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Abstract: Procyanidin extracted from fruits, such as apples, has been shown to improve lipid metabo-
lization. Recently, studies have revealed that procyanidin interacts with lipid molecules in membranes
to enhance lipid metabolism; however, direct evidence of the interaction between procyanidin and
lipid membranes has not been demonstrated. In this study, the phase behaviors and changes in
the membrane fluidity of cell-sized liposomes containing apple procyanidin, procyanidin B2 (PB2),
were demonstrated for the first time. Phase separation in 1,2-Dioleoyl-sn-glycero-3-phosphocholine
(DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/cholesterol ternary membranes sig-
nificantly decreased after the addition of PB2. The prospect of applying procyanidin content mea-
surements, using the results of this study, to commercial apple juice was also assessed. Specifically,
the PB2 concentrations were 50%, 33%, and 0% for pure apple juice, 2-fold diluted apple juice, and
pure water, respectively. The results of the actual juice were correlated with PB2 concentrations and
phase-separated liposomes ratios, as well as with the results of experiments involving pure chemicals.
In conclusion, the mechanism through which procyanidin improves lipid metabolism through the
regulation of membrane fluidity was established.

Keywords: procyanidin; liposome; phase-separation; model biomembranes

1. Introduction

Understanding the interaction between procyanidins and the cell membrane requires
the investigation of the receptors or channels stimulated in the gastrointestinal tract by
procyanidin. Studies have reported that procyanidins interact with cell membranes to
reduce oxidative stress [1] and increase membrane fluidity [2]. The release of procyanidins
from liposomes has also been examined [3]. Procyanidins become part of the membrane
when prepared with lipids to form liposomes. Liposomes contain a variety of lipids that
mimic the lipid composition of cell membranes. They also contain a lipid bilayer structure
like cell membranes, which is important as a cell membrane model. However, in previous
studies, liposomes’ size was in the nanoscale range, which is relatively small [3]. Micrometer
scale-based biological model membrane vesicles, known as cell-sized liposomes, have been
used to examine the interaction between membranes and functional substances through
direct observation under an optical microscope [4–6]. Cell-sized liposomes do not contain
any protein or metabolic pathways. However, they are useful as a physicochemical model
because they have a similar size to a cell and, thus the same curvature of the lipid bilayer
structure. Based on the proposed model, functional proteins, such as receptors and channels,
can move freely in the lipid bilayer. Over the past 20 years, the characterization of the
structure of the lipid bilayer has progressed rapidly, with the raft structure considered
to be one of the most popular proposed models [7,8]. Pike defined membrane rafts as
small (10–200 nm), heterogeneous, highly dynamic, sterol- and sphingolipid-enriched
domains that compartmentalize cellular processes. Small rafts can be stabilized to form
larger platforms through protein–protein and protein–lipid interactions [9]. Clustering
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rafts may be observed on actual cultivated cells, and functions of raft domains were
characterized to concern the signal transduction of cells [10,11]. Based on this model,
functional proteins move into small compartments known as raft regions. The size of
the actual raft is considered to be in the nanoscale range; however, in the case of cell
signal enhancement, such as the activation of immunity rafts, clusters are formed that
are micrometers in size. This phenomenon is observed in actual cells [10,11]. Although
the definition of rafts is intended to apply specifically to microdomains in actual cells
and not in model membranes, such as liposomes, which may be thought of differently,
there are an overlapping set of rules [9]. Raft domains have been observed in micrometer-
scale liposomes [12,13]. The formation of raft domains affects various lipids and sterol
structures [14,15] and has been studied for active pathways, such as decreased domain
stability by anesthetics. Simple or complex raft formation conditions have also been
assessed, including optimized pH effects, as well as lipid types and charges [6,15,16].

Procyanidins are a type of polyphenolic substance that are components of functional
foods. For example, theaflavins are highly indigestible compounds such as procyanidin
that inhibit alfa glucosidase in the small intestine [17]. Food-derived polyphenols and
similar functional compounds have been evaluated as potential targets for sugar and lipid
absorption enhancement during digestion in humans [18]. Moreover, there are limited
studies that address the inhibition by procyanidin. During lipid metabolism, procyanidin
inhibits lipase activity. Procyanidin, from monomers to pentamers, exerts an inhibitory
effect on lipase in vitro and in vivo. Such inhibitory effects are increased with increasing
levels of polymerization [19]. Furthermore, in animal studies, triglyceride absorption
was inhibited after a one-hour treatment with procyanidin [19]. However, the inhibitory
mechanisms of procyanidin remain unknown, and varying degrees of polymerization
may affect procyanidin activity differently [20]. In contrast, lipid accumulation in mice
is prevented by a diet containing significant procyanidin levels, such as black soybeans
and cacao fruits [20,21]. Previously reported mechanisms include the increased expres-
sion of PGC-1α and increased energy production that results in the inhibition of lipid
accumulation [20,21]. Kamio et al. also found that a single dose of procyanidin increases
energy metabolism by enhancing the expression of the UCP-1 gene in brown adipose
tissue, and neurotransmitters were involved in the mechanism of action [22]. Moreover,
repeated administration of procyanidins promotes mitochondrial neoplasia with increased
expression of the genes encoding PGC-1α and UCP-1 in skeletal muscle. Procyanidins
may stimulate the sympathetic nervous system in the digestive tract, which significantly
affects energy metabolism [23], causing the secretion of catecholamines and exerting a
systemic metabolism-promoting effect [21]. Consequently, procyanidins may act primarily
on receptors in the gastrointestinal tract and control metabolic regulation in peripheral
tissues by altering signaling pathways [20]. Thus, the interaction between procyanidin and
various receptors requires further delineation.

In this study, the phase behaviors and changes in the membrane fluidity of cell-sized
liposomes containing apple procyanidin, procyanidin B2 (PB2), were demonstrated for the
first time.

2. Materials and Methods
2.1. Chemicals and Reagents

1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dipalmitoyl-sn-glycero-3-
phosphocholine (DPPC), cholesterol (Chol), and dimethyl sulfoxide (DMSO) were pur-
chased from the Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). Lissamine™ rhodamin
B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine and triethylammonium salt (Rho-
damine DHPE) were obtained from Invitrogen. Ultrapure water, prepared by an RFD240NC
purification system (ADVANTEC, Tokyo, Japan), was used for reagent preparation and
glassware cleaning. Acetone was purchased from Wako Pure Chemical (Osaka, Japan).
Chloroform was purchased from Kanto-chemical (Tokyo, Japan). PB2 was obtained from
Fuji film Wako Pure Chemical (Osaka, Japan). Pure apple juice (1-L bottles) was pur-



Membranes 2022, 12, 943 3 of 14

chased from the Farm Village Industry Federation of Aomori Prefectural Agricultural
(Hirosaki, Japan).

2.2. Preparation of Liposomes Containing PB2

Acetone was used as a washing solution for the glass test tubes. Several different
types of liposomes (giant unilamellar vesicles and model membranes/liposomes) were
prepared. A slightly modified version of the method of natural swelling from dry lipid
films was used, as described previously [24–28]. Mixtures of lipids, PB2, and Rhodamine
DHPE were dissolved in chloroform in a glass test tube under argon gas to prepare a thin
film. The glass test tubes were pre-washed with acetone and dried using a draft. They were
then dried under vacuum for 3 h to produce thin lipid films. The films were then hydrated
overnight with ultrapure water or PB2 solution at room temperature (20 ◦C). The PB2
solution was prepared according to a previously reported method [28] through dissolution
in aqueous methanol [14.25% (v/v)]. A 1 mM stock solution was created and stored at
−30 ◦C. When used in experiments, the methanol was diluted 5 times with ultrapure water.
The final working solution had a concentration of 200 µM. The final concentration of the
hydrated film was 200 µM for total lipid and PB2 and 5 µM Rhodamine DHPE. For PB2,
instead of 10%–50% of lipids, the final concentration was 20–100 µM. The formation of
unilamellar vesicles was highly dependent on the preparation conditions. The samples
were carefully prepared, and the conditions were adjusted as described below. Thin lipid
films were maintained in a vacuum before hydration with water. During hydration, the
test tube was double wrapped with parafilm and aluminum foil to prevent oxidation and
preserve fluorescence. The test tube was stored in a drawer at a constant temperature (at
room temperature, 20 ◦C) in the dark until microscopic observation, which was performed
within a week.

2.3. Microscopic Observations of Behaviors during Phase Separation of Liposomes

The liposome solution (6 µL), prepared as described above, was placed in silicon
wells (0.2 mm) on a glass slide and covered with a cover slip. Domain liposomes were
observed using a fluorescence microscope (BX51, Olympus, Tokyo, Japan, [24] at room
temperature. The microscope included an oil immersion objective lens (Uplan S-Apo,
Olympus, Tokyo, Japan), LED excitation source (U-HGLGPS), and fluorescence mirror
units with a dichroic mirror (410, 505, and 570 nm, respectively). The Ld phase was la-
beled with Rhodamine-DHPE (irradiated by green light, as shown in the red fluorescence
region). Images of the phase-separated liposomes were obtained as pictures captured by
the microscope camera (WRAYCAM-VEX830, Wraymer, Osaka, Japan). A minimum of
60 liposomes were observed for each type. Cell-sized liposomes (approximately 10 µm)
were randomly selected. Liposomes were prepared at least three times, and we confirmed
that there was no significant bias in each preparation. To observe the effects of PB2 on
phase separation by fluorescence observation, PB2 was added to a DOPC/DPPC lipid
mixture with a DOPC:DPPC ratio of 1:1, and to the DOPC/DPPC/Chol lipid mixture with
a DOPC:DPPC:Chol ratio of 2:2:1. The resulting compositions were DOPC/DPPC/PB2
50:50:0, 45:45:10, 40:40:20, 35:35:30, 30:30:40, and 25:25:50 and DOPC/DPPC/Chol/PB2
40:40:20:0, 36:36:18:10, 32:32:16:20, 28:28:14:30, 24:24:12:40, and 20:20:10:50. These ratios
were in accordance with a previous study [25]. The following three types of liposome states
were identified from representative microscopic images by determining the presence and
type of phase-separated domains: “homogenous,” “Liquid ordered (Lo)/Liquid disordered
(Ld),” and “Solid ordered (So)/Ld” (Figure 1. In the Lo/Ld domain liposome, two types
were observed. One contained circular Lo phase domains not dyed (black) in red with a flu-
orescent dye (Ld domain). The second was a circular domain dyed white with fluorescence
and was observed in a Lo phase and not dyed (black) with fluorescence. The So/Ld domain
exhibited anisotropic shapes surrounded by an Ld phase. Several studies have analyzed
the phase state of membranes, and the equilibrium phase diagrams of ternary vesicles are
well-characterized [25,26]. In an experiment used to investigate PB2 interactions for the
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phase separation of membranes, 6 µL of the liposome solution and 6 µL of 200 µM PB2
solution was poured into a test tube and gently mixed via soft tapping. Subsequently, 6 µL
of the resultant mixture was used for microscopic observations [28].

2.4. Measurements of Membrane Fluidity in Liposome Membranes

The fluidity of membranes containing DOPC/DPPC/Chol and PB2 was measured
using excitation Laurdan generalized polarization (GP) [25,26,29–32]. The Laurdan fluores-
cent label was used at 0.5% (molar ratio/ moral ratio). A Laurdan, 100 µM stock solution
was prepared in chloroform at a final concentration of 1 µM. The final lipid concentration
was 200 µM. The liposomes were observed at approximately 410 and 505 nm (Laurdan
emission) using a dichroic mirror on the microscope (Olympus BX51 with a fluorescence
unit attached, Olympus, Japan). The Laurdan GP value was defined as GP = (I420–460 nm
− I510–550 nm)/(I420–460 nm + I510–550 nm), where I420–460 nm and I510–550 nm are the
average fluorescence intensities of Laurdan detected at ranges of 420–460 and 510–550 nm,
respectively, for >15 liposomes. The GP value was calculated by taking fluorescence images
using Image J software [33], as our microscopic system could capture each fluorescence
image taken by irradiation at two wavelengths. Each GP value was adjusted through the
use of a specific correction factor for the experimental setup to measure the GP value of
Laurdan in DMSO [30].

2.5. Estimated PB2 in Apple Juice and Its Application to Phase-Separated Liposomes

A 25 mL sample solution was prepared by mixing 5 mL of apple juice, 17.5 mL of
acetone, and pure water [34–36]. Next, 20 µL of each sample solution was added to the
DOPC/DPPC/Chol lipid mixture with a DOPC:DPPC:Chol ratio of 2:2:1. Each extracted
solution and lipid solution were transferred to a glass test tube under argon gas to prepare
a thin film. The glass test tubes were already washed with acetone and dried using a draft.
They were then dried under vacuum for 3 h to produce thin lipid films. The films were
then hydrated overnight with ultrapure water at room temperature (20 ◦C). The total lipid
concentration was 0.2 mM, which was similar tp that of the experiment to simulate the
2.2 preparations of liposomes. The estimated PB2 content was approximately 0.2, 0.1, and
0 mM for pure apple juice, 2-fold diluted apple juice, and pure water, respectively, based
on calculations from previous studies [34–36]. The PB2 concentration in the films was 50%,
33%, and 0% for pure apple juice, 2-fold diluted apple juice, and pure water, respectively.
Microscopic observation methods were the same as described above.

2.6. Statistical Evaluation

Over 60 liposomes were observed for each composition, and the phase-separated
structures were classified based on domain shape. The average values of triplicate experi-
ments are shown in the figures. Each experiment was performed in triplicate. Given that
60 liposomes were sufficient to prevent accidental bias in the experiment, the differences
were considered small enough to be ignored, and the error bars were not shown. GP
values were measured as more than 100 pixels per liposome, and average GP (used over
15 liposomes) values and standard error were calculated. Graph preparation and statistical
evaluation were performed using Microsoft Excel (Microsoft Office 2019).

3. Results and Discussion

This study aimed to reveal the mechanism underlying the activation of lipid metabolism
by procyanidin. It was hypothesized that procyanidins change membrane fluidity and/or
phase separation, leading to the activation of membrane receptors, which results in the
activation of lipid metabolism. In this study, phase-separated cell-sized liposomes con-
taining procyanidin were examined by microscopic observation. Procyanidin B2 (PB2)
extracted from apples was used as a standard compound [34–36]. The liposomes were
observed by microscopy, and phase separation with respect to various PB2 concentrations
was determined. Laurdan was used previously to measure the fluidity of different lipid
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phases [29]. Thus, the membrane fluidity of cell-sized liposomes with different concen-
trations of PB2 was evaluated using the fluorescence probe Laurdan [24,25,29–32]. The
results revealed a variation in the phase separation and membrane fluidity induced by pro-
cyanidin as well as by related membrane receptor activation. Our findings provide insights
into the mechanisms underlying the function of procyanidin, including the activation of
lipid metabolism.

This study focused on phase-separated domain structures in the membranes of li-
posomes by fluorescence observation. The classification of each phase-separated state,
using morphological detection, is described in the Materials and Methods Section. The
percentage of phase-separated structures was confirmed visually. We expected to observe
the same phase behavior for the same liposome composition, which would reflect ideal
conditions. Our liposome preparation used natural swelling methods, and although lipid
mixture preparation was carefully performed, some variation may occur in each liposome.
Nonetheless, phase-separation tendencies obeyed the lipid mixture condition, as most
phase-separation research in liposomes reported [25,26,37,38]. Previously, variations in the
physicochemical properties of liposomes were found even in the same preparation [27].
Dispersion is likely the result of a wide variation in the mixed lipid fraction during lipo-
some preparation.

In the control experiment, using 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-
dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/Cholestrol (Chol) without PB2 lipo-
somes, 90% of the Lo/Ld phase-separated liposomes (Figure 1) were initially observed. The
results were consistent with that of previous studies [12,13,25,26], confirming the efficiency
of our observations. Although more than half of the liposomes exhibited phase-separated
structures, the ratio of Lo/Ld phase-separated domains was decreased, whereas that of the
homogeneous phase (Figures 1 and 2) was increased by adding 10% PB2. Based on the per-
centages of phase-separated structures (sum of So/Ld and Lo/Ld), which were 15% (PB2
20%), 15% (PB2 30%), 5% (PB2 40%), and 21% (PB2 50%), the presence of PB2 destabilized
the Lo/Ld phase-separated structures and enhanced the mixture of the lipids. Liposomes
containing 50% PB2 exhibited a slightly higher ratio of phase-separated structures [25]. Pre-
vious studies have reported the use of nano-scaled liposomes with procyanidin at limited
concentrations of 20 mol% to 30 mol% [1,2]. Furthermore, liposomes have been prepared
with other compounds, such as cholesterol of up to 50% [39–41]. Therefore, although
50 mol% is a relatively high concentration compared with previous studies of liposomes
containing procyanidin, the concentration is sufficient to generate liposomes. Increased
PB2 reached 50%, suggesting that PB2 may quench fluorescence. Previously, we observed
a similar pattern with membranes containing theaflavin, which has a similar structure to
PB2 [28]. These phenomena are consistent with previous studies that showed that PB2
quenches fluoresce intensity [42,43].
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Figure 1. Microscopic images of multicomponent liposomes. Homogeneous (Ld) phase
(DOPC/DPPC 50:50, (A), Lo/Ld phase separation (DOPC/DPPC/Chol 40:40:20, (B), and So/Ld
phase separation (DOPC/DPPC 50:50, (C). Bright regions indicate the Ld phase (A–C), and dark
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regions indicate the So and Lo phases in (B,C), respectively. The Ld phase was labeled with a fluores-
cent dye (Rhodamine-DHPE). Rhodamine DHPE should be almost entirely distributed throughout
the Ld phase [44].
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Figure 2. The percentage of phase-separated structures. 1,2-Dioleoyl-sn-glycero-3-phosphocholine
(DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/cholesterol (Chol) with various con-
centrations of pro-cyanidin b2 (PB2) are shown. White, bright gray, and dark gray bars denote
homogenous, liquid-ordered (Lo)/liquid-disordered (Ld), and solid-ordered (So)/Ld phases, respec-
tively. Lipid compositions of the liposomes for each observation were DOPC/DPPC/Chol/PB2
40:40:20:0, 36:36:18:10, 32:32:16:20, 28:28:14:30, 24:24:12:40, and 20:20:10:50. According to previous
studies, DOPC/DPPC 40:40:20 was used as a control for Lo/Ld phase-separation [12,13,25,26].

In the control experiment for DOPC/DPPC without PB2 liposomes, 45% of So/Ld
phase-separated liposomes (Figure 3) were observed. This ratio was slightly lower com-
pared with the phase-separated liposomes in previous studies [25], although phase-separated
liposomes were definitely observed. The percentage of So/Ld fluctuated with increasing
PB2 concentrations (Figure 3). PB2 exerts certain So/Ld phase-separation effects on mem-
branes, although these effects are not dependent upon PB2 concentration. Although this is
an interesting phenomenon, the underlying mechanisms remain unclear. A liquid-ordered
phase was observed at 40% and 50% PB2. This was considered significant, as PB2 neg-
atively affects the stability of the liquid-ordered phase, whereas it did not significantly
affect the solid-ordered phase. Another important finding was that a relatively higher PB2
concentration induced a liquid-ordered phase on the membrane in the absence of Chol
(Figure 3).
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(Lo)/liquid-disordered (Ld), and solid-ordered (So)/Ld phases, respectively. Lipid compositions of
the observed liposomes in the experiment were DOPC/DPPC/PB2 50:50:0, 45:45:10, 40:40:20, 35:35:30,
30:30:40, and 25:25:50. Based on previous studies, So/Ld phase separation liposomes, DOPC/DPPC
50:50 were used as a control [12,25,26].

Next, we investigated whether procyanidin affects membranes owing to the escape
from the membrane or insertion into the membrane. The procyanidin solution was used
during liposome hydration and liposome observation, as shown in Figure 4. These experi-
ments allowed us to determine whether procyanidin binds to membranes during hydration
or observation. Procyanidin added under hydration conditions led to 50% procyanidin in
the membranes, whereas procyanidin added during observation led to a liposome without
procyanidin. Because hydration occurs over hours, the water facilitates the binding of
procyanidin to the membranes. In contrast, observation occurs over minutes; thus, the
procyanidin does not bind to the membranes in this short period.
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Figure 4. Percentage of phase-separated structures. 1,2-Dioleoyl-sn-glycero-3-phosphocholine
(DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/cholesterol (Chol) with various ad-
ditions of procyanidin b2 (PB2) are shown. Lipid compositions of the observed liposomes in the
experiment were DOPC/DPPC/Chol (A) 40:40:20 and (B) 50:50:0.

The effect of PB2 on the membrane fluidity of liposomes was examined next by
determining the GP values. A high GP value indicates low fluidity of the membranes,
whereas low GP values indicate a high fluidic state in the membranes. The GP values
are summarized in Figure 5. For PB2 concentrations of 10%, 20%, and 50%, the values
were not significantly different; however, when the PB2 concentration was set to 30% and
40%, the values were significantly different. As the value of the Lo phase increased, and
that of the Ld phase decreased significantly, a fluidity change occurred in the Lo phase
and Ld phase at 20% and 30% PB2, respectively. Although phase-separated liposomes
decreased dramatically when PB2 was increased from 10% to 20% (Figure 2), GP decreased
significantly when PB2 increased from 20% to 30%. The difference in liquid-ordered and
disordered phase fluidities appears to be an important factor for phase separation on the
membranes [25,45]. These results are in accordance with previous studies showing that
PB2 concentrations of approximately 10% to 30% affect membrane fluidity and result in
phase separation. The GP value of Lo at 50% PB2 was very similar to that at zero and for a
low percentage of PB2. Thus, it appears that a higher PB2 concentration causes increased
fluidity and disturbance to the forming of a liquid-ordered phase.
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Figure 5. Average GP values of procyanidin b2-containing membranes (n = 15). High GP value
means low fluidity of the membranes, whereas low GP values mean a high fluidic state in the
membrane. Triangles represent GP values of liquid-ordered (Lo) phase membranes, and circles
indicate GP values of liquid-disordered (Ld) phase membranes. The bar on each marker shows the
standard error of the GP values for each component. Lipid compositions for the liposomes were
DOPC/DPPC/Chol/PB2 40:40:20:0, 36:36:18:10, 32:32:16:20, 28:28:14:30, 24:24:12:40, and 20:20:10:50.
Based on previous studies, DOPC/DPPC/20 40:40:20 liposomes were used as a control for Lo/Ld
phase separation liposomes [12,25,26].

The results regarding GP variations at increased PB2 concentrations in the Ld phase
were in agreement with the results of lipid bilayer vesicles formed from 1,2-Dimyristoyl-
sn-glycero-3-phosphocholine, which were approximately 100 nm in size and contained
procyanidin trimers (PB3) [46]. In that study, although PB3 was in the molar concentration
range, corresponding to approximately 10% to 20% lipid, this concentration range could be
considered comparable to the concentration range observed in the present study because
trimers were used instead of dimers.

Based on the observed decrease in the ratio of Lo/Ld phase-separated liposomes and
the fluidity of the PB2 containing liposomes, the mechanism for the stability of So/Ld
phase-separated liposomes may not be dependent upon membrane fluidity. Sugahara et al.
reported similar results for the phase separation of cell-sized liposomes containing local
anesthetics (LAs) [25]. They found that LAs destabilized the Lo/Ld phase separation but
did not affect So/Ld phase separation. They hypothesized that LAs may change membrane
fluidity for So/Ld phase-separated membranes. Although LAs increased the fluidity of
the So phase and decreased the Ld phase, phase separation was unchanged because of the
difference in fluidity between So and Ld was large. The same mechanisms should be at
play on PB2-containing membranes in the present study; however, we observed Lo/Ld
phase separation in membranes containing DOPC/DPPC/PB2 without Chol when the
PB2 concentration was increased (Figure 3). Because the present study resulted in inter-
esting findings, further elucidation of liposome phase-separated mechanisms containing
procyanidin will be pursued in the future.

In this study, we discovered that procyanidin induced a change in membrane fluidity
and a decrease in Lo/Ld phase separation at selected concentrations. Procyanidin may
modify lipid metabolism through the transformation of receptors or/and through their
channel-related activities. A previous study reported that procyanidin inhibited the regula-
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tion of potassium ions through ion channels [47]. Other studies indicated that the function
of ion channels for potassium is influenced by the lipid phase and lipid transition [48–50].
Thus, it seems reasonable that PB2 regulates ion channels through a lipid phase transition
and lipid phase separation. These studies reported changes in lipid phase separation on
membranes and channel activity. Therefore, at least one mechanism for ion channel activa-
tion may involve lipid phase transition and lipid phase separation. It was also reported that
lipid phase separation is influenced by receptor activity. A recent study found that receptor
activity deceased through perturbation of the raft structure by procyanidin [51,52]. Other
studies support another kind of receptor activity affected by lipid phase separation [53,54].
In the present study, we demonstrated that procyanidin did not significantly alter So/Ld
phase separation; however, some studies have concluded that Lo/Ld and So/Ld phase
separation exhibit different properties [55,56].

By analyzing data from previous studies on lipid phase separation in the presence
of alien molecules in the bilayer, with these data obtained experimentally and via compu-
tational simulations, it is possible to explain the influence of procyanidin on lipid phase
separation at the molecular level as follows. Based on previous studies [52,55,56], it has
been hypothesized that procyanidin can decrease Lo/Ld phase separation rather than
So/Ld phase separation. Procyanidin affects Lo/Ld membranes but not So/Ld mem-
branes. As procyanidin contains a carbon ring and a hydroxy group, it appears to have
a higher affinity for Lo domains (Figure 6). The position of procyanidin should be on
the interface of the hydrophilic and hydrophobic regions in lipids on the Lo domain of
the membranes [52]. The results of the study revealed that the thickness of the bilayer
membrane was approximately 6.0 and 3.0 nm from the center to the water end of the
membrane in a layer. Procyanidin was attached approximately 2.0 to 2.5 nm from the
center part of the membranes and was positioned at the cholesterol oxygen atom between
the phosphorus atom of the phospholipid. In this position, procyanidin could interact
with membrane lipids in the Lo domain, although a small amount of procyanidin may not
render Lo domain formation unstable. The study indicated that the procyanidin molecule
attracted a membrane lipid, but the galloyl group bound to procyanidin was inserted into
the Lo domain of the membranes. In the present study, we demonstrated that a small
concentration of procyanidin has a substantial effect on domain reduction, which is smaller
compared with a high concentration of procyanidin (Figure 2). We counted 180 liposomes
for each experiment, which included 60 liposomes at least thrice. We hypothesized that
50% PB2 quenched fluorescence intensity because, at relatively higher concentrations, PB2
aggregation may cause slightly higher phase separation. Although 40% PB2 is a relatively
lower concentration than 50% PB2, the aggregation of PB2 might not occur in membranes
often; thus, phase separation would seldom be observed. The results of the present study
are in agreement with those of a previous study [52].

The mechanism for the phase behavior concerning how the presence of procyanidin
could alter fluidity change-based membrane phase properties may be explained as fol-
lows. The fluidity of the Lo domain is higher compared with that of the So domain, and
procyanidin may be incorporated in the Lo domain. The Lo domain is rich in DPPC and
Chol, and when procyanidin is inserted, the fluidity is increased. As the fluidity of the Lo
domain increases, the difference in fluidity between the Lo and the Ld domains (DOPC
rich domain) will be small, resulting in an increased homogenous liposome ratio. In So/Ld
phase-separated liposomes, the So domains are rich in DPPC with a saturated carbon chain
and solid-like state. Although procyanidin contains a carbon ring and hydroxy group, it
does not commonly incorporate into the So domain. Procyanidin can incorporate into the
Ld domain containing a DOPC-rich domain in So/Ld phase-separated liposomes. The
fluidity difference between the So and Ld domains were not changed significantly, and
the So/Ld phase-separated liposome ratio was not modified significantly. At relatively
higher concentrations of procyanidin, some procyanidin incorporates into the DPPC-rich
region. A small ratio of procyanidin behaves like Chol when preparing a Lo domain with
DPPC, and a small ratio of Lo/Ld phase-separated liposomes was observed (Figure 4). A
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previous study reported that Lo/Ld phase separation was induced by photoisomerization
of lipids [57]. This study indicated that isomerized photo-responsive lipids could stabilize
to form phase-separated domains. A solid domain modification to the Lo/Ld domain
resulted in a decrease in lipid packing, as an inverse phenomenon of Lo/Ld to So/Ld
phase separation was reported to result in increased lipid packing by osmotic pressure [37].
When PB2 causes decreased lipid packing in membranes, it was observed that the Lo/Ld
phase-separation ratio was decreased (Figure 2). Indeed, a relevant phenomenon has been
previously reported. Muraoka et al. reported that changes in membrane pressure could
induce the functional activation of synthesized transmembrane multi-block amphiphiles as
ion channels using cell-sized liposomes prepared from DOPC with these amphiphiles [58].
Recently, Wang et al. also reported that PB2 and related compounds downregulated the ac-
tivity of enzymes related to lipid metabolism [52]. This process was caused by the reduced
expression of genes encoding such enzymes and resulted in perturbation of the lipid raft by
interactions between procyanidin derivatives and lipid molecules to cause reduced receptor
activation [52]. Wang et al. utilized cells with metabolic activities as well as computer sim-
ulations. Importantly, the findings of the present study are in accordance with the findings
of Wang et al., although model membrane systems without metabolic activity were used in
the current study [51]. Kamio et al. discovered that increased procyanidin enhances the
expression of the gene encoding UCP-1 [22]. As UCP-1 is localized within mitochondrial
membranes, procyanidin may synergistically enhance the activation of UCP-1 to induce an
alteration in membrane properties to optimize the relevant conditions, such as increased
membrane fluidity and less packing.
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The results of Lo-Ld phase-separated liposome reduction (Figure 2) may be applied for
the detection of PB2 or procyanidin as a ratio of the lipids that are required to prepare lipo-
somes. Apples are the second most produced fruit in the world, followed by bananas [59].
Apples are rich in procyanidins, and the production volume of concentrated juice is the
highest among juice varieties [60]. For this reason, we considered apple juice as the target
from the perspective of the demand for procyanidin content measurement and quality
maintenance. Previous studies from our institute revealed that to make concentrated apple
juice, freezing and melting must be performed to obtain a high concentration of procyani-
din. The effectiveness and container shape change increased the concentration ratio [36,61].
In these studies, the concentration of procyanidin was monitored using high-performance
liquid chromatography, which is not a cost- or time-effective approach. Recently, apple
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procyanidin was monitored using Raman spectroscopy and multivariate calibration analy-
sis [62]. Although this study detected procyanidin with non-destructed apple, procyanidin
in apple juice was not measured. Compared with these research developments and quality
assurance procedures, the approach suggested in the current study may be a candidate
as a faster and cost-effective detection method, as it enables adequate mixing of lipids to
prepare and observe liposomes. Extracted PB2 was then used in apple juice and applied to
phase-separated liposomes before observation. The summarized results are presented in
Figure 7. Pure apple juice, 2-fold diluted juice, and pure water (used as a negative control)
were evaluated. The PB2 concentrations were 50%, 33%, and 0% for pure apple juice, 2-fold
diluted apple juice, and pure water, respectively. The correlation of PB2 concentrations and
of phase-separated liposome ratios are in accordance with Figure 2. As only three condi-
tions were evaluated, the data are considered preliminary. Nevertheless, the approaches
using phase-separated liposomes may be applied to the measurement of procyanidin. This
study had some limitations. Although procyanidin was not measured in this study, the
procyanidin content in our sample was similar to that found in apple juice [36]. Future
research should include comparisons of the estimated data with a rigorous determination
of calibrated methods. In addition, it will be necessary to estimate the purity of procyanidin
and extracted impurities as well as to investigate the impact of extracted impurities on
membrane phase separation.
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Figure 7. The percentage of phase-separated structures; 1,2-Dioleoyl-sn-glycero-3-phosphocholine
(DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/cholesterol (Chol) with several con-
centrations of procyanidin b2 (PB2) containing pure juice, two times diluted juice, and pure water
are represented. White, bright gray, and dark gray bars denote homogenous, Lo/Ld, and So/Ld
phase, respectively.

4. Conclusions

We discovered that Laurdan generalized polarization was dependent upon procyani-
din B2 concentration as an indicator of membrane fluidity. Based on our observation of the
decrease in liquid-ordered/liquid-disordered phase separation and membrane fluidity in
procyanidin B2-containing liposomes, solid ordered/liquid disordered-phase separation
does not depend on procyanidin B2 concentration. The present study revealed that pro-
cyanidin induced fluidic properties on the membrane. Based on the results, procyanidin
may transform receptors or their channel-related activities to improve lipid metabolism.
Previous studies support the activities of both receptors and ion channels affected by the
lipid phase in the membrane [48–50,53,54]. A correlation between PB2 concentrations and
phase-separated liposome ratios was observed when using actual juice. This finding could
lead to the development of a rapid measurement tool for procyanidin concentrations. Our
findings not only enhance our understanding of the functional mechanism of procyanidin
through the characterization of the biophysical aspects of lipid membranes but also suggest
a rapid and cost-effective approach for the measurement of procyanidin.
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