansatz presented previously in [24] as the radial vector will no longer be a
well-defined, single-valued function.

V/V0 = 0.95 V/V0 = 0.90
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Gauss curvature

Figure 7. Particles interacting via harmonic potential over a deformable substrate with decreasing
volume constraint. The volume is first decreased to 0.95 (left) and then to 0.9 (right) of the reference
volume of a unit sphere (4/3π) producing budding of the underlying substrate. Lateral views from
different angles (large panel and small bottom panel) and top/inclined view (small top panel) are
provided. The mesh shown has been subdivided once according to the Loop scheme.

We conclude by presenting an example including a larger number of particles (N = 200)
interacting via the Lennard–Jones potential described above. Initially, particles are ran-
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domly distributed on a half of the reference sphere. Subsequently, their equilibrium
distance re is gradually increased from re = 0.15 to re = 0.31 in steps ∆re = 0.01, while
the remaining model parameters remain constant (κ = 2, ε = 0.1, and λg = 10). As re in-
creases, the particles move apart and start enveloping the substrate, until the full substrate
is covered and deformed (Figure 8). This final example shows, once more, the ability of
the proposed formulation to model the particles/substrate coupling and the effect of the
particle arrangement on the substrate’s curvature.
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re = 0.31

Figure 8. N = 200 particles interacting via Lennard−Jones potential and gradually covering a
deformable substrate. In the system’s initial configuration, the particles are present on a half of the
reference sphere. The particles envelope and deform the full substrate as re increases showing the
strong particle−substrate coupling.

4. Conclusions and Future Applications

This work presents a thin-shell finite element formulation combined with a Lagrangian
particle framework to compute equilibrium states of interacting particles moving on a
deformable substrate. We present the implementation of the formulation in the context of
fluid shells, which we model with the Helfrich–Canham energy. Fluid shells are intrinsically
degenerate structures, as any tangential motion along the surface of the shell does not
contribute to its elastic energy. As a result, spurious zero-energy modes are present and
commonly hinder the simulations of these systems. In this work, we adopt the gauge-fixing
procedure recently developed in [27] to resolve the computational problems stemming
from this degeneracy.

Since the particle positions are parametrized in the reference configuration, an attractive
feature of the proposed formulation is that computation of terms in Equations (26) and (27)
only requires the shape functions at locations on the reference mesh. An efficient search
algorithm has been implemented to locate particles on the reference mesh by binning the
mesh elements into boxes. Because of the referential description, the hash table generated for
this purpose only needs to be created once.

This work generalizes and overcomes limitations of previous approaches to study
particles moving of deformable substrates. Importantly, particles are not artificially pinned
to the nodes of the substrate’s mesh, lifting a spurious constraint that limited the configura-
tions achievable by the particles/substrate system. Furthermore, a radial graph ansatz was
not necessary due to the gauge-fixing formulation that we have employed.

In this work, we disregard the dynamics of the system and solely focus on equilibrium
configurations. Moreover, by employing the Helfrich model for the membrane, the present
work focuses on idealized fluid membranes where in-plane viscosity is zero. However, it
has been known that lipid membranes are viscoelastic [47,48]. In this regard, it is possible
to extend the approach presented here to incorporate viscoelastic effects. Time dependence
of the deformation map of the membrane must be assumed, i.e., f(X, t). Since the particle
positions are parametrized in the reference configuration (see Section 2.2), they must also
explicitly depend on time, i.e., Xi(t). The absolute velocity of the particle is thus given by

ẋi(t) =
d
dt

f(Xi(t), t) = ∇f(Xi(t), t)Ẋi(t) +
∂

∂t
f(Xi(t), t) , (28)

where the dot represents the time derivative. Note that the second term in Equation (28)
represents the velocity at the material point Xi on the membrane, thus the relative velocity
of the particle with respect to the membrane is given by the first term of Equation (28),
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i.e., ∇f(Xi(t), t)Ẋi(t). To model viscous drag on the particle due to the membrane, suitable
models that depend on the relative velocity can be used. Recall that the gauge-fixing
procedure had to be employed to circumvent problems due to the in-plane fluidity of the
membrane. A viscoelastic model for the membrane obviates the need for this procedure.

Even though the finite element formulation has been presented for topologically
spherical shells, the Lagrangian particle formulation and the search algorithm can be easily
adapted to other topologies. The restriction to spherical surfaces is warranted by the
gauge-fixing procedure that is employed to deal with fluid shells. As discussed in [27], this
procedure is guaranteed to work only for spherical surfaces. However, the formulation
presented above can be easily extended to other topologies in the case of solid shells, where
material laws that include an in-plane stretching energy would prevent the tangential
zero-energy modes typical of fluid shells.

Although in this work we only consider “zero temperature” equilibrium states, where
thermal fluctuations are not accounted, the ultimate application of the presented for-
mulation is to study the finite-temperature effects. Indeed, for many biophysical and
soft-matter systems at physiologically relevant temperatures, thermal fluctuations play
a key role [49,50]. The method presented here—where degrees of freedom are the nodal
displacements of the mesh and the particles’ positions in the reference configuration—can
be easily combined with standard Monte Carlo schemes used to simulate finite temperature
systems. As the particles’ Monte Carlo moves occur in the reference configuration, locating
the elements to which the particles belong is, once again, computationally inexpensive and
based on the hash table generated only once for this purpose.
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Appendix A. Ray-Triangle Intersection Algorithm

Consider the schematic shown in Figure A1. Let a particle be located at P with global
coordinates (ϑ, φ) and lying on the element ABC, whose vertices have position vectors
a, b, and c, respectively. To determine the barycentric coordinates (u, v, w) with respect
to the triangle ABC, we adopt the efficient Möller–Trumbore ray-triangle intersection
algorithm [51].

<latexit sha1_base64="hpnySaJh+/CAhHti5mNvHw101yA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsN83S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4IlnICDa5NEwiNqrW3Lq7AFonXkFqUKA9qn4NxzFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8oQNLJRZU+9ni1jm6sMoYhbGyJQ1aqL8nMiy0nonAdgpsIr3q5eJ/3iA14Y2fMZmkhkqyXBSmHJkY5Y+jMVOUGD6zBBPF7K2IRFhhYmw8FRuCt/ryOule1b1mvfHQqLVuizjKcAbncAkeXEML7qENHSAQwTO8wpsjnBfn3flYtpacYuYU/sD5/AEWdo5I</latexit>

�

<latexit sha1_base64="8AZcxzfOp2VBpPEWPEeau/S9E+U=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6rLoxmUF+4CmlMn0ph06mYSZiVBCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByl/udJ1Sax/LRTBPsR3QkecgZNVby/YiacRBmOBuoQbXm1t05yCrxClKDAs1B9csfxiyNUBomqNY9z01MP6PKcCZwVvFTjQllEzrCnqWSRqj72TzzjJxZZUjCWNknDZmrvzcyGmk9jQI7mWfUy14u/uf1UhPe9DMuk9SgZItDYSqIiUleABlyhcyIqSWUKW6zEjamijJja6rYErzlL6+S9kXdu6pfPlzWGrdFHWU4gVM4Bw+uoQH30IQWMEjgGV7hzUmdF+fd+ViMlpxi5xj+wPn8AXLNkfc=</latexit>er

<latexit sha1_base64="ldGOLZoaC/9JwNIEdqvkKmrQMEI=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWakqMuiG5cV7AM6Q8mkmTY0kxmSTKEM/Q03LhRx68+482/MtLPQ1gOBwzn3ck9OkAiujeN8o9LG5tb2Tnm3srd/cHhUPT7p6DhVlLVpLGLVC4hmgkvWNtwI1ksUI1EgWDeY3Od+d8qU5rF8MrOE+REZSR5ySoyVPC8iZhyE2XQ+cAbVmlN3FsDrxC1IDQq0BtUvbxjTNGLSUEG07rtOYvyMKMOpYPOKl2qWEDohI9a3VJKIaT9bZJ7jC6sMcRgr+6TBC/X3RkYirWdRYCfzjHrVy8X/vH5qwls/4zJJDZN0eShMBTYxzgvAQ64YNWJmCaGK26yYjoki1NiaKrYEd/XL66RzVXev643HRq15V9RRhjM4h0tw4Qaa8AAtaAOFBJ7hFd5Qil7QO/pYjpZQsXMKf4A+fwAovJHG</latexit>v0

<latexit sha1_base64="qN+z02a1wMok7QM6lugnFzLCbag=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWakqMuiG5cV7AM6Q8mkmTY0kxmSTKEM/Q03LhRx68+482/MtLPQ1gOBwzn3ck9OkAiujeN8o9LG5tb2Tnm3srd/cHhUPT7p6DhVlLVpLGLVC4hmgkvWNtwI1ksUI1EgWDeY3Od+d8qU5rF8MrOE+REZSR5ySoyVPC8iZhyE2XQ+cAfVmlN3FsDrxC1IDQq0BtUvbxjTNGLSUEG07rtOYvyMKMOpYPOKl2qWEDohI9a3VJKIaT9bZJ7jC6sMcRgr+6TBC/X3RkYirWdRYCfzjHrVy8X/vH5qwls/4zJJDZN0eShMBTYxzgvAQ64YNWJmCaGK26yYjoki1NiaKrYEd/XL66RzVXev643HRq15V9RRhjM4h0tw4Qaa8AAtaAOFBJ7hFd5Qil7QO/pYjpZQsXMKf4A+fwAqQJHH</latexit>v1

<latexit sha1_base64="r7dZFGZ1BXP6R5nS+xj9oM4YEMw=">AAAB83icbVBNSwMxFHxbv2r9qnr0EiyCp7JbinosevFYwdZCdynZNNuGZpMlyRbK0r/hxYMiXv0z3vw3Zts9aOtAYJh5jzeZMOFMG9f9dkobm1vbO+Xdyt7+weFR9fikq2WqCO0QyaXqhVhTzgTtGGY47SWK4jjk9Cmc3OX+05QqzaR4NLOEBjEeCRYxgo2VfD/GZhxG2XQ+aAyqNbfuLoDWiVeQGhRoD6pf/lCSNKbCEI617ntuYoIMK8MIp/OKn2qaYDLBI9q3VOCY6iBbZJ6jC6sMUSSVfcKghfp7I8Ox1rM4tJN5Rr3q5eJ/Xj810U2QMZGkhgqyPBSlHBmJ8gLQkClKDJ9ZgoliNisiY6wwMbamii3BW/3yOuk26t5VvfnQrLVuizrKcAbncAkeXEML7qENHSCQwDO8wpuTOi/Ou/OxHC05xc4p/IHz+QMrxJHI</latexit>v2

Z

Y

X

<latexit sha1_base64="LuqpF4q9Q9WYvhpNB6pWG8Q21aY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVUY9FLx4r2A9pl5JNZ9vQZHdJsoWy9Fd48aCIV3+ON/+NabsHbX0QeLw3M5l5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRU8epYthgsYhVO6AaBY+wYbgR2E4UUhkIbAWju5nfGqPSPI4ezSRBX9JBxEPOqLHSU3dMlRmiob1yxa26c5BV4uWkAjnqvfJXtx+zVGJkmKBadzw3MX5mx3EmcFrqphoTykZ0gB1LIypR+9l84Sk5s0qfhLGyLzJkrv7uyKjUeiIDWympGeplbyb+53VSE974GY+S1GDEFh+FqSAmJrPrSZ8rZEZMLKFMcbsrYUOqKDM2o5INwVs+eZU0L6reVfXy4bJSu83jKMIJnMI5eHANNbiHOjSAgYRneIU3RzkvzrvzsSgtOHnPMfyB8/kDEVSQmA==</latexit>

#

Figure A1. Schematic with key quantities used in the ray-triangle intersection algorithm.
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Let the unit radial vector from the origin to P be parametrized as:

er = 〈cos φ sin ϑ, sin φ sin ϑ, cos ϑ〉 .

The edges of the triangle are given by:

v0 = (b− a) , v1 = (c− a) ,

and the normal vector to the triangle is:

n = v0 × v1 .

In addition, let us define the following variables:

t :=
a · n
er · n

;

p := ter ;

v2 := p− a = ter − a ;

d00 := v0 · v0 ;

d11 := v1 · v1 ;

d20 := v2 · v0 ;

d21 := v2 · v1 .

The local barycentric coordinates are then given by:

v =
d11d20 − d01d21

(d00d11 − d2
01)

;

w =
d00d21 − d01d20

(d00d11 − d2
01)

;

u = 1− v− w .
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