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Abstract: The consumption of pharmaceuticals has increased the presence of micropollutants (MPs)
in the environment. The removal and degradation of pharmaceutical mixtures in different water
matrices are thus of significant importance. The photocatalytic degradation of four micropollutants—
diclofenac (DCF), iopamidol (INN), methylene blue (MB), and metoprolol (MTP)—have been ana-
lyzed in this study by using a photocatalytic ceramic membrane. We experimentally analyzed the
degradation rate by using several water matrices by changing the feed composition of micropollutants
in the mixture (from mg· L−1 to µg·L−1), adding different concentrations of inorganic compounds
(NaHCO3 and NaCl), and by using tap water. A maximum degradation of 97% for DCF and MTP,
and 85% for INN was observed in a micropollutants (MPs) mixture in tap water at environmentally
relevant feed concentrations [1–6 µg·L−1]o; and 86% for MB in an MPs mixture [1–3 mg·L−1]o with
100 mg·L−1 of NaCl. This work provides further insights into the applicability of photocatalytic
membranes and illustrates the importance of the water matrix to the photocatalytic degradation
of micropollutants.

Keywords: photocatalytic membrane; TiO2; micropollutant degradation; mixture and water matrix
effect; AOP; water treatment

1. Introduction

Medicines are consumed daily with and without prescriptions, and some of these con-
sumed pharmaceuticals are not metabolized and are eventually discharged into sewers [1].
These then become part of the organic contaminants—also known as micropollutants
(MPs)—which pose a significant challenge for conventional wastewater treatment plants,
which currently lack efficient methods to completely remove these substances [2]. Available
abiotic (physical–chemical) methods usually do not alter the chemical structure of the MPs
but simply transfer them to a different phase which requires a secondary treatment. Biotic
processes with microorganisms have proven to be insufficient, as not all micropollutants are
completely removed [3]. As a result, MPs are frequently detected in environmental matrices
such as surface water, and their long-term ecotoxicological effect is as yet unknown [4].

To achieve better and more consistent micropollutant (MP) removal, several advanced
treatment methods are available, including advanced oxidation processes (AOPs), activated
carbon adsorption, membrane bioreactors, nanofiltration, and reverse osmosis [5]. Com-
bining one or more conventional/advanced treatments could offer a solution to achieve
further removal of pharmaceutical contaminants [6]. One promising combination for water
treatment concerns an advanced oxidation process (AOP) like photocatalytic oxidation and
membrane separation [7]. Photocatalytic oxidation with titanium dioxide has received par-
ticular attention due to the nonspecific nature of reactive oxygen species (ROS) produced
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under UV irradiation. Membrane separation processes are increasingly used, as they rely
on a physical separation (usually with no addition of chemicals in the feed stream) and
have many advantages, including easy operation and high separation efficiency. Evidently,
the retentate of membrane separation processes still requires adequate treatment.

Membrane retention and photocatalytic oxidation can be combined by coating mem-
branes with titanium dioxide (TiO2) particles, thus creating photocatalytic membranes.
The TiO2 particles require the activation by a light source with photon energy greater than
the band gap, which can excite an electron from the valence band to the conduction band,
e−, and leave an electron hole, h+, in the valence band [8,9]. These energy carriers (e− and
h+), in contact with oxygen and water, generate ROS that can attack organic molecules.
Moreover, the electron-hole pairs can also react directly with the pollutants [9]. A down-
side of this process is the recombination of e− and h+ pairs in the absence of scavengers,
releasing heat instead of oxidizing the organic compounds. A photocatalytic membrane
may provide another good option for removing organic MPs in the environment as a part
of the wastewater-treatment process.

Studies on the functionality of photocatalytic membranes to degrade co-existing phar-
maceuticals or other chemicals are needed, as the synergistic effect of these mixtures brings
more complex toxicity to living organisms, which is challenging to forecast and resolve [10].
Only a few recent studies concern the use of titanium dioxide-coated membranes to degrade
MP mixtures. These studies were primarily carried out with target MPs in pure water,
with less attention to the water matrix. Some examples include Fernández et al. [11], who
studied the photocatalytic degradation of 33 trace organic contaminants in a submerged
membrane photocatalysis reactor, Hu et al. [12], who degraded a suite of 13 medicines with
TiO2 nanowire membranes, Arlos et al. [13], who assessed the treatment of 10 pharmaceuti-
cals and personal care products with different isoelectric points on porous TiO2 supports,
and Lofti et al. [14], who used nanoparticles in a nanoporous membrane for the removal of
four steroid hormones. There is a lack of studies that consider the effect of water matrices
in the degradation of MP mixtures by photocatalytic membranes, and this study provides
an important step toward implementing photocatalytic pharmaceutical degradation on an
industrial scale.

In the present study, the applicability of photocatalytic membranes to degrade pharma-
ceuticals in different water matrices is investigated by changing the feed concentration of
micropollutants in the mixture (from mg·L−1 to µg·L−1), adding different concentrations of
inorganic compounds (NaHCO3 and NaCl), and testing the mixture in tap water. From the
vast number of pharmaceutical compounds in the environment, our study focused on
the photocatalytic degradation of four medicines found in surface waters at up to µg·L−1

levels. These include diclofenac (DCF), a widely prescribed nonsteroidal anti-inflammatory
drug, iopamidol (INN), a popular contrast agent used in medical imaging, methylene blue
(MB) which is increasingly used in various medical fields as a dye and photosensitizer [15],
and metoprolol (MTP), a β blocker widely used in both hospitals and households to lower
blood pressure, slow the heart rate, and decrease the oxygen demand of the heart. The re-
moval efficiency of these compounds provides a relevant and realistic challenge in current
water-treatment processes.

2. Materials and Methods
2.1. Materials

Diclofenac (DCF) C14H10Cl2NNaO2 (CAS 15307-79-6), iopamidol (INN) C17H22I3N3O8
(CAS 60166-93-0), and metoprolol tartrate salt (MTP) (C15H25NO3)2C4H6O6 (CAS 56392-
17-7) were purchased from Sigma Aldrich (Germany). Methylene blue (MB) C16H18ClN3S
(CAS 61-73-4) was acquired from Boom BV (Meppel, The Netherlands), and sodium sulfate
anhydrous Na2SO4 (CAS 7757-82-6), sodium hydrogen carbonate NaHCO3 (CAS 144-55-8),
and sodium chloride NaCl (CAS 7647-14-5) were obtained from VWR chemicals (Leuven,
Belgium). All were used as received. Several stock aqueous solutions at concentrations of
20 mg·L−1 DCF, 10 mg·L−1 INN, 32 mg·L−1 MB, 10 mg·L−1 MTP, 4261 mg·L−1 sodium
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sulfate, and 700 mg·L−1 sodium bicarbonate were prepared. Ultrapure water from a Milli-Q
Advantage A10 system (Merck Millipore, Darmstadt, Germany) was used for the prepa-
ration of the stock and feed solutions. The tap water (TW) was collected from the local
drinking water supply (Vitens, Leeuwarden The Netherlands).

2.2. Photocatalytic Degradation Experiments

Dead-end filtration and degradation experiments were performed in a custom photo-
catalytic membrane reactor (PMR) consisting of a TiO2-coated alumina membrane within a
PMMA holder, placed inside a cupboard to protect the micropollutants from the reaction
with ambient light (see Heredia Deba et al. [16] for details on the setup configuration and
the PMR). For the cross-flow experiments, a stainless steel PMR with the same structure
but without a feed reservoir was employed. In the stainless steel module, the space on top
of the membrane is limited by the o-ring (EPDM 25 × 1.5, Eriks) thickness after closing
the module.

For the experiments with the MPs independently (singles), the aqueous solutions
were pumped into the setup with fluxes in the nanofiltration range, 1.6, 3.3, 6.5, 9.7, 13.0,
and 16.2 L·m−2·h−1 and additionally for DCF 19.5 and 21.1 L·m−2·h−1; these experiments
were repeated three times to analyze the reproducibility of results. For the experiments
with the mixtures, three fluxes (1.6, 6.5, and 16.2 L·m−2·h−1) and two repetitions were
investigated, as the reproducibility of the experiments was high.

The feed concentration varied across experiments and micropollutants. For the experi-
ments with the single MP and for those in a mixture, the initial concentration was 2 mg·L−1

DCF, 1 mg·L−1 INN, 4 mg·L−1 MB, and 1 mg·L−1 MTP (molar concentration [µmol·L−1]
ratio 6.8:1.3:12.5:3.7 DCF:INN:MB:MTP). For the experiments with low concentrations (LC)
the feed was 2 µg·L−1 DCF, 6 µg·L−1 INN (3 µg·L−1 in TW), 4 µg·L−1 MB, and 2.5 µg·L−1

MTP (molar concentration [nmol.L−1] ratio 6.8:7.7(3.9):10:9.4 DCF:INN:MB:MTP). For ex-
periments regarding the effect of background water constituents, the initial concentration
in the mixture was 45 mg·L−1 (0.7 mM) and 215 mg·L−1 (3.5 mM) of bicarbonate ions,
and 61 mg·L−1 (1.7 mM), and 607 mg·L−1 (17.1 mM) of chloride ions. A concentration of
142 mg·L−1 (1 mM) of sodium sulfate was used as background in all the singles experiments
and the experiments with bicarbonate to avoid corrosion in the system. For the experiments
with sodium chloride and low concentrations of micropollutants, sodium bicarbonate
with a concentration of 23.4 mg·L−1 (0.3 mM) was used. In the experiments with TW, no
extra background was added. The chemical composition of the mixture in TW can be
found in Appendix A. The natural pH of the system was used without further adjustment.
For the experiments with sodium sulfate in the background, the pH was between 6 and 7,
except for the experiments with bicarbonate, in which the pH was approximately 8. For the
experiments with bicarbonate in the background, the pH was between 7 and 7.5. In the
experiments with tap water, the pH was 8. A table summarizing the measured feed solution
and permeate pH can be found in Appendix B.

Two photocatalytic membranes were used for the experiments named A and B. Mem-
brane A was utilized for the singles experiments, and membrane B for the experiments
with the mixtures. In order to compare the photocatalytic properties of both membranes,
the experiments with MB and MTP were reproduced, and the data confirmed that the
performance of both membranes was similar. More data about the membrane fabrication
can be found in our previous work [16], as we used the same titanium dioxide suspen-
sion (Evonik, VP Disp. W 2730 X) and deposition technique (dip coating). Results on the
morphology of membranes A and B can be found in Appendix C.

Before each experiment, the membranes are equilibrated with the feed solution for at
least 120 min at 16.2 L·m−2·h−1 to ensure adsorption equilibrium before the degradation
measurements. This is because the pre-adsorption of reactants on the surface of the TiO2
membrane may lead to a more efficient electron-transfer process [17,18]. After equilibrating,
the LED was turned on, and samples were taken from the permeate every 30 min, except for
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MB, which was continuously monitored. The experiments were finalized when the outlet
concentration reached a steady value for each filtration rate.

The input radiation level was set before each run to 210 W·m−2 and measured by using
a power meter (Thorlabs) with a thermal power sensor head (S310-C). Control experiments
with MB were carried out with a membrane without the TiO2 layer to rule out effects other
than photocatalytic oxidation, e.g., bulk photolysis. It should be noted that none of the used
MPs absorb photons in the used wavelength (λmax = 366 nm) (Appendix D), and hence no
direct photolysis of the MPs is expected to take place in our system (Grotthuss–Draper law).
Photolysis of DCF is generally reported in studies utilizing direct sunlight [19,20] or lamps
emitting polychromatic light, including those using filters restricting the transmission of
wavelengths below 290 nm [21,22]. The overlap with the absorption spectrum of DCF
(λmax = 194 nm) with a shoulder absorbance of up to ∼320 nm could explain this effect.
Martínez et al. [23] reported photolysis upon near-UV-Vis irradiation (mainly at 366 nm),
and Calza et al. [24], who used a xenon arc lamp and special glass filter to restrict the
emissions below 290 nm, and Rizzo et al. [25], who used a black light fluorescent lamp
emitting radiation between 300 and 420 nm, did not report any significant DCF degradation
via photolysis.

2.3. Analytical Methods

The presence of the initial reactants in the permeate was measured without consid-
ering the intermediate products. Detection and quantification of DCF, INN, and MTP
were performed by using an Agilent LC-MS/MS system consisting of Agilent infinity 1260
LC-system (degasser, binary pump, autosampler with cooler tray, and column oven) and
Agilent 6420 triple quadrupole mass spectrometer with an electrospray ion source. The sam-
ples (injection volume 5 µL) were separated by using an Agilent Zorbax Eclipse plus C18
RRHD (50 × 2.1 mm, particle size 1.8 µm) and eluted with a mixture of ammonium for-
mate buffer in water and acetonitrile. The compounds were detected and quantified on
the 6420-QQQ-MS by using compound-specific multiple dynamic MRM transitions. Three
methods were used to analyse the MPs to avoid the interference of the ions from the salts in
the measurements. Method A, an isocratic method using 60:40 buffer:acetonitrile, was used
to analyze DCF and MTP when studied independently. Method B, an isocratic method
using 19:1 buffer:acetonitrile, was applied to detect INN for the experiments indepen-
dently. Method C, a gradient program of acetonitrile (5 to 95%) and buffer, was used for all
micropollutants in the experiments in the mixtures.

The discoloration of MB was continuously monitored by passing the permeate through
a flow cell (FIA-Z-SMA-ML-PE flow cell, 10 mm path length) connected to a UV-VIS
spectrometer (flame model spectrometer with sony detector, Ocean Optics). The monitored
wavelength was 664 nm, corresponding to the maximum absorption peak of MB. Method
C was also used to quantify the MB concentration in the LC-MS/MS, especially with the
experiments with the MPs at low concentrations, as these are outside of the spectrometer
measurement range. We observed that the MB concentrations measured by the LCMS/MS
varied with the sample preparation time. MB can act as a photosensitizer, as it has a
strong light absorption in the visible range. The samples were diluted in transparent flasks,
exposed to the laboratory ambient light, and decomposed during the time the solution was
in the flask. Furthermore, we discovered that for low concentrations, we could measure
the desorption of MB from the PMR (o-rings, glue, and tubing, saturated with methylene
blue from previous experiments with high MB concentrations) because the permeated
MB concentration was reported higher than in the feed. Therefore, those results are not
reported in this manuscript.

2.4. 1D Transport and Surface Reaction Model and Diffusion Coefficient

A simple 1D transport and surface reaction model was applied to analyze the experi-
mental results. Details about the model can be found elsewhere [16]. This model is based on
a convection-diffusion equation, with a constant inlet concentration and a surface reaction
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as corresponding boundary conditions. The solution of the ODE with the abovementioned
boundary conditions for the permeate concentration is given as

cp = αcm =
αePePe

Pe(1− α)−DaI I + ePe(αPe + DaI I)
, (1)

where three different dimensionless numbers are used. Pe represents the Péclet number,
Pe = uL/D, with linear velocity u [m·s−1], liquid reservoir height L [m], and diffusivity
D [m2·s−1], DaI I is the second Damköhler number, DaI I = k′L/D, with surface reaction
rate constant k′ [m·s−1], and α which shows the membrane function and is the ratio of
permeate concentration to concentration at the membrane (cp/cm).

The diffusion coefficient values for MB and DCF used in this investigation were taken
from the literature. Meanwhile, the experimental diffusion coefficients of MTP and INN
were not found in the literature, so the values used in this study were estimated by using
the Wilke–Change correlation [26] given by

De = 7.4× 10−8 (ϕMW)0.5T
µV0.6

M
, (2)

where ϕ defines the association parameter with the solvent (set to 2.6 for water), MW the
molar mass of water (g·mol−1), T the temperature (K), µ the water viscosity (cP), and VM
the molar volume of the solute (cm3·mol−1). The molar volumes were calculated by relating
the Van der Waals volume obtained from the molecular software PaDeL [27] to the LeBas
volume by VM = 1.06VW [28].

The diffusion coefficient values form the literature, Dt, and the estimations using the
Wilke–Change correlation, De can be found in Table 1. The estimated values are in the
range of previously reported values.

Table 1. Diffusion coefficient.

Micropollutant Dt [10−10 m2·s−1] De [10−10 m2·s−1]

Diclofenac 5.90 [29] 5.28
Iopamidol - 3.70
Methylene Blue 4.60 [30] 5.40
Metoprolol - 4.93

3. Results and Discussion
3.1. Membrane Retention

The intrinsic membrane retention is represented by 1-α (Equation (1)) in the 1D trans-
port and surface reaction model. To calculate the value of α, cross-flow experiments with
iopamidol (the biggest molecule among the MPs used in these experiments) and methylene
blue were carried out with fluxes of 16.2, 32.5, 48.7, and 65.0 L·m−2·h−1. No significant
differences were detected in the retentate and permeate concentrations for the tested flows;
therefore, we justify using α = 1 in the 1D model, referring to no retention by the membrane
(cm = cp). The equation to fit the permeate concentration versus Pe then only contains one
fitting parameter, DaI I :

cp =
ePePe

ePe(Pe + DaI I)−DaI I
. (3)

3.2. MPs Degradation and Transport and Surface Reaction Model

Degradation experiments with diclofenac (DCF), iopamidol (INN), methylene blue
(MB), and metoprolol (MTP) independently (singles) were conducted in a single-pass dead-
end PMR under an average irradiation intensity of 210 W·m−2. The normalized permeate
concentration (cp/cb) as a function of the Péclet number (Pe = uL/D) is plotted together
with model fits and shown in Figure 1.
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Figure 1. MPs degradation vs. filtration rate. Symbols depict experimental data, and the lines
correspond to the mass transport and surface reaction model with indicated fitted DaI I number.
The experiments were carried out with the micropollutants independently, and the legend shows
the feed concentrations [cb]o. Conditions: 366 nm radiation, 210 W·m−2, 1.6, 3.3, 6.5, 9.7, 13.0, and
16.2 L·m−2·h−1 and additionally for DCF 19.5 and 21.1 L.m−2·h−1, and 142 mg·L−1Na2SO4.

The lines in Figure 1 represent the mass transport and surface reaction model fits.
The symbols represent the experimental results for the MP degradation to which the
model is fitted. The fits are represented by the corresponding DaI I numbers that are
indicated in the figure accompanied with their 95% confidence intervals. Higher flow
rates result in lower contact time with the radicals for the reaction to occur, and thus an
increased outlet concentration. A higher second Damköhler number (DaI I) represents
a faster reaction because this value presents the surface reaction to mass transport rate.
Under the same conditions, the order in the overall degradation from higher to lower was
DCF > INN > MTP > MB, with a similar Damköhler value for INN and MTP. The degra-
dation degree at the lowest flux was 92% for DCF, 76% for INN, 68% for MB, and 81%
for MTP.

Table 2 shows a summary of physicochemical properties and reaction constants for
the MPs used in our experiments. It is important to look at these reaction constants only
as a reference point because those values, and the concentration of formed radicals or
electrons have not been measured for our experimental conditions. In addition, the initial
molar concentration varied between micropollutants in a molar ratio of 6.8:1.3:3.7:12.5
DCF:INN:MTP:MB, and for a system with the same amount of radicals generated and not
added scavengers, the compounds with larger molar concentration need more radicals to
be degraded.

Hydroxyl radicals are considered the primary oxidant in the photocatalytic pro-
cess [8,31]. The hydroxyl reaction rate constants in Table 2 indicate that MB is the most
reactive with hydroxyl radicals, followed by DCF, MTP, and finally INN, but this order
was not observed during our photocatalytic experiments. Buxton et al. [32] reported that
the order of magnitude for kOH for most reactants with hydroxyl radical ranges between
108 and 1010 L·mol−1·s−1, which demonstrates the relatively nonselective nature of OH–

radical reactions in aqueous solution [33]. At the same time, in Table 2, the reaction rate
constants with solvated electrons point at INN as the fastest reacting with e− followed by
MB, DCF, and MTP. This order was not observed in our experiments either.
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The pH of the solution and the charge of the MP also play an important role during
the photocatalytic degradation. The point of zero charge (pzc) for TiO2 is between pH 4.5
and 7.0, depending on the type and composition of the photocatalyst [34,35]. The titania
surface groups, TiOH, can protonate or de-protonate according to

TiOH + H+ ←−→ TiOH2
+

TiOH + OH− ←−→ TiO− + H2O.

During the experiments with the MPs independently, the pH was between 6 and
8.5—a negative surface membrane charge, which should favor the adsorption of positively
charged molecules.

Table 2. Summary of relevant physicochemical properties of the selected MPs.

MP Abbr. kOH
[109 L·mol−1·s−1]

ke−aq

[109 L·mol−1·s−1]
pKa1, pKa2 Charge at pH > 6

DCF 9.29 ± 0.09 [36] 1.53 ± 0.03 [36] 4.15 [37] negative
INN 3.42 ± 0.28 [38] 33.7± 0.5 [38] 10.7 [39] positive
MB 11 [40] 25 [32] 3.14 [41] positive
MTP 8.39 ± 0.06 [42] 0.173 ± 0.003 [42] 9.67, 14.09 [43] positive

MP Abbr. = Micropollutant abbreviation, kOH [L·mol−1·s−1], hydroxyl reaction rate constant, ke−aq [L·mol−1·s−1],
hydrated electron reaction rate constant, pKa, acid dissociation constant.

This information does not explain the degradation order observed in our experiments.
In particular, MB is the compound that degrades most slowly. To rule out a scavenging
effect of the sulfate groups, the degradation of MB without sodium sulfate was investigated
(see Figure 2), and the degradation rate of MB overlapped with the previous, showing no
inhibition effect by sulfate groups. These results also suggested no adsorption competition
on the membrane surface by the counter ion in the salt, Na+.

Figure 2. Methylene blue (MB) degradation with different backgrounds vs. filtration rate. Where
the MP was alone, or with a background S (142 mg·L−1 Na2SO4) or a background B (23.4 mg·L−1

NaHCO3). Symbols depict experimental data of the MB independently, and the lines correspond
to the mass transport and surface reaction model. The legend shows the feed concentrations [cb]o.
Conditions: 366 nm radiation, 210 W·m−2.
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The degradation of MB in the presence of sodium bicarbonate [23.4 mg·L−1] was also
tested (Figure 2), and a slightly improved degradation upon the bicarbonate addition was
found. The solution pH was 7.10 for the MB solution, 6.37 for MB with sodium sulfate,
and 7.4 for MB with sodium bicarbonate. Guillard et al. [44] investigated the effect of
different salts (20 mM initial concentration) in the photocatalytic MB degradation. Their
findings suggest an inhibiting effect due to the deposition of salts on the TiO2 surface
and that, at neutral and alkaline pH, the main factor affecting the MB degradation was
the amount of MB adsorbed. This adsorption changes with the surface density of anionic
sites, TiO– , available. Our test agrees with these findings, as a slight change in the pH
could make the surface slightly more negative and improve the MB adsorption; hence
its degradation.

3.3. Effect of the Water Matrix on the Photocatalytic Degradation of MPs in a Mixture

Natural waters commonly contain inorganic salts as well as other organic matters.
The overall water quality has an influence on the degradation kinetics of the MPs, and in
this section, various water matrices are studied.

3.3.1. MPs Mixture Degradation

The degradation of a mixture of MPs was investigated with feed solution concentration
equal to the experiments using single MPs. A generally lower degradation rate is expected
due to the competitive effect of the present pollutants on the generated radicals, as the
total micropollutants amount is higher than in the experiments with the individual MPs.
Figure 3 illustrates the normalized permeate concentration as a function of the Péclet
number with the corresponding model fits. The overall micropollutants’ degradation from
higher to lower varied from the experiments using singles to DCF > MB > MTP > INN,
with an overlapping Damköhler value for INN and MTP. At the lower flux, the total
degradation was 87% for DCF, 62% for INN, 76% for MB, and 68% for MTP. Note that the
MB degradation measurement in the mixture was carried out only on one of the repetitions.

Figure 3. MPs mixture degradation vs. filtration rate. Symbols depict experimental data of the MPs in
a mixture, and the lines correspond to the mass transport and surface reaction model. The experiments
were carried out with the MPs in a mixture,. The legend shows the feed concentrations [cb]o.
Conditions: 366 nm radiation, 210 W·m−2 and 142 mg·L−1 Na2SO4.
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As anticipated, the degradation of most of the MPs was less in the mixture (i.e., had
a higher permeate concentration) compared to the degradation experiments in singles,
indicating a competition for the ROS and a competitive adsorption of the MPs on the TiO2
surface. Unexpectedly, the degradation of MB was similar in the mixture compared to the
single measurement (Figure 1), where other MPs were less degraded.

3.3.2. Effect of Bicarbonate

Carbonate ions are present in aerated water and may also be formed as reaction
products in the degradation of organic compounds [45]. Therefore, the effect of bicarbonate
concentration on the micropollutants mixture degradation was investigated. Figure 4
shows the normalized permeate concentration of each MP in a separate plot as a function
of the normalized filtration rate, Pe. The MPs degradation from higher to lower was
MB > MTP > INN > DCF in the mixture with a lower concentration of bicarbonate, and the
degradation amount at the lower flux was 70% for DCF, 67% for INN, 81% for MB, and 67%
for MTP. Meanwhile, in the mixture with a higher concentration of bicarbonate, the order
from higher to lower was MB > DCF > MTP > INN with an amount of total degradation of
71% for DCF, 68% for INN, 85% for MB, and 70% for MTP. Clearly, in these experiments,
the effect of the added bicarbonate is specific for each micropollutant.

Figure 4. Degradation of (a) DCF, (b) INN, (c) MB, and (d) MTP, independently, in a mixture, and in
a mixture with two concentrations of bicarbonate ions. Symbols depict experimental results, and lines
correspond to the mass transport and surface reaction model. Conditions: the legend shows the feed
concentrations [cb]o, 366 nm radiation, 210 W·m−2, and 142 mg·L−1 Na2SO4.
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Different theories have been proposed in the literature regarding the bicarbonate effect
on the photocatalytic degradation of micropollutants. There is a general consensus about
the detrimental effect of bicarbonate molecules acting as scavengers of hydroxyl radicals
and reducing the amount of available ROS in the system. Conversely, carbonate species
can also act as conduction band electron quenchers [46], which decreases the electron-hole
recombination and generates a positive impact on the photocatalytic degradation of organic
molecules. At the same time, the bicarbonate ions could react with the hydroxyl radicals to
generate carbonate radicals (HCO3

• and CO3
• – ) as oxidation transients [47] that could me-

diate the degradation of the MPs. However, their reactions are typically slower than those
of OH radicals and with high selectivity toward organic compounds (with second-order
rate constants ranging between 102 and 109 L·mol−1·s−1) [48,49]. Ye et al. [50] reported a
positive effect with the bicarbonate addition during the photocatalytic degradation of MTP
with nanotube arrays, which was related to the bicarbonate electron-quenching capability
and carbonate radical mediation during the degradation reactions.

The pH in the feed solution increases upon the addition of the bicarbonate (i.e., 7.8
for the lower bicarbonate content and 8.0 for higher bicarbonate content), which may
change the electrostatic interactions of the MPs to the TiO2 surface. The surface of the TiO2
membrane becomes more negative as the pH of the solution increases; thus, the surface
attracts the positively charged molecules like MB and rejects the negatively charged ones
like DCF. This is visible in the experimental results, as, for DCF, adding bicarbonate reduced
its degradation significantly, whereas for MB, its degradation improved. For INN and MTP,
the bicarbonate effect is less significant, but the degradation is improved compared with
the mixture without bicarbonate.

3.3.3. Effect of Chloride

Chloride ions are present in natural water. Therefore, the effect of chloride in the
mixture of MPs was investigated. Figure 5 shows how the MP degradation varied when
adding the different concentrations. With lower chloride concentration from higher to
lower, the degradation order was MB > DCF > MTP > INN, and the degradation degree at
the lower flux was 88% for DCF, 76% for INN, 86% for MB, and 77% for MTP. Meanwhile,
in the mixture with a higher chloride concentration, the order changed to MB > DCF > INN
> MTP, and the degradation degree at the lower flux was 90% for DCF, 75% for INN, 82%
for MB, and 75% for MTP.

Chloride ions potentially scavenge the photogenerated holes and oxidize to chloride
radicals. These formed radicals could back-react with the conduction band electrons, which
lowers the concentration of available holes and electrons [51] and reduces recombination.
However, a large amount of chloride may inhibit the generation of hydroxyl radicals
as the concentration of available holes is reduced. Thus, there is a stronger improve-
ment in the degradation of MB and MTP with 61 mg·L−1 of Cl– than with 607 mg·L−1.
Aguedach et al. [52] studied the ion strength effect on the degradation of a reactive black
5 azo dye, and reported an increase in the initial degradation rate and a decrease in the time
needed to bleach the solution upon addition of Cl– salts. They explained this effect by the
improved dye adsorption on the TiO2 surface with the addition of the salt. Lair et al. [53],
also showed a faster initial degradation of naphthalene upon NaCl addition as a result of
an enhancement in the naphthalene adsorption.

For these experiments, a concentration of 23.4 mg·L−1 of sodium bicarbonate was
used as a background, which increased the feed solution pH to 7.5 for the mixture with
lower chloride concentration and to 7.3 for the mixture with a higher chloride concentration.
As seen in the previous section, a higher pH hinders the photocatalytic degradation of DCF,
which could explain why its degradation is lower in this water matrix.
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Figure 5. Degradation of (a) DCF, (b) INN, (c) MB, and (d) MTP independently, in a mixture and in
a mixture with two concentrations of chloride ions. Symbols depict experimental results, and lines
correspond to the mass transport and surface reaction model. Conditions: the legend shows the
feed concentrations [cb]o, 366 nm radiation, 210 W·m−2 and 142 mg·L−1 Na2SO4 for the experiments
with the MPs independently and in a mixture, and 23.4 mg·L−1 NaHCO3 for the experiments with
sodium chloride.

3.3.4. MPs Degradation at Low Concentration in a Mixture and the Effect of Tap Water

Micropollutants are found in surface water up to µg·L−1 levels. Therefore, it is
important to study the MPs degradation at environmentally relevant concentrations and
conditions. The degradation of the MP mixture at µg·L−1 concentrations was investigated.
Figure 6 shows an order in the overall low concentration mixture degradation from higher
to lower DCF > MTP > INN. The degradation degree at the lower flux was 96% for DCF,
79% for INN, and 80% for MTP, which is higher than the MPs mixture in mg·L−1, because
the total amount of organic molecules is lower, and there is less competition for the reactive
oxygen species. In the mixture in low concentration with tap water, the order in the
overall micropollutants degradation from higher to lower was DCF > MTP > INN, and the
degradation amount at the lower flux was 97% for DCF, 85% for INN, and 97% for MTP.

For conventional AOPs, tap water inhibits typical organic molecules degradation
as there are many ions that scavenge the ROS. In our experiments, the matrix with tap
water enhanced most of the MPs degradation. The degradation of DFC was significantly
improved at low MPs concentration, but it was lower in TW. This difference could be
explained by the pH increase from 7.3 to 8 from the MPs mixture in low concentration to
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the mixture in tap water. At higher pH, the membrane repulsion toward the negatively
charged DCF increases.

Figure 6. Degradation of (a) DCF, (b) INN, and (c) MTP independently, in a mixture, in a mixture
with low concentrations and in tap water. Symbols depict experimental results, and lines correspond
to the mass transport and surface reaction model. Conditions: the legend shows the feed concen-
trations [cb]o, 366 nm radiation, 210 W·m−2 and 142 mg·L−1 Na2SO4 for the experiments with the
MPs independently and in a mixture, 23.4 mg·L−1 NaHCO3 for the experiments in a mixture in
low concentration.

3.4. Comparison of the Photocatalytic Degradation Rate with Different Water Matrices

Eight different water matrices were studied to evaluate the MPs degradation by a
photocatalytic membrane in a PMR with fluxes in the nanofiltration rate. The results,
achieved in a single-pass operation, showed the capability of the system to degrade phar-
maceuticals under all the studied water matrices. Table 3 shows the surface reaction rate
constant for the degradation of DCF, INN, MB, and MTP under the studied water matri-
ces. The surface reaction rate constant k′ [m·s−1] relates to the fitted second Damköhler
number by DaI I = k′L/D, where L represents the height of the liquid reservoir [m] and
D the compounds diffusivity [m2·s−1]. When comparing all the water matrices, relatively,
the most degradation was obtained with the MPs in low concentration and in tap water.
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Table 3. Surface reaction rate constant, k′ [10−6 m·s−1].

Solution DCF INN MB MTP

DCF + S 9 ± 1 - - -
INN + S - 2.2 ± 0.3 - -
MB - - 1.3 ± 0.5 -
MB + S - - 1.2 ± 0.2 -
MB + B - - 2.2 ± 0.5 -
MTP + S - - - 2.4 ± 0.2
MPs mixture + S 4 ± 2 0.8 ± 0.1 1.6 ± 0.4 1.0 ± 0.2
MPs mixture + S + HCO3

– 45 mg·L−1 1.7 ± 0.7 1.1 ± 0.3 3 ± 1 1.6 ± 0.9
MPs mixture + S + HCO3

– 215 mg·L−1 2 ± 1 1.0 ± 0.3 4 ± 1 1.6 ± 0.8
MPs mixture + B + Cl– 61 mg·L−1 3.0 ± 0.4 1.6 ± 0.2 7 ± 3 2 ± 1
MPs mixture + B + Cl– 607 mg·L−1 4.0 ± 0.4 1.6 ± 0.3 4 ± 1 1.5 ± 0.2
MPs LC mixture + B 20 ± 3 1.9 ± 0.3 - 2.9 ± 0.8
MPs LC mixture in tap water 16 ± 2 2.9 ± 0.7 - 8 ± 2

Reaction conditions: 366 nm radiation, 210 W.m−2 and background salt (S = 142 mg·L−1 Na2SO4 and
B = 23.4 mg·L−1 NaHCO3). MPs mixture refers to experiments done with micropollutants mixtures. LC refers to
low (environmentally realistic) concentrations for the micropollutants in the mixture.

Most of the phenomena related to the addition of ions during photocatalytic processes
are explained by the recombination effect, although there is little known about when and
how the recombination occurs [54]. An increase in pH resulted in an improved degradation
for the positively charged MPs (INN, MB, and MTP). The pH potentially enhances the
negative surface charge of the membrane and, with that, the adsorption of positively
charged contaminants. Surface redox reactions are generally more efficient when species
are pre-adsorbed [8]. Arlos et al. [13] reported this effect in a study with a negative and a
positively charged photocatalytic membrane with mixtures of molecules with cationic and
anionic groups.

The effect of added salts during the experiments with photocatalytic membranes
enhanced, in general, the reaction in accordance with other experiments with salts and
immobilized TiO2 [50,52]. These results show that immobilized TiO2 systems have a
significant advantage over conventional TiO2 slurry systems where the presence of ions
hinders the photocatalytic degradation of organic molecules [44,51,55,56].

4. Conclusions

Photocatalytic membranes in a flow-through single-pass photocatalytic membrane
reactor were investigated for the elimination of MPs in various water matrices. The degra-
dation rates of diclofenac, iopamidol, methylene blue, and metoprolol varied among the
compounds and water matrices. The presence of anions such as bicarbonate, usually
reported as a degradation inhibitor, positively impacts the degradation efficiency of the
positively charged MPs, suggesting the importance of the surface charge interactions be-
tween the MP and the photocatalytic surface. The presence of chloride also contributed
positively to the MPs degradation, more significantly in low concentrations than in high
concentrations. Chloride ions can potentially scavenge photogenerated holes preventing
electron-hole recombination, but at high chloride concentrations, the amount of available
hydroxyl radicals is reduced with the number of available holes. The results of mixtures
at environmentally relevant concentrations also showed surprising results, revealing an
improved degradation of MPs in tap water with degradation of 97% for DCF, 85% for INN,
and 97% for MTP. The findings from this lab-scale study have provided further insights into
the applicability of photocatalytic membranes for micropollutants degradation processes.
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Abbreviations
The following abbreviations are used in this manuscript:

AOP Advanced Oxidation Process
B Sodium Bicarbonate in the background [23.4 mg·L−1]
DCF Diclorofenac
INN Iopamidol
MB Methylene Blue
MPs Micropollutants
MTP Metoprolol
LC Low concentration
PMR Photocatalytic Membrane Reactor
pzc Point of zero charge
ROS Reactive oxygen species
TW Tap water

Appendix A. Tap Water Composition

Tap water used for the experiments was sampled from the laboratory at Wetsus
(Leeuwarden, The Netherlands). The chemical composition of the tap water is described
in Table A1.

Table A1. Chemical composition of the MPs mixture in tap water.

Parameter Unit Stock Solution

Cl mg·L−1 46.2
NO2 mg·L−1 <0.10
NO3 mg·L−1 10.4
PO4 mg·L−1 <0.10
SO4 mg·L−1 0.58
TC mg·L−1 65.3
NPOC mg·L−1 3.83
IC mg·L−1 48.6
Ca µg·L−1 33,700
Cu µg·L−1 14.3
Ca µg·L−1 33,700
Fe µg·L−1 <5.00
K µg·L−1 2330
Mg µg·L−1 9343
Na µg·L−1 69,550

TC = Total Carbon, NPOC = Non-Purgeable Organic Carbon, IC = Inorganic Carbon.

www.wetsus.nl
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Appendix B. Feed and Permeate pH

The pH of the solution was measured for the feed solutions and the permeate and is
presented in Table A2.

Table A2. Measured pH.

Solution pHb pHp

DCF + S 6.6 ± 0.2 6.6 ± 0.9
INN + S 6.97 ± 0.02 6.2 ± 0.3
MB 7.10 ± 0.06 -
MB + S 6.37 ± 0.06 6.49 ± 0.04
MB + B 7.4 ± 0.1 7.1 ± 0.1
MTP 6.47 ± 0.08 6.0 ± 0.3
Na2SO4 5.91 ±0.05 -
MPs mixture + S 6.2 ± 0.2 6.89 ± 0.08
MPs mixture + S + HCO3

– 45 mg·L−1 7.8 ± 0.1 7.9 ± 0.07
MPs mixture + S + HCO3

– 215 mg·L−1 8.00 ± 0.03 8.3 ± 0.1
MPs mixture + B + Cl– 61 mg·L−1 7.54 ± 0.09 7.5 ± 0.3
MPs mixture + B + Cl– 607 mg·L−1 7.3 ± 0.1 6.5 ± 0.1
MPs LC mixture + B 7.24 ± 0.02 7.4 ± 0.2
MPs LC mixture in tap water 8.01 ± 0.04 8.23 ± 0.01

pHb = feed pH, pHp = permeate pH, average of the tested flows, and background salts: S = 142 mg·L−1 Na2SO4

and B = 23.4 mg·L−1 NaHCO3.

Appendix C. Membranes Characterization

For the characterization of the membrane, high resolution SEM (Analysis Zeiss MER-
LIN HR-SEM) was used to investigate the morphology and cross-section. The layers of
membrane A have an average thickness of 1.2 µm for the gamma layer and 3.2 µm for the
TiO2 layer and for membrane B of 1.6 µm for the gamma layer and 2.8 µm for the TiO2
layer. Figure A1 depicts an SEM image of the photocatalytic membrane B.

The pore size of the membranes was determined by permporometry using cyclohexane
as condensing vapor [57]. The pore size characterization showed 5 ± 0.1 nm mesopores for
both membranes, which corresponds to the pore size of the γ-alumina layers.

Figure A1. SEM cross-sectional picture of titania and γ-alumina layers on an α-alumina support.

These membranes can be cleaned by calcination and reused, which is an important
factor in their implementation for real-world applications. Information on the fabrication
of the membrane can be found elsewhere [16].
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Appendix D. Absorption Spectrum

The absorption of light by the micropollutants was investigated from wavelengths
between 200 and 700 nm, see Figure A2. None of the micropollutants in the study absorbs
photons at the wavelength used during the experiment (λmax = 366 nm).

Figure A2. Combined spectrum of the micropollutants absorbance and LED lamp emission intensity.

To protect the micropollutants from any reaction with the ambient light, the dead-
end filtration and degradation experiments were performed inside a cupboard, and all of
the solutions were stored in opaque bottles with the extra protection of aluminum paper
around them.
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