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Abstract: By using the recently generalized version of Newton'’s shell theorem, analytical equations
are derived to calculate the electric interaction energy between two separated, charged spheres
surrounded outside and inside by electrolyte. This electric interaction energy is calculated as a
function of the electrolyte’s ion concentration, temperature, distance between the spheres and size of
the spheres. At the same distance between the spheres, the absolute value of the interaction energy
decreases with increasing electrolyte ion concentration and increases with increasing temperature.
At zero electrolyte ion concentration, the derived analytical equation transforms into the Coulomb
Equation Finally, the analytical equation is generalized to calculate the electric interaction energy of
N separated, charged spheres surrounded by electrolyte.
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1. Introduction

Recently, an analytical equation was derived that is a generalization of Newton's
shell theorem [1,2]. By using this equation (see Equation (1)), one can calculate the electric
potential, V, around a surface-charged sphere surrounded inside and outside by electrolyte
at a distance Z from the center of the sphere (see also Equation (9) in e.g., [1]):

keQAp -2 . [ R
Z = A — Z >R 1
V(Z,Q) ¢ ZR e D smh(AD) atZ > (1)

where k, = (47tep) ! is the Coulomb’s constant, g is the vacuum permittivity, Ap is the Debye
length, Q is the total charge of the homogeneously charged surface of the sphere of radius
R and ¢, is the relative static permittivity of the electrolyte. Note that recently, by using
Equation (1), the electric energies have been calculated [3], such as the potential electric
energy needed to build up a surface-charged sphere, and the field and polarization energy
of the electrolyte inside and around the surface-charged sphere. In this paper, Equation (1)
is used to derive an analytical equation to calculate the interaction energy between two
separated surface-charged spheres surrounded inside and outside by electrolyte. This
equation is a generalization of Coulomb’s law [4] that gives the interaction energy between
two charges embedded in a vacuum. By means of the equation derived in this paper,
one may get closer to study the long-range charge—charge interaction between vesicles
or cells. The head groups of membrane lipids have either a single charge (e.g., tetraether
lipids [5,6]) or an electric dipole (e.g., phospholipids [7,8]). Theoretical models of lipid
membranes usually focus on short-range (Van der Waals) lateral interactions between the
nearest neighbor lipids and ignore the long-range charge—charge interactions [8]. This is
because in the case of long-range interactions one has to consider the entire system rather
than the lateral interactions between the nearest neighbor lipids only. It is much more
difficult to model a lipid membrane containing single-charged head groups [9]. Between
lipids with single-charged head groups there is long-range interaction, i.e., where the
two-body potential decays algebraically at large distances with a power smaller than the
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spatial dimension [10], and, thus, when modeling this system one has to consider the entire
system rather than the interactions between the nearest-neighbor lipids.

Deriving Equation (1), the general solution of the screened Poisson equation was
utilized (see Equation (4) in [1] or (A5) in Appendix A), an equation that is valid if
the electrolyte is electrically neutral [11]. It is important to note that the screened Pois-
son equation (Equation (A4)) is different from the Poisson—Boltzmann equation (see
Equations (A1) and (A3)). The Poisson—Boltzmann equation can be used to calculate the
potential energy of an arbitrary, electroneutral ion solution (i.e., electrolyte). However,
for the solution (see Equation (A2)) one has to know the charge density of the ions in the
electrolyte (i.e., the Boltzmann distribution; see Equation (A3)), which depends on the
potential, V, itself. Thus, only an approximative solution is available (the Debye-Hiickel
approximation [12]), which is valid when |z;gV/(kgT)| < 1 (where g: charge of a monova-
lent ion (either positive or negative), z;: charge number (or valence) of the i-th type of ion,
kp: Boltzmann constant, T: absolute temperature). Using the screened Poisson equation
(Equation (A4)), one can calculate the potential energy of an electrolyte that also contains
external charges. The external charges are embedded into the electrolyte (like the charges
of the surface-charged sphere) but are not part of the electrolyte itself. For the solution,
one has to know the charge density of the external charges, pex(r) (see Equation (4) in [1]
or Equation (A5) in Appendix A), i.e., distribution of the charges on the surface-charged
sphere and not the distribution of the ions in the electrolyte. In our case, it is assumed that
the charges on the surface of the sphere are homogeneously distributed and, in this case,
Equation (1) is the exact solution of the screened Poisson Equation

Finally, we notice that by means of the analytical equation derived in this paper one
can calculate the dependence of the electric interaction energy from the distance, charge
and size of the spheres and from the electrolyte’s ion concentration and the temperature.
In the case of our calculations, the surface-charge density of the charged spheres at every
radius is ps = —0.266 x C/m?. This is the charge density of PLFE (bipolar tetraether lipid
with the polar lipid fraction E) vesicles if the cross-sectional area of a PLFE is 0.6 nm? and
the charge of a PLFE molecule is —1.6 X 1019 C [5,6].

2. Model

Figure 1 shows two charged spheres. The distance between the centers of the two
spheres is Z. The potential created by the left charged sphere is calculated at point P2.

Figure 1. Two charged spheres: left circle represents a charged sphere of radius R; and its total surface
charge is Q1. Right circle represents a charged sphere of radius R and its total surface charge is Q>.
The distance between the centers of the two spheres is Z. The potential created by the left charged
sphere is calculated at point P2.
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The red ring represents charges on the right charged sphere. Their distance from point
P1is R. « is the angle between vector Z and a vector pointing from the center of the right
sphere to any of the points (P2) of the red ring.

Based on the generalized shell theorem [1], the electric potential created by the left
charged sphere at point P2 is Equation (2):

R
— A /
V(R) = R, e 'p sznh(/\D> (2)

The distance between point P1 and any of the point charges located on the red ring is
Equation (3):

R(ax,Z,Rp) = \/(R2Si7’l(0())2 + (Z — Rycos(w))? = \/R22 + Z% —2ZRycos(a)  (3)

The interaction energy between the left charged sphere and the charges of the red ring
is Equation (4):
E(a)da = V(R)pa2Rpsin(a)mRy X da =
R(&,Z,Ry)

keQ1Ap T Ay af R\ Qo
SR, ZR)R; € D sinh T s2sin(a) X du

)

where 2Rpsin (x)7tRy X da is the surface area of the red ring.
Finally, the interaction energy between the left and right sphere is Equation (5):

4 /7r sin(a) o~ VRAZZ2ZRocos(@)/Ap gy (5)
Jo \/R2+ 72 —2ZRycos(a)

E= /(;HE(zx)dzx =

where A = k“?%sinh /15—1 %
rixg D
Let us do the following substitution in the integral: u = cos (o).
Thus, in Equation (5) sin(e) da can be substituted by —du and we get Equation (6):

A /1 1 o~V RZ+72=27Rou/ Ap g, (6)
-1 \/Ry? + 72 — 2ZRyu

Finally, let us do this substitution in Equation (6): w = — \/ Ry + Z2 —2ZRou/Ap
and thus

_ ZRy ) ‘
= v o2z, W and we get Equation (7):
— A/\D w(uzl) w - A/\D w W(uzl)
FT IR, /w(u:fn e = Ry 1 utu=—) @)
where
2 2
w(u:_l):_\/Rz +Z +2ZR2:_(Z+R2) ®

AD AD

while in the case of Z > Ry:

w(u_l):_\/RzerZZ—zzzzz:_\/m:_(z—zzz) o

AD AD AD

Thus, from Equations (7)—-(9) we get Equation (10):

_Z-Ry _ Z+Ry _z
E(Z)=4%]e ™ —e " | =432 0 x 2sink( K2 ) =
7R, ZR; AD (10)
keQQoAp® i n (R giph ((Re ) o= 2/A
LSrRlRZZ sinh p¥ sinh xo)e D

where Z > Ry + R;.
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3. Results

In Figures 2 and 3, based on Equation (10), the interaction energy between two charged
spheres (surrounded inside and outside by electrolyte) are calculated as a function of the
distance between the centers of the spheres.
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Figure 2. Interaction energy of two charged spheres surrounded by electrolyte (dependence from elec-
trolyte’s ion concentration and temperature): the smaller sphere with radius Ry =5 x 107 m is located
to the left of the larger sphere with radius R; = 107 m (Figure 1). The interaction energy between the
two spheres, E, is calculated by Equation (10) and plotted against the distance between the centers of
the two spheres, (>R; + Ry = 1.5 x 107% m). (A) The ion concentration, C, of the electrolyte (and the
respective Debye length from Equation (A2)) is: red curve: 0.007 mol/ m3 (Ap =1.15 x 107 m); blue
curve: 0.01 mol/m3 (Ap = 9.62 x 1078 m); and black curve: 0.013 mol/m? (Ap = 8.44 x 10~8 m), and
the temperature in the case of each curve is T = 300 K. (B) The ion concentration of the electrolyte is:
green dotted curve: 0 mol/m3 (Ap = co m); blue curve: 0.000001 mol/m3 (Ap = 9.62 x 107° m); red
curve: 0.00001 mol/m3 (Ap =3.04 x 10~° m); and black curve: 0.0001 mol/m3 (Ap = 9.62 x 10~7 m),
and the temperature in the case of each curve is T = 300 K. (C) The system’s temperature (and
the respective Debye length) is: blue curve: 340 K (Ap =1.02 x 107 m); red dotted curve: 310 K
(Ap =9.78 x 1078 m); and black curve: 280 K (Ap = 9.30 x 10~8 m), and the electrolyte’s ion concen-
tration in the case of each curve is 0.01 mol/m?3. In the case of our calculations, the surface-charge
density of each charged sphere is ps = —0.266 x C/m?.
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Figure 3. Interaction energy of two charged spheres surrounded by electrolyte (dependence from radius): the
interaction energy between the two spheres, E, is plotted against the distance between the centers
of the two spheres, Z. The total charge of the left and right sphere is Q; = —8.3566 x 10713 C and
Qy = —3.34265 x 10712 C, respectively. The radius of the right sphere (see Figure 1) is R, = 107 m,
the electrolyte’s ion concentration is C = 0.01 mol/m3, the temperature is T = 300 K and the respective
Debye length (calculated by Equation (A2)) is Ap = 9.62 x 10~8 m. Purple curve: Ry =5 x 1077 m;
green curve: Ry =7.5 x 107 m; blue curve: R; =1 x 107 m; red curve: Ry = 1.25 x 10~® m; black
curve: Ry =1.5 x 10~ m.
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4. Discussion

Here, by using the recently generalized shell theorem [1], Equation (10) is derived
to calculate the electric interaction energy between two charged spheres surrounded by
electrolyte. Because of the increased screening effect of the electrolyte’s ions (i.e., with
decreasing Debye length), at any given Z distance between the spheres, the interaction
energy decreases with increasing electrolyte ion concentration (Figure 2A,B). The primary

reason of this decrease is that the last factor of Equation (10) eZ/Ap

), at a given Z
decreases fast when the Debye length, Ap, decreases because of the increasing electrolyte
ion concentration (see Figure 2A,B). On the other hand, Ap increases with increasing
temperature (see interaction energy between two charged spheres (see Figure 2C)).

By increasing the radius R;, the E vs. Z curves are shifting to the right (see Figure 3)
because the lowest value of Z,,;;, (= Ry + Ry) increases. In addition, at Z,,;,, the electric
interaction energy E(Z,,,) is getting smaller. This is the case because with increasing R; the
distance between the charges of the spheres is increasing and, thus, the screening effect of

the electrolyte’s ions increases too.

By using Equation (10), one can calculate the electric interaction energy between
two charged spheres surrounded inside and outside by electrolyte. This equation is a
generalization of the Coulomb equation (for charge-charge interaction in a vacuum [4]).
One can get from Equation (10) an equation by taking the infinite long Debye length (that is

the case at zero electrolyte ion concentration, i.e., when C — 0 [m"l} (see Equation (A7))):

E(Z) = k“glez { ;151 e %/Ap )I\iD smh( Ry ) )I\il'; smh( Ry ) } =

e fme g [Beb(B) b () Jflma @) ) W

Equation (11) is similar to the Coulomb equation except that ¢, is not the relative
permittivity of vacuum but the relative permittivity of the pure water. Calculating the
curves in Figures 2 and 3, constant electrolyte permittivity (e, = 78) was taken that is
characteristic to pure water at a temperature of 300 K. Note that the relative permittivity
of electrolytes depends on the temperature, ion concentration and type of the ions (see
Appendix A). With increasing temperature and ion concentration, the relative permittivity
of the electrolyte slightly and close to linearly decreases and affects the calculated value of
the interaction energy too (see Appendix A).

By using Equation (10), one can also calculate the total electric interaction energy of
several separated, charged spheres surrounded inside and outside by electrolyte Equation (12):

B kQQ]/\D . (R RiN 7./
Zl 12]_1 e RiRZ; znh(AD>sznh(AD) j (12)

where N is the number of spheres, Q; and R; are the total charge and radius of the i-th
sphere, respectively, and Z;; (where Z;; > R; + R;) is the distance between the centers of the
i-th and j-th sphere.

5. Conclusions

By using the recently generalized version of Newton'’s shell theorem [1], analytical
equations are derived to calculate the electric interaction energy between two separated,
charged spheres surrounded outside and inside by electrolyte. This electric interaction
energy is calculated as a function of the electrolyte’s ion concentration, temperature, dis-
tance between the spheres and the size of the spheres. At the same distance, the absolute
value of the interaction energy decreases with increasing electrolyte ion concentration and
increases with increasing temperature. At zero electrolyte ion concentration, the derived
analytical equation transforms into the Coulomb Equation Finally, the analytical equation



Membranes 2022, 12, 947

6 0f 8

is generalized to calculate the electric interaction energy of N separated, charged spheres
surrounded by electrolyte.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author is very thankful to Chinmoy Kumar Ghose.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The Poisson equation is [11]:

V() = -4 (A1)

where p(r) is the charge density, g is the vacuum permittivity and e, is the relative static
permittivity.
The solution of the above Poisson equation is [11]:

/// - 4nsosr\r—r’| (A2)

In the case of the Poisson-Boltzmann equation [11,12]:

.10 qV
() _ gz -
€&y

(A3)

€&y 7
where g is the elementary charge (positive or negative depending on the charge of the i-th
type of ion), z; is the charge number of the i-th type of ion, kp is the Boltzmann constant,
T is the absolute temperature, p(r) is the charge density of the ions in the electrolyte and &,
is the relative static permittivity of the electrolyte.

The screened Poisson equation is [9]:

V2V (1) — Ap 2V (1) = —";;i’) (Ad)

where p.x(r) is the density of the external charge at position r, g is the electric constant and
g, is the relative static permittivity of the electrolyte and Ap is the Debye length. Note that
Equation (A4) is valid if the electrolyte itself is electrically neutral. The solution of this
equation is [11], i.e., the potential is the superposition of the so-called screened Coulomb

potential of the external charges:
e—lr=7'l/Ap
P2 /Pex
A
/// 47‘(8087 lr—1r'| (A5)

The Debye length in an electrolyte is calculated by [13]:

T 1/2
Ap = | 5ol foérB (A6)
e Naz 1c]q]

where ¢y = 8.85 x 107!2 C?J"Im™! is the vacuum permittivity, e, is the relative static
permittivity of the electrolyte, kg = 1.38 X 10723 JK~! is the Boltzmann constant, T is
the absolute temperature, e = 1.6 x 10~!% C is the charge of a positive monovalent ion,
N, =6 x 10?2 mol~! is the Avogadro’s number, Cjo mol/m? is the mean concentration of
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the j-th species of ions in the electrolyte and g; is the number of elementary charges in an
ion of the j-th species (e.g., in the case of bivalent ions g; = 2). In this paper, we consider
overall neutral electrolytes containing only monovalent positive and negative ions of the
same concentration, C. In this case, Equation (A6) is simplified to:

1/2
eoerkgT
Ap = [ 2B A7
b <62N,12C> (A7)

The relative static permittivity of the neutral electrolyte (¢,) depends on (a) the type
of ions solved in the water, (b) the temperature and (c) the concentration of the ions (C).
The temperature dependence of ¢, for pure water (from 0 °C to 100 °C) is [14]:

er(t,C) = 87.74 — [0.40008 x t] + [9.398 x 1074 x tz} - [1.41 %1076 x tﬂ (A8)

mol

where t is the temperature in Celsius and C = 0 [ g

} is the ion concentration in the pure

water. The dependence of the static permittivity from the NaCl concentration (C {moz} ) of

m3

the electrolyte (at temperature t = 20 °C) is [15]:
er(t,C) = &(t,0) x [1 —aC] (A9)

where & = 6.6 x 1073 [V’n”—;} and ¢,(t,0) = 81. Calculating the curves in Figures 2 and 3,

a constant relative permittivity of the electrolyte (¢, = 78) was considered. This is the
relative permittivity of pure water at 300 K. By means of Equations (A8) and (A9), one
may take into consideration the temperature and ion-concentration dependence of the
relative permittivity of the electrolyte when calculating the interaction energy between
two charged spheres by Equation (10). Since the relative permittivity slightly and close to
linearly decreases, with increasing temperature and ion concentration one can estimate
how the interaction energy is changing. Based on Equation (AS8), if the temperature of pure
water is higher than 300 K the relative permittivity is lower than 78 and the interaction
energy, calculated by Equation (10) becomes higher than the interaction energy calculated
with constant relative permittivity (e, = 78). If, beside the higher temperature, the ion

concentration of the electrolyte is C > 0 [%} , the relative permittivity is even lower than

78 and, thus, the interaction energy calculated by Equation (10) becomes even higher than
the interaction energy calculated with constant relative permittivity ( &, = 78).
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