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S.1 Precursors for the preparation of carbon molecular sieve (CMS) membrane 

 

Figure S1. Chemical structures of precursors [1-10].  
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S.2 Calculation of fractional free volume (FFV) 

The group contribution method was applied to the calculation of the FFV of the 

precursor structure as Equation S1[11]. The contribution of small functional groups 

in the polymeric chains to the volume of the polymer (V) and the volume occupied 

by the polymer chains (V0) was calculated by Equations S2 and S3 respectively.  

        (S1) 

       (S2) 

        (S3) 

where (VW)k and βk are the van der Waals volume and the pre-exponential factor of 

the group k, respectively.  

  

0FFV V V
V
−=

( )0 W
1

1.3
K

k
k

V V
=

= 

( )W
1

K

k k
k

V Vβ
=

=



Membranes 2022, 12, 100 4 of 12 

 

S.3 Calculation of carbon structural parameters 

The carbon microstructural parameters were determined from the X-ray 

diffraction (XRD) spectrum (Figure S1). The average interlayer spacing (d002) of 

carbon was calculated by the Bragg equation (Equation S4) [12,13]:  

002 0022 sindλ θ=         (S4) 

where λ is the wavelength of X-ray, and θ002 is the diffraction angle of the 002 peak.  

The Lc and La, which are respectively the sizes of 002 and 100 surface and 

correspond to the width and length of the carbon microcrystal in the membrane, 

were calculated by the Scherrer equation (Equations S5 and S6) [14-16]:   

      (S5) 

      (S6) 

where β is half width of the corresponding peak.  

 

Figure S2. An example of XRD pattern of CMS membrane. The CMS membrane is 

derived from ODA-PMDA polyimide and the pattern is independently measured 

by the D/Max 2400 X-ray diffractometer produced by Rigaku Corporation. 
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S.4 Calculation of gas-carbon interaction 

The gas-carbon interaction potential in this work was generated by van der 

Waals force, including dispersion force, orientation force and induced force [17-19].  

Dispersion force is the interaction between gas molecules and carbon matrix 

due to instantaneous dipole. The potential energy EL produced by the dispersion 

force is calculated by Equation S7: 

       (S7) 

where r is the distance between carbon matrix and gas molecules, Tc and Tg are the 

polarizabilities of carbon and gas molecules, and Ic and Ig are the ionization 

potentials of carbon and gas molecules, respectively. 

Orientation force, also known as electrostatic force, is the interaction between 

the gas molecules with permanent dipole moment or quadrupole moment and the 

polar groups on the surface of carbon matrix, which are respectively recorded as Ek1 

and Ek2 and calculated by Equations S8 and S9. 

        (S8) 

      (S9) 

where µc and µg are the intrinsic dipole moments of carbon and gas molecules 

respectively, and Qc and Qg are the corresponding quadrupole moments. T is the 

absolute temperature and kB is Boltzmann constant. 
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Induced force is the interaction between the intrinsic polar groups on the 

surface of the carbon matrix and the gas molecules induced by the dipole and 

quadrupole moments from these groups. The potential energies from the forces 

induced by the dipole and quadrupole moments are respectively recorded as ED1 

and ED2 and are calculated by Equation S10 and S11.： 

       (S10) 

      (S11) 

 

The potential energy from van der Waals force (Ev), which is the sum of the five 

interaction potential energies (Equation S12), were listed in Table 1:  

     (S12) 

Table S1. Estimate values of potential energies generated by van der Waals forces 

between gas molecule and solid carbon (kJ·mol-1) [17-19] 

Gas EL Ek1 Ek2 ED1 ED2 EV 

CO2 49.036 0 -66.00 × 10-23 -2.45 × 10-8 -1.734 -50.770 

CH4 29.244 0 -3.00 × 10-23 -2.39 × 10-8 -0.036 -29.280 

O2 18.371 0 -0.29 × 10-23 -1.56 × 10-8 -0.046 -18.417 

N2 21.294 0 -8.04 × 10-23 -1.62 × 10-8 -0.334 -21.628 

H2 -9.859 0 -1.56 × 20-23 -1.12 × 10-8 -0.034 -9.862 
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S.5 The parameters of the Robeson upper bound lines 

Table S2. Parameters of gas pairs in the 2008 Robeson upper bound[20]  

Gas pair k (Barrer) n 

O2/N2 1,396,000 -5.666 

CO2/CH4 5,369,140 -2.636 

H2/N2 97,650 -1.484 

H2/CH4 27,200 -1.107 

CO2/N2 30,967,000 -2.888 

N2/CH4 2,570 -4.507 

H2/CO2 4,515 -2.302 
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S.6 The kernel functions used in the support vector regression 

 (1) Linear function:  

T( , )i j i jκ =x x x x        (S13) 

 (2) Polynomial function (d is the degree of polynomial):  

( )T( , ) , 1
d

i j i j dκ = ≥x x x x       (S14) 

 (3) Radial basis function (RBF) (σ is called the bandwidth):  

2

2( , ) exp , 0
2
i j

i jκ σ
σ

 − = − >
 
 

x x
x x      (S15) 

 (4) Sigmoid function (βS and θS are the kernel parameters):  

( )T
S S( , ) tanh , 0 , 0i j i jκ β θ β θ= + > >x x x x    (S16) 
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S.7 Parameter optimization of kernel functions 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

 

(g) 

Figure S3. Variation of the statistical coefficients with the parameters of the kernel 

function. (a) corresponds to the RBF kernel; (b)~(g) correspond to the polynomial 

kernel. 
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