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Abstract: The high-pressure proton exchange membrane water electrolyzer (PEMWE) used for
hydrogen production requires a high-operating voltage, which easily accelerates the decomposition
of hydrogen molecules, resulting in the aging or failure of the high-pressure PEMWE. As the high-
pressure PEMWE ages internally, uneven flow distribution can lead to large temperature differences,
reduced current density, flow plate corrosion, and carbon paper cracking. In this study, a new
type of micro hydrogen sensor is developed with integrated flexible seven-in-one (voltage; current;
temperature; humidity; flow; pressure; and hydrogen) microsensors.

Keywords: PEMWE; MEMS; flexible seven-in-one microsensor; hydrogen production; real-time
monitor; aging; high pressure

1. Introduction

The technology of the hydrogen energy and fuel cell industry is becoming more
sophisticated worldwide. As such, there is the expectation of accelerating the application
of hydrogen energy to daily life and thus achieving the effect of energy saving and carbon
reduction. The Hydrogen Council authorized McKinsey & Company to publish a report on
the vision for hydrogen energy [1], which indicates that hydrogen energy will represent 18%
of energy use in 2050. The report on the differences in annual carbon emissions—published
by the United Nations Environment Programme [2]—indicates that global carbon emissions
must be reduced by 7.6% annually, until 2030, to limit the temperature rise to within the
ideal target of 1.5◦C, as per the Paris Agreement. According to the hydrogen fuel cell market
analysis report, published by the international survey institution of Market Research Future
in 2021 [3], the market scale of fuel cells in relation to hydrogen energy is estimated to
be USD 2 billion by 2027. Further, the annual growth rate will be 31.4% in the following
seven years, indicating that this growth space has a high potential. Therefore, to reduce the
reliance on fossil fuels, governments will have to focus on renewable energy [4]. However,
due to the intermittency, in order to solve the peak issue, the realization of peak shaving
becomes the primary issue. However, there is a severe defect in the present renewable
energy, i.e., ‘seasonal influence’. Even on a daily basis, solar energy has peaks and valleys
during energy generation. This power cannot be supplied continuously and stably, as
such existing renewable energy cannot be extensively used in the context of people’s
livelihoods and industry. Moreover, electrical energy storage technology is the key factor in
whether renewable energy can reach an economic scale [5,6]. In terms of energy storage and
intelligent system integration, energy storage equipment is arranged to allow renewable
energy to dispatch and stabilize the electricity generation of renewable energy and demand,
and therefore to provide system resilience and a spinning reserve [7].

Chen et al. [8] mentioned that the voltage uniformity of cells in the cell stack was
the key factor in their service life. Liu et al. [9] stated that the cell stack depended on the
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performance of the weakest single cell; therefore, increasing the voltage uniformity and
preventing performance degradation of the cell stack are very important. Shin et al. [10]
found that the combination of PEMWE and PEMFC can act as an energy storage sys-
tem. Ogumerem et al. [11] indicated that high working temperatures could improve the
performance and power supply efficiency of the PEMWE system; this is because the re-
quired minimum energy decreased as the temperature rose. However, the stability of
the membrane became worse when the temperature was higher than 100 ◦C, as such the
operating temperature range should be limited to between 70~90 ◦C, which makes it very
important to instantly monitor and control the optimum operating temperature of PEMWE.
Li et al. [12] indicated that when the PEMWE was producing hydrogen, the activity of
water molecules in the air was higher, and the system performance also decayed faster
under a high applied potential. Therefore, aging was faster when the applied voltage and
humidity were high. Yin et al. [13] found that the water absorption of PEMWE increased
significantly when the absolute humidity was about 30 gm−3. In the 85 ◦C working condi-
tion, the variation in relative humidity (RH) induced higher absolute humidity, leading
to higher water absorption of the catalyst layer. Zhao et al. [14] found that the saturation
pressure of water vapor increased with temperature, and that the RH inside the runner
decreased accordingly. Afshari et al. [15] found that all of the losses of PEMWE were
related to the water transmission mechanism, which itself resulted from the electro-osmotic
drag, pressure difference, and diffusion between the anode and cathode sides. In addition,
the membrane thickness, cathode pressure, and operating temperature all influenced the
exchange of hydrogen. The simulation and test results of Liu et al. [16] proved that after
the PEMWE had higher contact pressure, it had better electrochemical properties, and the
PEMWE with a pneumatic clamping mechanism had a better distribution of the contact
pressure. Cai et al. [17] studied the synthetic Pd nanoparticle-modified SnO2 nanowire and
manufactured a high-sensitivity and high-selectivity hydrogen sensor. The response was
55.72, when 60Pd- SnO2 was exposed to 300 ◦C and 100 ppm hydrogen, which is 12.7 times
the response of bare SnO2. Ambardekar et al. [18] mentioned that the SnO2 sensor showed
resistance stability, continuous response, and repeatability after the circulation was restored
and when the gas response was not influenced.

In compliance with the policy trend and internal real-time monitoring of the high-
pressure PEMWE, this study used the micro-electro-mechanical systems (MEMS) technol-
ogy to integrate the micro voltage, current, temperature, humidity, flow, pressure, and
micro hydrogen sensors on a high-temperature-resistant, corrosion-resistant, stretchable,
and flexible PI substrate. This is after optimization design, process optimization, and
the application of prior experience. Lee et al. [19] showed that flexible six-in-one (micro
temperature, humidity, flow, pressure, voltage, and current sensors) microsensors were
successfully integrated onto a 50 µm thick Polyimide (PI) substrate by using micro-electro-
mechanical systems (MEMS) technology. After the optimal design and process optimization
of the flexible six-in-one microsensor was achieved, it was embedded into the PEMWE
for a 500 h persistent effect test and internal real-time microscopic monitoring. Thus, as
with the integrated flexible six-in-one microsensor, in this study, a flexible seven-in-one
microsensor was developed and embedded in the high-pressure PEMWE for internal
real-time microscopic monitoring.

2. Process Development of Flexible Seven-in-One Microsensor

In this study, MEMS were used to develop a flexible seven-in-one microsensor which
can be embedded in a high-pressure PEMWE for real-time monitoring. Figure 1 shows the
design drawing of the flexible seven-in-one microsensor, and the mask layout of the flexible
seven-in-one microsensor is shown in Figure 2. Appropriate process materials were used,
so that accurate, internal real-time microscopic monitoring information could be obtained
in the electrochemical environment of a high-pressure water electrolyzer.
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Figure 2. Mask layout of a flexible seven-in-one microsensor.

In terms of process, surface micromachining technology was used, including lithogra-
phy, metal deposition, and metal lift off. The fabrication process is shown in Figure 3.
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(a) PI film cleaning and fixing

The sample should be soaked and cleaned in acetone and methanol, in turn, before
deposition, and cleaned by an ultrasonic oscillator for three minutes.

(b) Circuit layer lithography

The sample was uniformly coated with the spin-coater positive photoresist (AZ®

P4620) and exposed by a double-side aligner. The development was performed after
exposure. The developer used for this experiment was AZ® 400K, which was chosen to
avoid too fast of a development—as this would result in overdevelopment of the defined
pattern—as well as too thin of a line, and a lower yield. In this experiment, the developer
and DI water were mixed in a ratio of 1:4 for the purposes of development, the developing
time was about three minutes, and then the complete pattern was obtained.

(c) Metal deposition

The metal was deposited via an e-beam evaporator. The 300Å thick Cr and 1500Å Au
were deposited at a deposition rate of 0.5-1Å/s.

(d) Metal lift off

The lift off was performed after deposition. The original photoresist was removed
by using acetone in the lift-off process, while the excess metal was lifted off, and only the
metal of the electrode pattern was left on the sample.

(e) Protection layer

Fujifilm Durimide® PI 9320 (Fujifilm, Tokyo, Japan) was used as the material for the
protection layer. The purpose of the secondary exposure and development is to complete
the insulation protection layer with a high mechanical strength that is adapted to a highly
chemical environment.

(f) Dielectric layer of the humidity sensor

Fujifilm Durimide® PI 9305 was used as the humidity-sensitive, thin-film, micro
humidity sensor in this experiment.

(g) Dielectric layer of the pressure sensor

The dielectric layer material of the pressure sensor was stretchable Fujifilm Electronic
Materials U.S.A., Inc. LTC® 9305 (North Kingstown, RI, USA), which has high mechanical
strength, corrosion resistance, and resistance to an electrochemical environment.

(h) Upper circuit of the pressure sensor
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The non-covered area was protected by AZ® P4620. Moreover, the Au was coated by
the e-beam evaporator on the substrate, and the original photoresist (which was removed
by acetone lift off) was completed last.

(i) Fabrication of hydrogen sensor

The non-covered area with SnO2 was protected by AZ® P4620, and SnO2 and Pt were
deposited on the substrate using the e-beam evaporator. The photoresist that was coated
on the substrate was removed last, and this was achieved by using acetone to achieve the
lift-off effect.

To avoid the high-pressure-resistant, flexible seven-in-one microsensor being damaged
by the closing pressure of the end plate in the high-pressure PEMWE, the insulation
protection layer must have high strength.

The purpose of the protective layer is to bring the sensing area of the miniature voltage
and current sensors into direct contact with the flow channel ribs and to provide signal
transmission and output. The optical micrograph of the completed, flexible seven-in-one
microsensor is shown in Figure 4.
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3. Correction of the Flexible Seven-in-One Microsensor

The flexible seven-in-one microsensor should be corrected, after fabrication, to measure
signals and to verify the reliability. As such, the flexible seven-in-one micro-sensors were
corrected one by one; the microsensor was corrected three times and the average value
was taken to guarantee accuracy. However, this cannot be embedded in the high-pressure
PEMWE for internal real-time microscopic monitoring until its reliability is confirmed.

3.1. Correction of Micro Temperature Sensor

The environment for microsensor correction simulated the true environment condi-
tions; this study used a program-controlled constant temperature and humidity testing
machine (Hung ta HT-8045A Environmental Chamber) as the basis for the correction



Membranes 2022, 12, 919 6 of 15

environment. The runner was full of DI water when the high-pressure PEMWE was in
operation; therefore, the humidity was fixed at 100% during the course of temperature
correction. The temperature correction range of the three micro temperature sensors was
20 ◦C to 90 ◦C. One signal was captured at an interval of 10 ◦C, beginning at 20 ◦C, and eight
signals were captured by the NI PXI data acquisition unit and were nondimensionalized.
The correction curve is shown in Figure 5.
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3.2. Correction of the Micro Humidity Sensor

The constant temperature and humidity testing machine was used as the environmen-
tal criteria for the correction of a micro humidity sensor. At different temperatures, the
resistivities at the same humidity were different; as such, the temperature was fixed at 25 ◦C,
50 ◦C, and 75 ◦C for correction in the RH range from 40% to 100%. One recording point was
made whenever the RH increased by 10%. As there were different resistivities at the same
humidity in the processes of humidification and dehumidification, low-humidity-to-high-
humidity and high-humidity-to-low-humidity corrections were performed, respectively.
After 30 minutes of stabilization, each time, the resistivity of the micro humidity sensor was
captured instantly by the NI PXI data acquisition unit; additionally, the correction curve
was obtained and nondimensionalized, as shown in Figure 6.
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3.3. Correction of the Micro Flow Sensor

LEADFLUID BT100S-1 acid and an alkali-resistant, speed-adjusting peristaltic pump
were used to provide a steady flow for flow correction. The peristaltic pump conveys fluid
by alternately compressing and loosening the rubber tube. The fluid will not touch the
mechanical components due to the design of the peristaltic pump; additionally, the fluid
will only touch the rubber tube—and, therefore, the mechanical components of the motor
will not contaminate the product—thereby preventing unnecessary chemical contamination
and guaranteeing the integrity of delivery. The measurable flow range of the peristaltic
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pump was 30~1700 mL/min, the baseline of the flow correction range was 30 mL/min, and
the flow was measured at an interval of 10 mL/min up to total of 100 mL. Three micro flow
sensors were corrected, in turn, and nondimensionalized. The correction curve is shown in
Figure 7.

Membranes 2022, 12, x FOR PEER REVIEW 7 of 15 
 

 

LEADFLUID BT100S-1 acid and an alkali-resistant, speed-adjusting peristaltic pump 
were used to provide a steady flow for flow correction. The peristaltic pump conveys fluid 
by alternately compressing and loosening the rubber tube. The fluid will not touch the 
mechanical components due to the design of the peristaltic pump; additionally, the fluid 
will only touch the rubber tube—and, therefore, the mechanical components of the motor 
will not contaminate the product—thereby preventing unnecessary chemical 
contamination and guaranteeing the integrity of delivery. The measurable flow range of 
the peristaltic pump was 30~1700 ml/min, the baseline of the flow correction range was 30 
ml/min, and the flow was measured at an interval of 10 ml/min up to total of 100 ml. Three 
micro flow sensors were corrected, in turn, and nondimensionalized. The correction curve 
is shown in Figure 7. 

 
Figure 7. Correction curve of a micro flow sensor. 

3.4. Correction of the Micro Pressure Sensor 
The Druck-DPI 530 pressure controller (Figure 8), in which the maximum pressure is 

20 bar (300 psi), was used to apply fixed pressure to the micro pressure sensor. Meanwhile, 
the capacitance data were captured by using a Wayne Kerr Electronics 4230 LCR meter 
(Bognor Regis, UK); the measurable capacitance range of the instrument was 0.01 pF~1 F, 
and the accuracy was ±0.1%. The micro pressure sensor was corrected under 0~3 bar by 
fixing the temperature at 20 °C, 30 °C, and 40 °C. It was observed that the capacitance 
decreased as the temperature rose. As the dielectric layer was of PI polymer, the pressure 
should be applied repeatedly at the initial stage of correction. The capacitance value was 
stabilized after unloading, and the dimensionless correction curve of the micro pressure 
sensor was, lastly, obtained as shown in Figure 9. 

Figure 7. Correction curve of a micro flow sensor.

3.4. Correction of the Micro Pressure Sensor

The Druck-DPI 530 pressure controller (Figure 8), in which the maximum pressure is
20 bar (300 psi), was used to apply fixed pressure to the micro pressure sensor. Meanwhile,
the capacitance data were captured by using a Wayne Kerr Electronics 4230 LCR meter
(Bognor Regis, UK); the measurable capacitance range of the instrument was 0.01 pF~1 F,
and the accuracy was ±0.1%. The micro pressure sensor was corrected under 0~3 bar by
fixing the temperature at 20 ◦C, 30 ◦C, and 40 ◦C. It was observed that the capacitance
decreased as the temperature rose. As the dielectric layer was of PI polymer, the pressure
should be applied repeatedly at the initial stage of correction. The capacitance value was
stabilized after unloading, and the dimensionless correction curve of the micro pressure
sensor was, lastly, obtained as shown in Figure 9.
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3.5. Correction of Micro Hydrogen Sensor

The micro hydrogen sensor was corrected using the hydrogen and oxygen supplied
from the eight-channel fuel cell testing machine. The micro hydrogen sensor was installed
on the runner plate of the high-pressure PEMWE, and the runner was then used as a
closed environment for testing. Firstly, the micro hydrogen sensor was connected to an
NI PXI data acquisition unit to test the resistance variation; a constant temperature and
oxygen at a constant flow rate were set, such that the oxygen ions were adsorbed on the
surface of a micro hydrogen sensor. Secondly, a constant temperature and the hydrogen,
at a constant flow rate, were set. The presence of hydrogen could lead to the removal of
oxygen ions from the surface of the micro hydrogen sensor and a reduction in the sensor
resistivity. Thus, the hydrogen was tested by using the resistivity difference of different
gases. Figure 10 shows the dimensionless correction of two micro hydrogen sensors from
20 ◦C to 70 ◦C. In addition, changes in the resistivity of the micro hydrogen sensor at
25 ◦C, when the oxygen and hydrogen were supplied, were tested. The results show that
the flexible seven-in-one microsensor fabricated in this study produced a response in this
environment. The resistivity decreased at the moment when the hydrogen was supplied,
and the resistivity increased when the oxygen was supplied, as shown in Figure 11.
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4. High-Pressure PEMWE

A high-pressure PEMWE was developed in this study, including its structure, the
selection of material, and the flow-field design. A columnar runner was used for the
flow-field design, as shown in Figure 12. The gas can be carried away rapidly, such that the
oxygen can also be discharged rapidly, and thus the water electrolysis reaction area will
not be reduced by the gas in the runner. In addition, with the collector plate that was also
designed in this study, the high-pressure PEMWE and flexible seven-in-one microsensor
were assembled in accordance with the assembly program of related techniques, of which a
stereogram is shown in Figure 13.
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4.1. Real-Time Microscopic Monitoring of High-Pressure PEMWE

A high-pressure-resistant, flexible seven-in-one microsensor was embedded in the
upstream, midstream, and downstream of high-pressure PEMWE in order to monitor the
internal state. A 100-hour test was performed to observe the differences among upstream,
midstream, and downstream pressures.

4.2. High-Pressure PEMWE Test Environment

First, the temperature, flow velocity, and the voltage of high-pressure PEMWE must
be set. The normal temperature of 25 ◦C was the optimal operating temperature for a high-
pressure PEMWE, and the flow could influence the flow field and temperature distribution
inside the PEMWE. This study used a 1.8 V constant voltage for testing, and then the
high-pressure PEMWE was operated at a temperature of 25 ◦C and a flow velocity of
80 mL/min. Second, the high-pressure-resistant flexible seven-in-one microsensor and
high-accuracy capture equipment NI PXI cabinet was used for internal and local real-time
microscopic monitoring of the high-pressure PEMWE.

4.3. Voltage Test for High-Pressure PEMWE

The temperature of the DI water in the high-pressure PEMWE was set at 25 ◦C, the flow
velocity at 80 ml/min, and the 100-hour measurement was performed with a constant voltage
of 1.8 V. The voltage distributions in the upstream, midstream, and downstream are shown in
Figure 14. It can be observed that the change at the upstream inlet was relatively drastic.
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4.4. Current Test for High-Pressure PEMWE

In the environment where the temperature was 25 ◦C and the flow velocity was
80 ml/min, the 100-hour measurement was performed with a constant voltage of 1.8 V,
and the signals were captured every 30 mins. The current distributions in the upstream,
midstream, and downstream are shown in Figure 15. It was observed that the current
clearly changed at the upstream inlet in the reaction process.
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4.5. Temperature Test for High-Pressure PEMWE

The data show that the temperature changes when an upstream current is applied were
relatively large in the reaction process, and the temperature changes when the midstream
and downstream currents were applied were relatively mild, but also relatively higher. This
is because the water in the high-pressure PEMWE generated some heat after the reaction;
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further, when the temperature rose, which was conducted by water, the temperature at the
downstream outlet rose slightly, as shown in Figure 16.
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4.6. Humidity Test for High-Pressure PEMWE

The data show that the upstream, midstream, and downstream relative humidity were
100% in the reaction process, and the resistive micro humidity sensor displayed errors
under the temperature effect, as shown in Figure 17.
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4.7. Flow Test for High-Pressure PEMWE

Figure 18 shows the 100-hour flow distributions in the upstream, midstream, and
downstream flow of the high-pressure PEMWE. It was observed that the upstream of the
runner had the highest flow velocity, and the downstream had the lowest flow velocity. This
is because the fluid in the columnar runner was relatively smooth and stable in comparison
to that in the snakelike runner.
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4.8. Pressure Test for High-Pressure PEMWE

Figure 19 shows the 100-hour upstream pressure test for the high-pressure PEMWE.
The pressure was fixed at 3 bar for testing; if there is a leak inside the high-pressure PEMWE,
the internal pressure changes noticeably. This experimental result proves that the design
and assembly of the high-pressure PEMWE are good, as there were no leaks.
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4.9. Hydrogen Test for High-Pressure PEMWE

Figure 20 shows the 100-hour cathode hydrogen runner outlet test for the high-pressure
PEMWE. The micro hydrogen sensor could not touch the oxygen, and it was restored to
the state before measurement; therefore, the resistivity decreased noticeably when the
hydrogen was introduced.
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5. Conclusions 
In this study, a flexible seven-in-one microsensor, which is resistant to a high-
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5. Conclusions

In this study, a flexible seven-in-one microsensor, which is resistant to a high-pressure
environment, was successfully developed using MEMS technology. The micro voltage,
current, temperature, humidity, flow, pressure, and micro hydrogen sensors were success-
fully integrated onto a 20 µm thick PI film substrate, and the PI (Fujifilm Durimide? PI
9320)—which is resistant to electrochemical corrosion—was used as a protection layer.
This high-pressure, resistant, flexible seven-in-one microsensor is characterized by seven
simultaneous sensing functions: corrosion resistance, small area, high sensitivity, good
temperature tolerance, real-time measurement, and arbitrary placement.

Three flexible seven-in-one microsensors were successfully embedded in the upstream,
midstream, and downstream of the anode runner plate of a high-pressure PEMWE. This
was achieved without influencing its operation, and when the temperature, humidity, flow,
pressure, and hydrogen that it was subjected to were corrected. The internal and local
voltage, current, temperature, humidity, flow, pressure, and hydrogen data of the high-
pressure PEMWE were successfully captured by an NI PXI data acquisition unit during
the 100-hour operation process of the high-pressure PEMWE. Notably, there was also no
damage in the process.
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