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Abstract: Metal-organic frameworks (MOFs) are perceptive modifiers for the creation of mixed matrix
membranes to improve the pervaporation performance of polymeric membranes. In this study, novel
membranes based on polyvinyl alcohol (PVA) modified with Zr-MOFs (MIL-140A, MIL-140A-AcOH,
and MIL-140A-AcOH-EDTA) particles were developed for enhanced pervaporation dehydration
of isopropanol. Two membrane types (substrateless–freestanding; and formed on polyacrylonitrile
support-composite) were prepared. The additional cross-linking of membranes with glutaraldehyde
was carried out to circumvent membrane stability in pervaporation dehydration of diluted solutions.
The synthesized Zr-MOFs were characterized by scanning electron microscopy, X-ray powder diffrac-
tion analysis, and specific surface area measurement. The structure and physicochemical properties
of the developed membranes were investigated by Fourier-transform infrared spectroscopy, scan-
ning electron and atomic force microscopies, thermogravimetric analysis, swelling experiments, and
contact angle measurements. The PVA and PVA/Zr-MOFs membranes were evaluated in pervapo-
ration dehydration of isopropanol in a wide concentration range. It was found that the composite
cross-linked PVA membrane with 10 wt% MIL-140A had optimal pervaporation performance in the
isopropanol dehydration (12–100 wt% water) at 22 ◦C: 0.15–1.33 kg/(m2h) permeation flux, 99.9 wt%
water in the permeate, and is promising for the use in the industrial dehydration of alcohols.

Keywords: mixed matrix membrane; polyvinyl alcohol; Zr-MOFs; pervaporation; isopropanol
dehydration

1. Introduction

Membrane technologies for filtering [1–4] and separation [5–9] of various solvents,
gas separation [10–12], sorption [13], etc. are becoming more and more widespread in
research and technology. These sustainable processes have great advantages compared to
conventional methods, such as equipment compactness, elimination of the use of additional
toxic reagents, low energy consumption, etc. A membrane method pervaporation used for
the separation of low molecular weight components is actively applied for the dehydration
of alcohols, which is now a common task in many industries [14,15]. Water/isopropanol
azeotropic mixture with 12 wt% water and a boiling point of 80.3 ◦C is the most common
model water-alcohol mixture for membrane testing laboratories [16]. Recently, polymeric
membranes have been widely used for this separation purpose, which have a large number
of advantages over inorganic ones. A simple and effective way to improve the properties
of polymeric membranes is their modification with various additives [17–20].

Metal-organic frameworks (MOFs) are porous structures that are composed of metal
ions and polydentate organic molecules combined into a three-dimensional framework
through strong metal-ligand interactions. MOFs have recently been actively used for
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various applications such as catalysis [21], chemical separation [22], adsorption [23], gas
storage [24], drug delivery [25], and for the preparation of pervaporation membranes [26].
Mixed matrix membranes with MOFs as modifiers are promising for application in pervapo-
ration due to the unique structural properties of MOFs, ease of modification, as well as good
compatibility between MOFs and the polymer matrix. To develop pervaporation mem-
branes, MOFs were used to modify polymers such as polyimide [27,28], cardo polyetherke-
tone [29], polyether-block-amide [30], polyarylethersulfone [31], chitosan [32–34], a poly-
mer of intrinsic microporosity PIM-1 [35], polydimethylsiloxane [36,37], polyamide [38],
polyethyleneimine [39], sodium alginate [40,41], polyvinyl alcohol [42–46], etc.

The most widely used polymer for the dehydration of organic solvents is polyvinyl
alcohol (PVA), due to its low cost, high hydrophilicity, chemical stability, excellent film-
forming properties, and high tensile strength. A significant disadvantage of this polymeric
material is its solubility in water, which does not allow the use of PVA membranes for
separating the mixtures with high water content. For membrane stability in dilute solutions,
cross-linking with various agents is used, such as citric or maleic acids [47], poly(sodium
salt styrene sulfonic acid-co-maleic acid) [48], fumaric acid [49], urea-formaldehyde resin
obtained by acid condensation [50], polyacrylic acid [51], glutaraldehyde [52–54], etc.
For the development of PVA membranes with improved properties, such MOFs as UiO-
66 [45,55], Cu3(BTC)2 [44], modified MIL-53(Al)-NH2 [46], SO3H-MIL-101-Cr [43], ZIF-
8 [42,56,57], aluminum fumarate (AlFu) [58], etc. were tested. However, there is no
information about membranes based on PVA modified with Zr-MOFs (MIL-140A, MIL-
140A-AcOH, and MIL-140A-AcOH-EDTA) particles for pervaporation.

The metal ion has an important role in the stability of these synthesized MOFs. The
rigid coordination nature of Lewis acids and bases of the Zr-carboxylate bonds makes MOFs
more stable than, for instance, other high valence MOFs (for example, Fe-MOFs, etc.). In ad-
dition, Zr-MOFs are easily amenable to post-synthetic functionalization without loss of high
stability, which makes them particularly attractive to researchers [59–61]. MIL-140A is Zr-
MOF formed in the reactions of ZrCl4 with 1,4-benzenedicarboxylic acid (1,4-H2BDC) [62].
The functionalization of MIL-140A by acetic acid (AcOH) and ethylenediaminetetraacetic
acid (EDTA) occurs by grafting AcOH and EDTA during synthesis. The introduction
of functional groups into the MOF structure changes the shape and size of both parti-
cles and pores, causing the variation in porosity and specific surface area of Zr-MOFs.
Unique properties of unmodified MIL-140A and modified MIL-140A-AcOH and MIL-140A-
AcOH-EDTA particles, such as excellent thermal and chemical stability, high porosity, and
tunable chemical properties may significantly and positively impact the characteristics of
pervaporation PVA membranes.

The aim of the present work was to develop novel PVA membranes modified by
Zr-MOFs (MIL-140A, MIL-140A-AcOH, and MIL-140A-AcOH-EDTA) with improved per-
vaporation performance (permeation flux and permeate composition) in isopropanol de-
hydration. The tailored membrane properties were achieved due to the unique physico-
chemical and structural properties of the Zr-MOFs modifier such as pore size and particle
shape, thermal and chemical stability, large specific surface area and its ability to change the
surface roughness, surface hydrophilic-hydrophobic balance, and swelling characteristics
of PVA membranes. Two types of PVA and PVA/Zr-MOFs membranes (freestanding and
composite, supported on polyacrylonitrile (PAN) substrate) were developed. The cross-
linking of PVA-based membranes with glutaraldehyde (GA) was carried out to improve the
stability in diluted aqueous solutions. The synthesized Zr-MOFs were studied by scanning
electron microscopy (SEM), X-ray powder diffraction analysis (XRPD), and specific surface
area measurement (BET). The structure of the developed membranes was investigated
by Fourier-transform infrared spectroscopy (FTIR), scanning electron (SEM), and atomic
force (AFM) microscopies. The changes in membrane physicochemical properties were
studied by thermogravimetric analysis (TGA), swelling experiments, and contact angle
measurements. The membrane performance of freestanding and composite membranes
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was evaluated in the pervaporation separation of water/isopropanol mixture in the wide
concentration range.

2. Materials and Methods
2.1. Materials

Polyvinyl alcohol (PVA, molecular weight of 103 kDa, NevaReactiv, St. Petersburg,
Russia) was used as a membrane material. Polyacrylonitrile (PAN, COA No.: A05P10833,
the molecular weight of 150 kDa, Ming International Co., St. Petersburg, Russia) was
used for the preparation of a porous substrate, because it showed good adhesion of the
selective layer. MIL-140A (specific surface area of 493.4 ± 0.2 m2/g and pore diameter
of 3.1 Å; Figure S3 in Supplementary Materials), MIL-140A-AcOH (specific surface area
of 568.0 ± 0.1 m2/g and pore diameter of 4.4 Å; Figure S3 in Supplementary Materials)
and MIL-140A-AcOH-EDTA (specific surface area of 529.3 ± 0.2 m2/g and pore diameter
of 3.5 Å; Figure S3 in Supplementary Materials) were synthesized in the research group
“Photoactive nanocomposite materials” at the Saint-Petersburg State University (St. Peters-
burg, Russia) and used for PVA modification (synthesis and characterization of Zr-MOFs
particles are described in Supplementary Materials). The structure of the synthesized
Zr-MOFs was confirmed by the X-ray powder diffraction method (XRPD) (Bruker “D8
DISCOVER”, Bruker, Billerica, Massachusetts, USA), shown in Figures S1 and S2 in Supple-
mentary Materials [63]. Isopropanol (i-PrOH), dimethyl sulfoxide (DMSO), chloroform,
and hydrochloric acid (36 wt%) (Vekton, St. Petersburg, Russia) were used without further
purification. Glutaraldehyde (GA, 25 wt% aqueous solution, Sigma Aldrich, St. Petersburg,
Russia) was used to cross-link the PVA-based membranes. Hydrochloric acid was used as
a catalyst for cross-linking PVA chains with GA [64,65].

2.2. Freestanding Membrane Preparation

To develop unmodified membranes, a 2 wt% PVA solution was constantly stirred in
water at 85 ◦C for 5 h. The PVA/Zr-MOFs composites were obtained by the solid-phase
method with simultaneous mixing and grinding of PVA and Zr-MOFs powders in an
agate mortar. Up to 15 wt% Zr-MOFs with respect to the PVA weight were added into the
polymer matrix. The resulting PVA/Zr-MOFs composite was dissolved in water at 85 ◦C
for 5 h with constant stirring. The obtained solutions of PVA and suspension of PVA/Zr-
MOFs composites were sonicated at ambient temperature and cast into Petri dishes for the
formation of membranes by solvent evaporation at 40 ◦C in an oven for 24 h. The thickness
of the freestanding PVA and PVA/Zr-MOFs membranes measured with a micrometer was
equal to 40 ± 5 µm.

To use the membranes in the separation of dilute solutions, the developed PVA and
PVA/Zr-MOFs membranes were cross-linked with glutaraldehyde (GA). 25 wt% GA
aqueous solution and 36 wt% hydrochloric acid were added into the PVA solution and
PVA/Zr-MOFs suspension (0.033 mL on 1 g of PVA) [42,56] with subsequent stirring for
15 min. Then, the cross-linked freestanding membranes were prepared according to the
procedure described above.

2.3. Composite Membrane Preparation

To prepare a porous substrate, 15 wt% PAN was dissolved in DMSO at 100–120 ◦C for
3 h with constant stirring using an overhead stirrer. Porous PAN substrate was prepared by
phase inversion technique: the PAN solution was deposited with a casting blade (gap width
of 200 µm) onto a glass support with the subsequent immersion in a coagulation bath with
distilled water at ambient temperature (non-solvent induced phase separation-NIPS) [66].

The preparation of the composite cross-linked PVA and PVA/Zr-MOFs membranes
was carried out as follows: to form a dense thin layer, PVA solution or PVA/Zr-MOFs
suspension with GA and HCl were deposited onto a surface of porous PAN substrate
stretched over a steel ring. Next, the ring was placed on the surface so that the composite
membrane was perpendicular to the surface to runoff the excess polymer solution. The
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excess polymer was removed from the walls of the steel ring, and the membrane was dried
on air for 24 h. The thickness of the selective layer measured by SEM was found to be
900 ± 50 nm.

2.4. Pervaporation Experiment

The membrane performance of the developed freestanding and composite PVA and
PVA/Zr-MOFs membranes were studied in a laboratory pervaporation cell (the effective
membrane area was 9.6 × 10−4 m2) with stirring in a stationary mode at 22, 50, and
70 ◦C [40]. The compositions of the feed and permeate were investigated using a gas
chromatograph Chromatec Crystal 5000.2 (Chromatec, Nizhny Novgorod, Russia) with a
column “Hayesep R” (2 m long and 3 mm in diameter) and a thermal conductivity detector.

The permeation flux J (kg/(m2h)) of the PVA and PVA/Zr-MOFs membranes was
calculated by Equation (1) [67]:

J =
W
A·t , (1)

where W (kg) is the weight of permeate (the mixture that permeated through the mem-
brane), A (m2) is the effective membrane area (9.6 × 10−4 m2), and t (h) is the time of
the measurement.

To ensure the accuracy of parameters, all the data were collected in triplicate, and
the average value was used. The obtained average accuracies were as follows: ±0.5% for
water content in the permeate, ±5% for permeation flux of the freestanding PVA and
PVA/Zr-MOFs membranes, and ±3% for permeation flux of the composite PVA and
PVA/Zr-MOFs membranes.

2.5. Fourier-Transform Infrared Spectroscopy

Structural changes of the freestanding PVA and PVA/Zr-MOFs membranes were
studied by Fourier-transform infrared spectroscopy (FTIR) using IRAffinity-1S spectrometer
(Shimadzu, St. Petersburg, Russia), to which an attenuated total reflectance (ATR) accessory
was attached. The measurement was carried out in the range of 600–4000 cm−1 at 25 ◦C.

2.6. Atomic Force Microscopy

The surface topography of the PVA and PVA/Zr-MOFs membranes was studied by
atomic force microscopy (AFM) using NT-MDT NTegra Maximus atomic force microscope
(NT-MDT Spectrum Instruments, Moscow, Russia) with standard silicon cantilevers and
rigidity of 15 N·m−1 in tapping mode.

2.7. Scanning Electron Microscopy

The cross-sectional and surface morphology of the PVA and PVA/Zr-MOFs mem-
branes was studied by scanning electron microscopy (SEM) using Zeiss AURIGA Laser
(Carl Zeiss SMT, Oberhochen, Germany) at 1 kV. A cross-section of the membranes was
obtained by breaking the membrane in liquid nitrogen perpendicular to the surface.

2.8. Thermogravimetric Analysis

The thermochemical properties of the freestanding PVA and PVA/Zr-MOFs mem-
branes were studied by thermogravimetric analysis (TGA) using Thermobalance TG 209 F1
Libra (Netzsch, Leuna, Germany) at a heating rate of 10 ◦C/min in argon atmosphere in
the range of 30–586 ◦C.

2.9. Swelling Measurements

The swelling degree (sorption) was studied in water/isopropanol (12/88 and 30/70 wt%)
mixtures for uncross-linked and cross-linked freestanding PVA and PVA/Zr-MOFs mem-
branes, as well as in pure water for cross-linked freestanding PVA and PVA/Zr-MOFs
membranes by the gravimetric method at 25 ◦C. Each membrane was lowered into a wa-
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ter/isopropanol mixture or water, and the weight of the membranes was checked regularly
to the constant swelling weight.

To calculate swelling degree (S), Equation (2) was used:

S =
ms − mo

mo
·100%, (2)

where ms (g) is the weight of the swollen membrane, mo (g) is the initial weight of the dry
membrane.

2.10. Contact Angle Measurements

To study the hydrophilic-hydrophobic surface balance of the cross-linked freestanding
membranes, contact angles of water were measured using a Goniometer LK-1 (NPK Open
Science Ltd., Krasnogorsk, Russia) by the sessile drop method. The contact angle data were
calculated using the software “DropShape”.

2.11. Density Measurements

The density ρ (g/cm3) of the freestanding membranes was studied by flotation method
at 22 ◦C. Chloroform (ρ = 1.49 g/cm3) and isopropanol (ρ = 0.78 g/cm3) were chosen as
solvents to measure the density since they did not cause membrane swelling and did not
react with them. The flotation method was carried out according to the methodology
described earlier in ref. [68]. The density of each membrane was measured at least thrice,
and the density of the solvent mixture was measured with a pycnometer.

3. Results and Discussion

Section 3 is divided into several subsections. Section 3.1 is devoted to the pervapo-
ration performance, structural and physicochemical properties of the freestanding PVA
and PVA/Zr-MOFs membranes: performance of uncross-linked membranes is presented
in Section 3.1.1 (in this section, the influence of modifiers on pervaporation performance
is studied), for cross-linked membranes-in Section 3.1.2 (in this section, the influence
of cross-linking agent on pervaporation performance is studied), Section 3.1.3 contains
physicochemical properties and structure investigation. Section 3.2 is devoted to the
pervaporation performance, and structural properties of the composite PVA and PVA/Zr-
MOFs membranes. Additionally, the synthesis and characterization of the developed
Zr-MOFs particles are presented in Supplementary Materials: the investigation by X-ray
powder diffraction (Figures S1 and S2), low-temperature nitrogen adsorption BET analysis
(Figure S3), and scanning electron microscopy (Figure S4).

3.1. The Development and Investigation of the Freestanding PVA and PVA/Zr-MOFs Membranes
3.1.1. Pervaporation Performance of the Uncross-Linked PVA and
PVA/Zr-MOFs Membranes

To optimize the concentration of Zr-MOFs in the polymer matrix, up to 15 wt% of
unmodified Zr-MOF (MIL-140A) was introduced into the PVA matrix. The performance
of the developed uncross-linked PVA and PVA/MIL-140A membranes were studied in
pervaporation separation of water/isopropanol mixtures (12, 20, and 30 wt% water). The
dependence of the permeation flux on the water content in the feed for the dehydration of
isopropanol is shown in Figure 1.
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Figure 1. The dependence of the permeation flux on the water content in the feed for the uncross-
linked PVA and PVA/MIL-140A membranes in pervaporation separation of water/isopropanol
mixtures (12, 20, and 30 wt% water) at 22 ◦C. Water content in the permeate for all uncross-linked
PVA and PVA/MIL-140A membranes was 99.9 wt%.

The data presented in Figure 1 demonstrate that the permeation flux for the free-
standing PVA and PVA/MIL-140A membranes increased with the rise of water content
in the feed. This is related to the higher water concentration in the feed, resulting in
increased swelling of the PVA-based membranes in the separated mixture (confirmed by
the swelling data presented below). The introduction of MIL-140A (5–15 wt%) into the
PVA matrix increased the permeation flux compared to the unmodified membrane that can
be related to the formation of interfacial defects or gaps, the change of morphology and
hydrophilic–hydrophobic surface balance which facilitated the penetrants diffusion [68].
The introduction of 5 wt% MIL-140A did not suffice to change significantly the performance
of the PVA membrane, due to insignificant structural changes (SEM data presented below),
surface roughness (AFM data presented below) and swelling degree (proven by swelling
degree data presented below) during the modification. Further, 10 wt% of MIL-140A was
shown to be the optimal concentration in the PVA matrix to get enhanced pervaporation
performance of the PVA membrane, since PVA+MIL-140A(10%) membrane had the high-
est values of permeation flux due to morphology changes (SEM data presented below),
increased surface roughness (AFM data presented below), and the highest swelling degree
in water/isopropanol mixture among PVA and PVA+MIL-140A(5 and 15%) membranes
(proven by swelling degree data presented below). The membrane modified with 10 wt%
MIL-140A had ca. 1.6 times higher permeation flux than for the unmodified PVA membrane
in pervaporation dehydration of isopropanol (30 wt% water). The increase in MIL-140A
concentration to 15 wt% in the PVA matrix led to the formation of Zr-MOF agglomerates in
the membrane (proven by SEM and AFM data presented below), hindering the penetration
of components and decreasing the permeation flux. It should be noted that all membranes
showed high selectivity with respect to water (99.9 wt% water in permeate).

The addition of MOF without functional groups is known to possibly cause high
permeability and low selectivity, due to the existence of interfacial defects. However,
the functionalization of MOFs can decrease or exclude interface defects [69]. Thus, the
effect of the introduction of functionalized MOFs (modified Zr-MOFs (MIL-140A-AcOH
and MIL-140A-AcOH-EDTA)) was investigated. Based on the data presented in Figure 1,
showing that 10 wt% MIL-140A is the optimal concentration, the same concentration
of modified Zr-MOFs was added to compare MOFs’ properties to non-functionalized
MIL-140A. The dependence of the permeation flux on the water content in the feed in
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pervaporation dehydration of isopropanol (12, 20, and 30 wt% water) is shown in Figure 2
for the developed uncross-linked PVA/MIL-140A-AcOH(10%) and PVA/MIL-140A-AcOH-
EDTA(10%) membranes. Figure 2 also shows the permeation fluxes of the PVA and
PVA/MIL-140A(10%) membranes for comparison.
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mixtures (12, 20, and 30 wt% water) at 22 ◦C. Water content in the permeate for all uncross-linked
PVA and PVA/Zr-MOFs(10%) membranes was 99.9 wt%.

The introduction of modified Zr-MOFs (10 wt%) into the PVA matrix increased the
permeation flux, maintaining a high content of water in the permeate (99.9 wt%), compared
to the pristine PVA membrane. The increased permeation flux of Zr-MOFs modified
membranes was related to the change of membrane morphology, an increase in the swelling
degree in water/isopropanol mixtures (12 and 30 wt% water), and surface roughness during
the modification by the modified Zr-MOFs. The lowest values of permeation flux for all
membranes were observed when separating an azeotropic water/isopropanol mixture,
containing 12 wt% water, since the lowest values of the swelling degree were noted in the
azeotropic mixture (proven by swelling degree data presented below). The membrane
modified with MIL-140A (10 wt%) had the highest values of permeation flux compared to
the pristine PVA and other modified PVA/Zr-MOFs(10%) membranes. The enhancement
of the permeation flux for the PVA+MIL-140A(10%) membrane may be explained by
the highest swelling in the separated mixture (confirmed by swelling data presented
below) and surface roughness (confirmed by AFM data presented below) compared to
the uncross-linked PVA and PVA/Zr-MOFs (PVA+MIL-140A-AcOH(10%) and PVA+MIL-
140A-AcOH-EDTA(10%)) membranes. The introduction of AcOH and EDTA functional
groups into the MOF structure increased pore size and specific surface area on the one
hand (Figure S3 in Supplementary Materials) and altered particle shape and size on the
other hand (Figure S4 in Supplementary Materials). Particle shape and size changes
reduced membrane surface roughness (proven by AFM data presented below). Also, the
modification with additional functional groups increased pore size in the particles, which
could lead to the flow of the polymer into the pores of the MOF [70] and eliminate interfacial
defects causing the decrease of the permeation flux. An increase in the specific surface area
usually decreases the permeation flux [71–74]. Thus, the PVA+MIL-140A(10%) membrane
was selected as optimal among the studied uncross-linked membranes.
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3.1.2. Pervaporation Performance of the Cross-Linked PVA and
PVA/Zr-MOFs Membranes

To implement freestanding membranes for the dehydration of mixtures with high
water content, cross-linking of polymer chains with GA was applied. To study the
effect of both modifiers (Zr-MOFs) and cross-linking agent (GA), the performance of
the cross-linked freestanding PVA/GA and PVA/Zr-MOFs/GA membranes (PVA/GA,
PVA+MIL-140A(10%)/GA, PVA+MIL-140A-AcOH(10%)/GA, and PVA+MIL-140A-AcOH-
EDTA(10%)/GA) was tested in the pervaporation separation of water/isopropanol mix-
tures (12, 20, and 30 wt% water). The results are presented in Figure 3.
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Figure 3. The dependence of the permeation flux on the water content in the feed for the cross-
linked PVA and PVA/Zr-MOFs(10%) membranes in pervaporation separation of water/isopropanol
mixtures (12, 20, and 30 wt% water) at 22 ◦C. Water content in the permeate for all cross-linked PVA
and PVA/Zr-MOFs(10%) membranes was 99.9 wt%.

Cross-linking of membranes with GA results in a decrease in permeation flux com-
pared to the corresponding uncross-linked membranes: ca. 1.9 times for the PVA/GA
membrane, ca. 1.5 times for the PVA+MIL-140A(10%)/GA membrane, ca. 1.4 times for
the PVA+MIL-140A-AcOH(10%)/GA membrane, ca. 1.7 times for the PVA+MIL-140A-
AcOH-EDTA(10%)/GA membrane in pervaporation dehydration of isopropanol (30 wt%
water). The decrease in permeation flux is related to the cross-linking of polymer chains,
leading to a decrease in the free volume (confirmed by density data presented below)
between them and resulting in the decreased swelling degree of the membranes in the
separated mixture (confirmed by swelling data presented below). The optimum mem-
brane performance, as in the case of the uncross-linked membranes, was exhibited by the
membrane modified with MIL-140A (PVA+MIL-140A(10%)/GA membrane): permeation
flux of 0.06 kg/(m2h), 99.9 wt% water in the permeate in pervaporation separation of the
water/isopropanol mixture (30 wt% water). The enhancement of the permeation flux for
this membrane may be related to the highest swelling in the separated mixtures (confirmed
by swelling degree data presented below) and surface roughness (confirmed by AFM
data presented below), compared to the cross-linked PVA/GA and PVA/Zr-MOFs/GA
(PVA+MIL-140A-AcOH(10%)/GA and PVA+MIL-140A-AcOH-EDTA(10%)/GA) mem-
branes. Thus, PVA+MIL-140A(10%)/GA membrane was found to be optimal among the
cross-linked membranes for the dehydration of isopropanol.



Membranes 2022, 12, 908 9 of 25

3.1.3. Structure and Physicochemical Properties of the Freestanding PVA and
PVA/Zr-MOFs Membranes

Fourier-transform infrared spectroscopy

Fourier-transform infrared spectroscopy (FTIR) was used to study structural changes
of the uncross-linked and cross-linked PVA and PVA/Zr-MOFs(10%) membranes (Figure 4).
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Figure 4. FTIR spectra of (a) the uncross-linked and (b) cross-linked PVA and PVA/Zr-
MOFs(10%) membranes.

The FTIR spectrum shown in Figure 4a for the PVA membrane shows a broad band
at 3284 cm−1 and a peak with a maximum at 2934 cm−1, which correspond to vibrations
of O-H and C-H bonds, respectively [75]. The absorption bands with maxima at 1327 and
1086 cm−1 correspond to vibrations associated with -C-O-H- group [75]. After the in-
troduction of Zr-MOFs into the PVA matrix, FTIR spectra changed slightly. A shift of
the peak at 3284 cm−1 for the PVA membrane to 3293 cm−1, 3301 cm−1, and 3290 cm−1

for the PVA+MIL-140A(10%), PVA+MIL-140A-AcOH(10%), and PVA+MIL-140A-AcOH-
EDTA(10%) membranes, respectively, was noted. This shift may be attributed to the
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formation of hydrogen bonds between the -OH groups of PVA and the -OH and/or -COOH
groups of Zr-MOFs [45].

The cross-linking of the PVA membrane with GA slightly changed the spectrum
for the PVA/GA membrane (Figure 4b). There is a shift of the peak from 1418 cm−1 to
1431 cm−1, related to the deformation vibrations of the –OH groups; the decrease of band
intensity in the region 3200–3350 cm−1 and the appearance of an intensive peak in the
region 1650–1720 cm−1, referring to carbonyl groups [76]. The cross-linking of PVA chains
with GA occurs with the formation of acetyl groups, according to the mechanism described
in the study [76]. For the cross-linked PVA/Zr-MOFs/GA, the following changes in the
FTIR spectra were noted: an increase in the intensity of the peak at 1690 cm−1 for the
PVA/MIL-140A membrane, 1711 cm−1 for the PVA/MIL-140A-AcOH membrane and
1691 cm−1 for the PVA/MIL-140A-AcOH-EDTA membrane. These absorption bands may
correspond to the stretching vibrations of C=O groups.

Scanning electron microscopy

The inner structures of the uncross-linked and cross-linked PVA and PVA/Zr-MOFs
membranes were studied by scanning electron microscopy (SEM). The cross-sectional SEM
micrographs for the uncross-linked and cross-linked PVA and PVA/Zr-MOFs membranes
are presented in Figure 5; Figure 6, respectively.

Membranes 2022, 12, x FOR PEER REVIEW 11 of 27 
 

 

(a) 

  

(b) 

  

(c) 

  

(d) 

  

(e) 

  

(f) 

  

Figure 5. The cross-sectional SEM micrographs at different magnification for the uncross-linked 
PVA and PVA/Zr-MOFs membranes: (a) PVA; (b) PVA+MIL-140A(5%); (c) PVA+MIL-140A(10%); 
(d) PVA+MIL-140A(15%); (e) PVA+MIL-140A-AcOH(10%); and (f) PVA+MIL-140A-AcOH-
EDTA(10%). 

The presented SEM micrographs demonstrate that the uncross-linked PVA mem-
brane had a rather smooth and uniform cross-sectional structure (Figure 5a). The intro-
duction of 5 wt% MIL-140A (Figure 5b) slightly increased the roughness of the cross-sec-
tion. The introduction of 10 and 15 wt% MIL-140A (Figure 5c,d) into the PVA matrix vis-
ualize MOF particles on the membrane cross-sections, the number of which increases with 
the rise of MIL-140A content. The introduction of 10 wt% MIL-140A-AcOH (Figure 5e) 
and MIL-140A-AcOH-EDTA (Figure 5f) into the PVA matrix also altered the cross-sec-
tional structure of the membranes. These included: the appearance of plastic defor-
mations, which are cross-sectional irregularities caused by immersion membrane in liquid 
nitrogen with subsequent cleavage and enhanced by embedded particles, and the visibil-

Figure 5. The cross-sectional SEM micrographs at different magnification for the uncross-
linked PVA and PVA/Zr-MOFs membranes: (a) PVA; (b) PVA+MIL-140A(5%); (c) PVA+MIL-
140A(10%); (d) PVA+MIL-140A(15%); (e) PVA+MIL-140A-AcOH(10%); and (f) PVA+MIL-140A-
AcOH-EDTA(10%).
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Figure 6. The cross-sectional SEM micrographs at different magnification for the cross-linked PVA
and PVA/Zr-MOFs(10%) membranes: (a) PVA/GA; (b) PVA+MIL-140A(10%)/GA; (c) PVA+MIL-
140A-AcOH(10%)/GA; and (d) PVA+MIL-140A-AcOH-EDTA(10%)/GA.

The presented SEM micrographs demonstrate that the uncross-linked PVA membrane
had a rather smooth and uniform cross-sectional structure (Figure 5a). The introduction
of 5 wt% MIL-140A (Figure 5b) slightly increased the roughness of the cross-section. The
introduction of 10 and 15 wt% MIL-140A (Figure 5c,d) into the PVA matrix visualize MOF
particles on the membrane cross-sections, the number of which increases with the rise of
MIL-140A content. The introduction of 10 wt% MIL-140A-AcOH (Figure 5e) and MIL-140A-
AcOH-EDTA (Figure 5f) into the PVA matrix also altered the cross-sectional structure of
the membranes. These included: the appearance of plastic deformations, which are cross-
sectional irregularities caused by immersion membrane in liquid nitrogen with subsequent
cleavage and enhanced by embedded particles, and the visibility of particles Zr-MOFs, in
particular MIL-140A-AcOH. The cross-sections of the modified membranes also differed
depending on the introduced Zr-MOFs, due to the different shapes and structures (Figure
S4 in Supplementary Materials) [69].

The cross-linking with GA created roughness on the cross-sectional structure. For
cross-linked modified PVA/Zr-MOFs/GA membranes, Zr-MOFs particles are also visible
on the membrane’s cross-sections. The changes in the inner morphology during the GA
cross-linking and Zr-MOFs modification of the PVA were reflected significantly in the
permeation fluxes of the developed membranes.

Atomic force microscopy

The surface roughness of the uncross-linked and cross-linked PVA and PVA/Zr-MOFs
membranes was studied by atomic force microscopy (AFM). AFM images with a scan size
of 10 × 10 µm are presented in Figure 7; Figure 8 for the uncross-linked and cross-linked
PVA and PVA/Zr-MOFs membranes, respectively.
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roughness due to the formation of particles agglomerates (confirmed by SEM data,  
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Figure 7. AFM images of the uncross-linked PVA and PVA/Zr-MOFs membranes: (a) PVA;
(b) PVA+MIL-140A(5%); (c) PVA+MIL-140A(10%); (d) PVA+MIL-140A(15%); (e) PVA+MIL-140A-
AcOH(10%); and (f) PVA+MIL-140A-AcOH-EDTA(10%).

The surface roughness characteristics (average, Ra, and root-mean-squared roughness,
Rq) of the uncross-linked PVA and PVA/Zr-MOFs membranes were calculated based on
the AFM images (Figure 7) and are presented in Table 1.

Table 1. The values of surface average (Ra) and root-mean-squared (Rq) roughness of the uncross-
linked PVA and PVA/Zr-MOFs membranes.

Membranes Ra, nm Rq, nm

PVA 0.38 0.68
PVA+MIL-140A(5%) 1.79 2.52
PVA+MIL-140A(10%) 33.76 36.61
PVA+MIL-140A(15%) 41.89 52.89

PVA+MIL-140A-AcOH(10%) 13.54 17.71
PVA+MIL-140A-AcOH-EDTA(10%) 14.62 21.01

The data presented in Table 1 demonstrate that the introduction of Zr-MOFs into
the PVA matrix increased surface average and root-mean-squared roughness. The in-
crease of MIL-140A content in the PVA matrix from 5 to 15 wt% led to the rise of surface
roughness characteristics. The PVA+MIL-140A(15%) membrane had the highest values
of surface roughness due to the formation of particles agglomerates (confirmed by SEM
data, Figure 5d). In comparison to the pristine PVA, PVA+MIL-140A-AcOH(10%) and
PVA+MIL-140A-AcOH-EDTA(10%) membranes, the PVA+MIL-140A(10%) membrane had
the highest surface roughness (Ra of 33.76 nm, Rq of 36.61 nm), which affects the facilitated
sorption of feed components on the membrane surface (swelling degree data presented be-
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low), resulting to the highest permeation flux (Figure 2) among the uncross-linked PVA and
PVA/Zr-MOFs(10%) membranes. The highest roughness values of this membrane among
uncross-linked PVA, PVA+MIL-140A-AcOH(10%), and PVA+MIL-140A-AcOH-EDTA(10%)
membranes can be associated with the MIL-140A shape, which is a narrow cylinder (Figure
S4 in Supplementary Materials), and the smallest pore size [69].
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Figure 8. AFM images of the cross-linked PVA and PVA/Zr-MOFs(10%) membranes: (a) PVA/GA;
(b) PVA+MIL-140A(10%)/GA; (c) PVA+MIL-140A-AcOH(10%)/GA; and (d) PVA+MIL-140A-AcOH-
EDTA(10%)/GA.

Surface average (Ra) and root-mean-squared (Rq) roughness of the cross-linked PVA
and PVA/Zr-MOFs(10%) membranes are presented in Table 2.

Table 2. The values of surface average (Ra) and root-mean-squared surface (Rq) roughness of
cross-linked PVA and PVA/Zr-MOFs(10%) membranes.

Membranes Ra, nm Rq, nm

PVA/GA 0.35 1.31
PVA+MIL-140A(10%)/GA 19.24 24.72

PVA+MIL-140A-AcOH(10%)/GA 10.54 15.21
PVA+MIL-140A-AcOH-EDTA(10%)/GA 14.64 21.84

The cross-linking of PVA-based membranes with GA results in a reduction in values
of surface average and root-mean-squared roughness compared to the uncross-linked
membranes (Table 2). The dependence trend of the surface roughness of the cross-linked
membranes is noted as in the case of the uncross-linked membranes (Table 1), which is in
agreement with the obtained permeation fluxes (Figure 3). The cross-linked membrane
modified with MIL-140A (PVA+MIL-140A(10%)/GA membrane) had the highest surface
roughness values due to the particle pore size, as well as its shape, resulting in the maximum
values of permeation flux among the cross-linked membranes.

Thermogravimetric analysis

The thermal stability of the uncross-linked and cross-linked PVA and PVA/Zr-MOFs(10%)
membranes was investigated by thermogravimetric analysis (TGA). The obtained thermo-
grams are presented in Figure 9.
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Figure 9. Thermogravimetric curves for (a) the uncross-linked and (b) cross-linked PVA and 
PVA/Zr-MOFs(10%) membranes. 

Figure 9a shows three stages of weight loss for the uncross-linked PVA and PVA/Zr-
MOFs(10%) membranes at the following temperature ranges: (1) 30–170 °C; (2) 170–398 
°C; (3) ˃398 °C for the PVA membrane; (1) 30–178 °C; (2) 178–360 °C; (3) ˃360 °C for the 
PVA+MIL-140A(10%) membrane; (1) 30–159 °C; (2) 159–359 °C; (3) ˃359 °C for the 
PVA+MIL-140A-AcOH(10%) membrane; and (1) 30–168 °C; (2) 168–383 °C; (3) ˃ 383 °C for 
the PVA+MIL-140A-AcOH-EDTA(10%) membrane. The first stage is associated with the 
evaporation of water, which is present in the membranes, due to the absorption of atmos-
pheric moisture. The weight loss for this step is approximately the same for all samples at 
2.2–2.5%. The second step of weight loss is different for all samples: 78.5% at 398 °C for 
the PVA membrane, 61.5% at 360 °C for the PVA+MIL-140A(10%) membrane, 63.5% at 
359 °C for the PVA+MIL-140A-AcOH(10%) membrane, 54.4% at 383 °C for the PVA+MIL-
140A-AcOH-EDTA(10%) membrane. This step is attributed to the removal of hydroxyl 
groups attached to the polymer backbone. The last step of weight loss of samples refers to 
the decomposition of the membrane material. Wherein, the introduction of Zr-MOFs in 
the PVA matrix increased the thermal stability of membranes, the PVA+MIL-140A(10%) 
membrane has the highest thermal stability. The weight loss for the PVA membrane was 
94.3%, while for the PVA+MIL140A(10%) membrane—80.5% at 550 °C. 

There were four stages of weight loss for the cross-linked PVA/GA and PVA/Zr-
MOFs(10%)/GA membranes at the following temperature ranges (Figure 9b): (1) 30–
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Figure 9a shows three stages of weight loss for the uncross-linked PVA and PVA/Zr-
MOFs(10%) membranes at the following temperature ranges: (1) 30–170 ◦C; (2) 170–398 ◦C;
(3) >398 ◦C for the PVA membrane; (1) 30–178 ◦C; (2) 178–360 ◦C; (3) >360 ◦C for the PVA+MIL-
140A(10%) membrane; (1) 30–159 ◦C; (2) 159–359 ◦C; (3) >359 ◦C for the PVA+MIL-140A-
AcOH(10%) membrane; and (1) 30–168 ◦C; (2) 168–383 ◦C; (3) >383 ◦C for the PVA+MIL-
140A-AcOH-EDTA(10%) membrane. The first stage is associated with the evaporation of
water, which is present in the membranes, due to the absorption of atmospheric moisture.
The weight loss for this step is approximately the same for all samples at 2.2–2.5%. The
second step of weight loss is different for all samples: 78.5% at 398 ◦C for the PVA mem-
brane, 61.5% at 360 ◦C for the PVA+MIL-140A(10%) membrane, 63.5% at 359 ◦C for the
PVA+MIL-140A-AcOH(10%) membrane, 54.4% at 383 ◦C for the PVA+MIL-140A-AcOH-
EDTA(10%) membrane. This step is attributed to the removal of hydroxyl groups attached
to the polymer backbone. The last step of weight loss of samples refers to the decomposi-
tion of the membrane material. Wherein, the introduction of Zr-MOFs in the PVA matrix
increased the thermal stability of membranes, the PVA+MIL-140A(10%) membrane has the
highest thermal stability. The weight loss for the PVA membrane was 94.3%, while for the
PVA+MIL140A(10%) membrane—80.5% at 550 ◦C.

There were four stages of weight loss for the cross-linked PVA/GA and PVA/Zr-
MOFs(10%)/GA membranes at the following temperature ranges (Figure 9b): (1) 30–175◦C;
(2) 175–314 ◦C; (3) 314–513 ◦C; (4) >513 ◦C for the PVA/GA membrane; (1) 30–167 ◦C;
(2) 167–279 ◦C; (3) 279–380◦C; (4) >380 ◦C for the PVA+MIL-140A(10%)/GA membrane;
(1) 30–170 ◦C; (2) 170–296 ◦C; (3) 296–379 ◦C; (4) >379 ◦C for the PVA+MIL-140A-AcOH(10%)/
GA membrane; and (1) 30–164 ◦C; (2) 164–290 ◦C; (3) 290–398 ◦C; (4) >398 ◦C for the
PVA+MIL-140A-AcOH-EDTA(10%)/GA membrane. The first area, as in the case of the
uncross-linked membranes, was associated with the evaporation of water. The weight
loss for this step was approximately the same for all samples being 2.5–4.4%. The fol-
lowing three steps differed significantly for the cross-linked PVA/GA membrane and
cross-linked PVA/Zr-MOFs(10%)/GA membranes. The second step of weight loss was
26.6% at 314 ◦C for the unmodified PVA/GA membrane, 20.3–22.7% at 279–296 ◦C for
PVA/Zr-MOFs(10%)/GA membranes and was attributed to the degradation of functional
groups (for example, hydroxyl) attached to the polymer backbone. For the unmodified
PVA/GA membrane, the weight loss was 94.1% at 513 ◦C, for PVA/Zr-MOFs(10%)/GA
membranes the weight loss was 49.5–50.4% at the third step. The third step may correspond
to the thermal decomposition of cross-linked PVA chains [77]. The final weight loss is
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related to the decomposition of the polymer’s main backbones and the decomposition of
the PVA [78]. The PVA+MIL-140A(10%)/GA membrane had the highest thermal stability
among the cross-linked membranes. The weight loss for the PVA/GA membrane was
94.3%, while for the PVA+MIL140A(10%)/GA membrane was 80.0% at 550 ◦C.

Swelling degree

The swelling of freestanding membranes was studied in water/isopropanol mixtures
(12/88, 30/70 wt%) and water. For the uncross-linked PVA and PVA/Zr-MOFs membranes,
the swelling degree is presented only for water/isopropanol (12/88, 30/70 wt%) mixtures,
since these membranes instantly dissolve in pure water. The swelling data is shown
in Table 3.

Table 3. Swelling degree of the uncross-linked and cross-linked PVA and PVA/Zr-MOFs membranes
in water and water/isopropanol (12/88 and 30/70 wt%) mixtures.

Membrane

Swelling Degree, %

Water/Isopropanol Mixture
Water

12/88 wt% 30/70 wt%

PVA 15 53 -
PVA+MIL-140A(5%) 18 58 -
PVA+MIL-140A(10%) 20 61 -
PVA+MIL-140A(15%) 19 58 -

PVA+MIL-140A-AcOH(10%) 16 52 -
PVA+MIL-140A-AcOH-EDTA(10%) 17 53 -

PVA/GA 14 50 236
PVA+MIL-140A(10%)/GA 19 56 293

PVA+MIL-140A-AcOH(10%)/GA 15 51 248
PVA+MIL-140A-AcOH-EDTA(10%)/GA 16 52 250

The data presented in Table 3 demonstrate that the addition of Zr-MOFs increased the
swelling degree in the water/isopropanol (12/88 and 30/70 wt%) mixtures compared to
the PVA and PVA/GA membranes. A slight increase in the swelling degree was caused
by an increased number of sorption centers on the surface of the freestanding membranes.
The introduction of MIL-140A (5 and 10 wt%) into the PVA matrix increased the swelling
degree with the rise of its content in the membrane. However, the introduction of 15 wt%
MIL-140A in the PVA membrane causes a slightly decreased swelling degree, compared
to the PVA+MIL-140A(10%) membrane. It may be associated with the increased size of
agglomerates and change of the membrane morphology, related to high modifier con-
tent (confirmed by SEM, Figure 5d). The introduction of 10 wt% modified Zr-MOFs
(MIL-140A-AcOH and MIL-140A-AcOH-EDTA) increased the swelling compared to the
PVA membrane but the swelling was slightly decreased compared to the MIL-140 modi-
fier. The stability of PVA-based membranes in water was achieved by cross-linking with
GA, as the membranes were found to be stable in water media for at least 14 days dur-
ing the swelling study. Also, cross-linking of PVA chains resulted in a slight decrease in
swelling degree in the water/isopropanol (12/88 and 30/70 wt%) mixtures compared to the
uncross-linked membranes. The membranes modified with 10 wt% MIL-140A (PVA+MIL-
140A(10%) and PVA+MIL-140A(10%)/GA) have the highest values of the swelling degree
among the freestanding membranes based on PVA, PVA/MIL-140A-AcOH(10%), and
PVA/MIL-140A-AcOH-EDTA(10%), which is in agreement with the highest surface rough-
ness (Tables 1 and 2) and permeation flux (Figures 2 and 3) among them.

Contact angle measurements

To study changes in the surface properties of the PVA membrane during modification
with Zr-MOFs, the contact angle of water for the cross-linked membranes was measured
(Table 4). For the uncross-linked PVA and PVA/Zr-MOFs(10%) membranes, the contact
angles were not possible to test since these membranes instantly dissolve in water.
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Table 4. The contact angle of water for the cross-linked PVA and PVA/Zr-MOFs(10%) membranes.

Membranes Contact Angle of Water, ◦

PVA/GA 67
PVA+MIL-140A(10%)/GA 64

PVA+MIL-140A-AcOH(10%)/GA 66
PVA+MIL-140A-AcOH-EDTA(10%)/GA 65

The data presented in Table 4 demonstrate that modification of the membranes based
on PVA with Zr-MOFs led to almost identical contact angle data. This may be explained by
a number of factors that hampers a qualitative estimation of the changes in the hydrophilic-
hydrophobic balance of the surface. These also include: changes in membrane roughness
upon the introduction of a modifier with different functional groups which can also modu-
late membrane surface hydrophilicity.

Density measurements

To study the changes in the free volume of the PVA membrane during cross-linking
and modification with 10 wt% Zr-MOFs, the density of the freestanding membranes were
measured. The data are presented in Table 5.

Table 5. Density of the freestanding uncross-linked and cross-linked PVA and PVA/Zr-
MOFs(10%) membranes.

Membrane Density, g/cm3

PVA 1.26
PVA+MIL-140A(10%) 1.31

PVA+MIL-140A-AcOH(10%) 1.29
PVA+MIL-140A-AcOH-EDTA(10%) 1.30

PVA/GA 1.27
PVA+MIL-140A(10%)/GA 1.32

PVA+MIL-140A-AcOH(10%)/GA 1.31
PVA+MIL-140A-AcOH-EDTA(10%)/GA 1.30

The data presented in Table 5 demonstrate that the density of the PVA membrane
was 1.26 g/cm3, which is comparable with the data presented in the literature [79]. The
density of the PVA membranes modified with Zr-MOFs particles increased compared to
the pristine PVA membranes, which was associated with the addition of MOF modifiers
with a high density (density of Zr-MOFs ~0.5 g/cm3) [80]. Additionally, it can be associated
with a denser polymer structure around the MOF particles [80] that caused the decreased
free volume in the modified membranes.

3.2. The Development and Investigation of the Composite PVA and PVA/Zr-MOFs Membranes

To increase the permeation flux of the cross-linked freestanding PVA/GA and PVA/Zr-
MOFs(10%)/GA membranes for promising industrial application, composite membranes
with thin selective layers were developed. Porous polyacrylonitrile membranes were
used as a substrate, on which a thin selective cross-linked layer based on PVA/GA or
PVA/Zr-MOFs(10%)/GA was deposited. The pervaporation performance of the cross-
linked composite PVA and PVA/Zr-MOFs(10%) membranes (PVA/GA/PAN, PVA+MIL-
140A(10%)/GA/PAN, PVA+MIL-140A-AcOH(10%)/GA/PAN, and PVA+MIL-140A-AcOH-
EDTA(10%)/GA/PAN) in the pervaporation dehydration of isopropanol (12–100 wt%
water) are presented in Figure 10.
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Figure 10. The dependence of the (a) permeation flux and (b) water content in permeate on the water 
content in the feed for the cross-linked composite PVA and PVA/Zr-MOFs(10%) membranes in per-
vaporation dehydration of isopropanol (12–100 wt% water) at 22 °C. The water content in the per-
meate for the PVA/GA/PAN, PVA+MIL-140A(10%)/GA/PAN, and PVA+MIL-140A-AcOH-
EDTA(10%)/GA/PAN membranes was equal to ca. 99.9 wt%. 

Reducing the thickness of the selective layer by creating a composite membrane led 
to the rise of permeation flux and high content of water in the permeate. Thus, the perme-
ation flux increased ca. three-fold in the permeation flux for the PVA/GA/PAN membrane 
compared to the uncross-linked PVA membrane, in the separation of a 30/70 wt% wa-
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Figure 10. The dependence of the (a) permeation flux and (b) water content in permeate on the
water content in the feed for the cross-linked composite PVA and PVA/Zr-MOFs(10%) membranes
in pervaporation dehydration of isopropanol (12–100 wt% water) at 22 ◦C. The water content in
the permeate for the PVA/GA/PAN, PVA+MIL-140A(10%)/GA/PAN, and PVA+MIL-140A-AcOH-
EDTA(10%)/GA/PAN membranes was equal to ca. 99.9 wt%.

Reducing the thickness of the selective layer by creating a composite membrane led to
the rise of permeation flux and high content of water in the permeate. Thus, the permeation
flux increased ca. three-fold in the permeation flux for the PVA/GA/PAN membrane
compared to the uncross-linked PVA membrane, in the separation of a 30/70 wt% wa-
ter/isopropanol mixture. For the modified PVA/Zr-MOFs(10%)/GA/PAN membranes,
the increase in permeation flux compared to the uncross-linked membranes under the same
conditions was as follows: ca. 3.9-fold for the PVA+MIL-140A(10%)/GA/PAN membrane,
ca. 5-fold for the PVA+MIL-140A-AcOH(10%)/GA/PAN membrane, and ca. 3.1-fold for
the PVA+MIL-140A-AcOH-EDTA(10%)/GA/PAN membrane. The selectivity of the mem-
branes changed differently that depended on added Zr-MOF. Thus, for PVA/GA/PAN,
PVA+MIL-140A(10%)/GA/PAN, and PVA+MIL-140A-AcOH-EDTA(10%)/GA/PAN mem-
branes, the water content in the permeate was over 99.9 wt% in the pervaporation dehydra-
tion of isopropanol in the whole concentration range (12–90 wt% water). This is the reason
for the coincidence of the dependence lines in Figure 10b. The decreased water content
in the permeate (99.9–93 wt%) for the PVA+MIL-140A-AcOH(10%)/GA/PAN membrane
may be associated with the specific MIL-140A-AcOH, that is, nature, pore size, shape,
specific surface area, and the decreased thickness of a thin selective layer of the compos-
ite membrane compared to a freestanding membrane. Thus, the composite cross-linked
PVA+MIL-140A(10%)/GA/PAN membrane had the optimal pervaporation performance,
due to the highest permeation flux of 0.15–1.33 kg/(m2h) maintaining high water content
in the permeate (99.9 wt% water) in pervaporation separation over the entire concentra-
tion range of the water/isopropanol mixture. This makes the developed pervaporation
membrane promising for use in the industrial dehydration processes.

To study the stability of the developed PVA+MIL-140A(10%)/GA/PAN membrane,
the pervaporation separation of azeotropic water/isopropanol mixture was performed
at different temperatures. The obtained results are presented in Figure 11. For com-
parison of the membrane performance, Figure 11 also shows the permeation flux of the
PVA/GA/PAN membrane.
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Figure 11. The dependence of the permeation flux on the temperature for cross-linked composite
PVA/GA/PAN and PVA+MIL-140A(10%)/GA/PAN membranes in pervaporation separation of
water/isopropanol mixture (12 wt% water). Water content in the permeate for PVA/GA/PAN and
PVA+MIL-140A(10%)/GA/PAN membranes was 99.9 wt%.

It was found that with an increase in temperature, the permeation flux increased,
which could be caused by the increase of the free volume in the matrix by increasing
the movement of PVA chain segments [81]. The PVA+MIL-140A(10%)/GA/PAN mem-
brane has a higher permeation flux at all temperatures tested, compared to the unmodi-
fied PVA/GA/PAN membrane because of the increased surface roughness, the changes
of surface hydrophilic-hydrophobic membrane surface balance and interfacial defects
or gaps [64]. The PVA+MIL-140A(10%)/GA/PAN membrane had a permeation flux of
0.563 kg/(m2h) and water content in permeate of 99.9 wt% in pervaporation separation of
water/isopropanol mixtures (12 wt% water) at 70 ◦C.

The surface topography and morphology of the cross-linked composite PVA and
PVA/Zr-MOFs(10%) membranes were studied by AFM and SEM. SEM cross-sectional
micrograph of the PVA/GA/PAN membrane is presented in Figure 12, while the cross-
sectional SEM micrographs of the cross-linked composite PVA/GA/PAN and PVA/Zr-
MOFs(10%)/GA/PAN membranes were identical.
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Good adhesion of the PVA/GA layer to the porous PAN substrate and uniform
structure of the top thin selective layer is demonstrated. The thickness of the layer is ca.
900 nm. The AFM images with a scan size of 100 × 100 µm and surface SEM micrographs
for the cross-linked composite PVA and PVA/Zr-MOFs(10%) membranes are presented
in Figure 13.
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Figure 13. The AFM images and surface SEM micrographs for the cross-linked composite PVA
and PVA/Zr-MOFs(10%) membranes: (a) PVA/GA/PAN; (b) PVA+MIL-140A(10%)/GA/PAN;
(c) PVA+MIL-140A-AcOH(10%)/GA/PAN; and (d) PVA+MIL-140A-AcOH-EDTA(10%)/GA/PAN.

On the surface SEM micrographs of the developed composite modified PVA/Zr-
MOFs(10%)/GA/PAN membranes (Figure 13) Zr-MOFs particles can be observed. The
presence of the particles causes the increased surface roughness and the changes in surface
hydrophilic-hydrophobic balance, due to specific Zr-MOFs nature, pore size, shape, and
specific surface area, as well as due to the formation of interfacial defects [69].

The surface roughness characteristics (average, Ra, and root-mean-squared, Rq, rough-
ness) of the cross-linked composite PVA/GA/PAN and PVA/Zr-MOFs(10%)/GA/PAN
membranes were calculated based on the AFM images (Figure 13) and presented in Table 6.
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Table 6. The values of surface average (Ra) and root-mean-squared (Rq) roughness of the cross-linked
composite PVA/GA/PAN and PVA/Zr-MOFs(10%)/GA/PAN membranes.

Membranes Ra, nm Rq, nm

PVA/GA/PAN 18.07 22.77
PVA+MIL-140A(10%)/GA/PAN 45.01 78.88

PVA+MIL-140A-AcOH(10%)/GA/PAN 37.51 51.35
PVA+MIL-140A-AcOH-EDTA(10%)/GA/PAN 26.04 34.55

The data presented in Table 6 demonstrate that the values of surface roughness
are higher for modified PVA/Zr-MOFs(10%)/GA/PAN membranes compared to the un-
modified PVA/GA/PAN membrane, as in the case of the freestanding membranes, and
in agreement with the obtained pervaporation performance for composite membranes
(Figure 10). The PVA+MIL-140A(10%)/GA/PAN membrane had the maximum values of
surface average (Ra) and root-mean-squared roughness (Rq), which was consistent with the
highest permeation flux among the cross-linked composite PVA/GA/PAN and PVA/Zr-
MOFs(10%)/GA/PAN membranes, due to facilitated sorption of the feed components.

3.3. Comparison of the Performance with PVA-Based Membranes

The comparison of the pervaporation performance of the cross-linked composite
PVA+MIL-140A(10%)/GA/PAN membrane to the PVA-based membranes and the com-
mercial analogue PERVAPTM 1201 membrane (Sulzer Chemtech, Switzerland) described in
the literature for the pervaporation dehydration of isopropanol under close experimental
conditions are presented in Table 7.

Table 7. Pervaporation performance of the developed cross-linked composite PVA+MIL-
140A(10%)/GA/PAN membrane and literature-described PVA-based membranes applied for dehy-
dration of isopropanol.

Membranes Thickness, µm Water Content in
the Feed, wt% Temperature, ◦C Permeation Flux,

g/(m2h)
Water Content in
Permeate, wt% Reference

PVA+MIL-140A(10%)/GA/PAN 0.9 20 22 225 99.9 This study
PERVAPTM 1201 - 20 22 34 99.9 [75]

PVA+cellulose nanofiber (6 wt%) 53-54 20 40 ~65 ~99.9 [82]
PVA+Polydopamine coated halloysite

nanotube (5 wt%) ~70 20 40 190 ~99.2 [83]

PVA+PVAm (polyvinyl
amine)+Surface-modified halloysite

nanotube (5 wt%)
75 20 40 130 ~99.1 [84]

PVA+poly(acrylic acid)+Ag-modified
zeolite incorporation (12.5 g) 50 20 40 84 ~99.9 [85]

PVA+MIL-140A(10%)/GA/PAN 0.9 30 22 360 99.9 This study
PERVAPTM 1201 - 30 22 28 ~99.9 [40]

PVA+ Pluronic F127 (3 wt%)
cross-linked with maleic acid

deposited on polyamide
(17 wt%) support

1.5 30 22 620 97.7 [86]

PVA/hydroxyethyl cellulose (70/30
wt%)+ carboxyfullerene (5 wt%) 30 30 22 193 ~98.7 [68]

PVA+Graphene oxide quantum dots
(GOQDs) (300 ppm) 3 30 25 463.5 ~99.5 [87]

The developed cross-linked composite PVA+MIL-140A(10%)/GA/PAN membrane
was demonstrated to have improved membrane performance (increased permeation
and/or water content in the permeate) in the pervaporation dehydration of isopropanol
(20 and 30 wt% water) compared to the PVA-based membranes described in the litera-
ture. The membranes PVA+Pluronic F127 (3 wt%) cross-linked with maleic acid de-
posited on polyamide (17 wt%) support [86] and PVA+Graphene oxide quantum dots
(GOQDs) (300 ppm) [87] had higher permeation flux and slightly lower water content
in the permeate (97.7 and 99.5 wt%, respectively) compared to the developed PVA+MIL-
140A(10%)/GA/PAN membrane in the pervaporation dehydration of isopropanol (30 wt%
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water). It should be also mentioned that this developed membrane has 6.6 and 12.8 times
higher permeation flux than the commercial analogue PERVAP™ 1201 membrane in the
separation of a water/isopropanol mixture with 20 and 30 wt% of water, respectively.
This demonstrated the promising application of the developed cross-linked composite
PVA+MIL-140A(10%)/GA/PAN membrane in the industrial dehydration processes.

4. Conclusions

In the present study, novel mixed matrix PVA membranes modified by Zr-MOFs
(MIL-140A, MIL-140A-AcOH, and MIL-140A-AcOH-EDTA) with enhanced pervaporation
performance were developed for dehydration of isopropanol. The improvement of PVA-
based membrane characteristics was achieved due to the use of parent MIL-140A and
functionalized MOF (MIL-140A-AcOH, and MIL-140A-AcOH-EDTA) that had different
pore size, shape, and specific surface area. It allowed changing the membrane surface
roughness, a hydrophilic-hydrophobic balance, swelling characteristics, thermal properties,
and membrane performance.

Two kinds of freestanding PVA and PVA/Zr-MOFs membranes were prepared: uncross-
linked and cross-linked. Cross-linking by GA was applied to increase the stability of these
membranes in contact with dilute aqueous solutions. For both freestanding membranes
kinds, the highest permeation flux was observed in the case of the introduction of 10 wt%
MIL-140A into the PVA matrix, which could be explained by the highest swelling degree,
surface roughness, and hydrophilicity compared to other membranes modified with 10 wt%
functionalized Zr-MOFs (confirmed by swelling, and AFM data). Moreover, this membrane
had the highest thermal stability (confirmed by TGA and pervaporation experiment at the
elevated temperature of 50 and 70 ◦C).

To improve the performance of the freestanding cross-linked PVA/Zr-MOFs mem-
branes in pervaporation separation of water/isopropanol mixture, the thickness of the
selective layer was reduced by developing the cross-linked composite membranes on a
PAN substrate. It was found that among composite cross-linked membranes, composite
cross-linked PVA membrane with 10 wt% MIL-140A also had the highest membrane per-
formance in the pervaporation dehydration of isopropanol (12–100 wt% water) at 22 ◦C:
permeation flux of 0.15–1.33 kg/(m2h), 99.9 wt% water content in the permeate. This
membrane is promising for use in the industrial dehydration of alcohols.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes12100908/s1, Figure S1: XRPD of the synthesized
MIL-140A; Figure S2: Shifted XRPD of the synthesized modified Zr-MOFs: MIL-140A-AcOH (red
line), MIL-140A-AcOH-EDTA (blue line), simulated from cif (black line).; Figure S3: Low temperature
N2 adsorption isotherms: MIL-140A (green line), MIL-140A-AcOH (red line), MIL-140A-AcOH-EDTA
(blue line).; Figure S4: SEM images of the (a) MIL-140A, (b) MIL-140A-AcOH, and (c) MIL-140A-
AcOH-EDTA.
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