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Abstract: Regulation of the Ca2+-activated Cl− channel TMEM16A by Ca2+/calmodulin (CAM) is
discussed controversially. In the present study, we compared regulation of TMEM16A by Ca2+/
calmodulin (holo-CAM), CAM-dependent kinase (CAMKII), and CAM-dependent phosphatase
calcineurin in TMEM16A-overexpressing HEK293 cells and TMEM16A expressed endogenously in
airway and colonic epithelial cells. The activator of the Ca2+/CAM-regulated K+ channel KCNN4,
1-EBIO, activated TMEM16A in overexpressing cells, but not in cells with endogenous expression
of TMEM16A. Evidence is provided that CAM-interaction with TMEM16A modulates the Ca2+

sensitivity of the Cl− channel. Enhanced Ca2+ sensitivity of overexpressed TMEM16A explains its
activity at basal (non-elevated) intracellular Ca2+ levels. The present results correspond well to a
recent report that demonstrates a Ca2+-unbound form of CAM (apo-CAM) that is pre-associated with
TMEM16A and mediates a Ca2+-dependent sensitization of activation (and inactivation). However,
when using activators or inhibitors for holo-CAM, CAMKII, or calcineurin, we were unable to detect a
significant impact of CAM, and limit evidence for regulation by CAM-dependent regulatory proteins
on receptor-mediated activation of endogenous TMEM16A in airway or colonic epithelial cells. We
propose that regulatory properties of TMEM16A and and other members of the TMEM16 family as
detected in overexpression studies, should be validated for endogenous TMEM16A and physiological
stimuli such as activation of phospholipase C (PLC)-coupled receptors.

Keywords: TMEM16A; calmodulin; CAMKII; calcineurin; Ca2+-activated Cl− channel; anoctamin 1;
CAM

1. Introduction

In our earlier study we analyzed the regulation of the Ca2+-activated Cl− chan-
nel (CaCC) TMEM16A. We found that the channel can be activated by activators of
Ca2+/calmodulin (CAM)-regulated KCNN4 K+ channels, such as 1-EBIO and riluzole [1].
In addition, we demonstrated that TMEM16A physically interacts with CAM. A subsequent
report indicated that the anion selectivity of TMEM16A is dynamically regulated by the
Ca2+/CAM complex [2]. This study showed that CAM reversibly increases the permeability
ratio PHCO3-/PCl

−. Further support for a CAM-dependent regulation of TMEM16A came
from an interesting study by the Colecraft team [3]. They described a Ca2+-unbound form
of CAM (apo-CAM), which is pre-associated with TMEM16A or the paralogue TMEM16B
channel complexes. Apo-CAM mediates a Ca2+ dependent sensitization of activation and
Ca2+ dependent inactivation of TMEM16 channels [3,4]. Moreover, CAM-dependent activa-
tion and inactivation of TMEM16A had also been found in an earlier study [5]. In contrast
to these studies, other laboratories did not find evidence for regulation of TMEM16A by
CAM or alteration of the bicarbonate permeability of TMEM16A by CAM [6,7].

While direct a CAM-regulation of TMEM16A is discussed controversially, several
studies demonstrate that CAM-dependent kinase II (CAMKII) regulates CaCC/TMEM16A.
However, CAMKII was found to activate [8–12] and to inhibit [13–17] CaCC and TMEM16A,
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respectively. Greenwood and Leblanc found a cell-type-dependent activation/inhibition
of CaCC by CAMKII [18], while Ko et al. found differential regulation of TMEM16A
by CAMKII, depending on the splice variant [19,20]. One study showed modulation of
TMEM16A Cl− currents by CaMKIIγ phosphorylation at serine residues in TMEM16A.
Serine525 and Serine727 in TMEM16A were mutated to alanine, but only mutation at
Ser727 (S727A) reversed the CaMKIIγ inhibition of the TMEM16A Cl− current [15].

Earlier studies describe a crosstalk between Ca2+/CAMKII-dependent regulation
and inositol (3,4,5,6)-phosphate dependent regulation of CaCC, which also appears to
be cell-type-dependent, possibly explaining some of the controversial findings outlined
above [21,22]. In our earlier study, we observed that regulation of TMEM16A by INO-4995,
a lipid inositol phosphate, differs depending on whether the channel is overexpressed in
mammalian cells such as HEK293, or whether regulation of endogenous TMEM16A is
examined [23]. While overexpressed TMEM16A was potently activated by the inositol phos-
phate INO-4995, endogenous TMEM16A expressed in airway and colonic epithelial cells
was not. Activation of endogenous TMEM16A by purinergic receptor stimulation was aug-
mented by INO-4995 [23]. Along the same line, the membrane permeable dioctanoyl-PIP2
phosphatidylinositol 4,5-bisphosphate-diC8 activated overexpressed TMEM16A, but did
not touch endogenous TMEM16A [24]. Furthermore, other previously reported activators
of TMEM16A such as melittin or cinnamaldehyde failed to activate endogenous TMEM16A.
These differences prompted us to compare the role of CAM for acute receptor-mediated
activation of TMEM16A in overexpressing cells and epithelial cells with endogenous expres-
sion of TMEM16A. Here, we made use of four different cell lines. HEK293 cells were used
to study regulation of overexpressed TMEM16A, while airway epithelial cells (BCi_NS1,
CFBE) and colonic HT29 cells were used to study regulation of endogenous TMEM16A.
We demonstrate the absence of a significant CAM-dependent regulation for endogenous
TMEM16A, solidifying the conclusion that control by CAM and other regulatory prop-
erties are indeed different for endogenous and overexpressed TMEM16A. Moreover, we
made use of independent techniques (patch clamp, Ussing chamber, YFP-quenching) to
reduce the chance for misinterpretations due to methodological artefacts. The data suggest
only a minor role of CAM and the CAM-dependent proteins CAMKII and calcineurin for
activation of endogenous TMEM16A, while CAM is likely to enhance Ca2+ sensitivity of
overexpressed TMEM16A.

2. Materials and Methods
2.1. Cell Culture

All cells were grown at 37 ◦C in a humidified atmosphere with 5% (v/v) CO2. Culture
conditions for CFBE and HT29 cells have been described earlier [25]. In brief, airway ep-
ithelial cells were grown in DMEM/Ham’s F-12 with L-Glutamine medium supplemented
with 10% (v/v) fetal bovine serum (FBS), 1% (v/v) L-glutamine 200mM and 1% (v/v)
HEPES 1M (all from Capricorn Scientific, Ebsdorfergrund, Germany). CFBE parental cells
were grown in MEM with Earle’s Salts with L-Glutamine medium (Capricorn Scientific,
Ebsdorfergrund, Germany) supplemented with 10% FBS. The airway epithelial cell line
H441 was grown in RPMI and DMEM media. The immortalized human airway basal
cell line BCi-NS1 (kindly provided by Prof. Ron Crystal, Weill Cornell Medical College,
New York City, NY, USA) was maintained in Bronchial Epithelial Growth Media (Lonza).
Cells were differentiated by growing on permeable supports (Snapwell, Corning, NY, USA)
in an air-liquid interface (ALI) for up to 30 days in PnemaCult-ALI medium supplemented
with PneumaCult-ALI 10X Supplement, PneumaCult-ALI Maintenance Supplement, hy-
drocortisone and heparin (all from StemCell Technologies, Vancouver, BC, Canada), and 1%
penicilin-steptomycin (10 000 U/mL; Gibco, ThermoFisherScientific, Waltham, MA, USA).

2.2. cDNA, siRNA-TMEM16A, RT-PCR

Construction of pcDNA31 human TMEM16A (abc) has been described previously [26].
Cells were transfected using standard protocols for Lipofectamine 3000. Knockdown
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of TMEM16A in CFBE parental cells was performed by transfecting siTMEM16A (5-
CCUGUACGAAGAGUGGGCACGCUAU-3, Invitrogen, Carlsbad, CA, USA) using stan-
dard protocols for Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA). Scrambled siRNA
(Silencer® Select Negative Control siRNA #1, Ambion, Austin, TX, USA) was transfected
as negative control. All experiments were performed 72 h after transfection. For RT-PCR
total RNA from HT29 and CFBE cells were isolated using NucleoSpin RNA II columns
(Macherey-Nagel, Düren, Germany). Total RNA (0.5 µg / 25 µL reaction) was reverse-
transcribed using random primer (Promega, Mannheim, Germany) and M-MLV Reverse
Transcriptase RNase H Minus (Promega, Mannheim, Germany). Each RT-PCR reaction
contained sense (0.5 µM) and antisense primer (0.5 µM) (Table 1), 0.5 µL cDNA and GoTaq
Polymerase (Promega, Mannheim, Germany). After 2 min at 95 ◦C, cDNA was amplified
(targets 35 cycles, reference Gapdh 25 cycles) for 30 s at 95 ◦C, 30 s at 56 ◦C, and 1 min at
72 ◦C. PCR products were visualized by loading on Midori Green Xtra (Nippon Genetics
Europe) containing agarose.

Table 1. Primers for PCR.

Gene Accession Number Primer Size (bp)

TMEM16A (abcd)
NM_001378092.1

Splice variant a s: 5′-GGACCCTGATGCCGAGTGC
as: 5′-GGAGAAGGGATAGGAGAGTC 547

Splice variant b s: 5′-ACAGCAAAACCCGGAGC
as: 5′-TCTCTGGTCACACATCTCC 462

Splice variant c s: 5′-ACAGCAAAACCCGGAGC
as: 5′-GGATGATCCTTGACAGCCTC 703

Splice variant d s: 5′-GAAGAAAGAGTCCAGAAAC
as: 5′-CCGATCTCTCCATGTCAGC 136

KCNN4 NM_002250.3 s: 5′-GATTTAGGGGCGCCGCTGAC
as: 5′-CTTGCCCCACATGGTGCCC 405

Gapdh NM_001289726 s: 5′-GTATTGGGCGCCTGGTCAC
as: 5′-CTCCTGGAAGATGGTGATGG 200

2.3. Patch Clamping

Cells were patch-clamped after growing on coated glass coverslips for 2–3 days.
Whole cell patch clamp techniques and data analysis have been described earlier [27]. In
brief, patch pipettes were filled with a cytosolic-like solution containing (in mM): KCl 30,
K-Gluconate 95, NaH2PO4 1.2, Na2HPO4 4.8, EGTA 1, Ca-Gluconate 0.758, MgCl2 1.03,
D-Glucose 5, ATP 3; pH 7.2. The intracellular (pipette) Ca2+ activity was 0.1 µM. Fast
whole cell current recordings were performed as described recently [28]. The bath was
perfused continuously with standard bicarbonate-free Ringer’s solution (in mM: NaCl
145, KH2PO4 0.4, K2HPO4·3 H2O 1.6, Glucose 5, MgCl2·6 H2O 1, Ca-Gluconate·1 H2O
1.3) at a rate of 8 mL/min. Patch pipettes had an input resistance of 2–4 MΩ and whole
cell currents were corrected for serial resistance. Currents were recorded using a patch
clamp amplifier (EPC 7, List Medical Electronics, Darmstadt, Germany), the LIH1600
interface, and PULSE software (HEKA, Lambrecht, Germany), as well as Chart software
(AD Instruments, Spechbach, Germany). Cells were stimulated with 1, 10, or 100 µM ATP
in standard bicarbonate-free Ringer’s solution. Cells were current-clamped for most of the
time. In regular intervals, membrane voltage (Vc) was clamped in steps of 20 mV from
−100 to +100 mV. The inhibitor of Ca2+-activated KCNN4 K+ channels, if indicated TRAM-
34 (100 nM), was present in the patch clamp and other experiments to avoid contributions
of Ca2+-activated K+ channels.



Membranes 2021, 11, 723 4 of 14

2.4. Ussing Chamber

Short circuit Ussing chamber measurements were performed on permeable support-
grown BCi-NS1 cells. Experiments were performed under short circuit Ussing chamber
conditions (Physiological instruments) in the presence of 5% CO2 and 25 mM HCO3

− at
37 ◦C, as described earlier [29].

2.5. YFP Quenching

Cells stably transfected with iodide-sensitive YFP were plated in transparent 96-well
plates (Sarstedt, Nümbrecht, Germany), cultured 24–72 h to 80–90% confluence, washed
with gluconate substituted-Ringer solution (mmol/L: NaCl 120; Na+-gluconate 20; KCl 5;
MgCl2 1; CaCl2 2; D-Glucose 10; HEPES 10), and incubated with or without test compounds
in this solution. Total intracellular YFP fluorescence intensity in each well was measured
in a fluorescence microplate reader (NOVOstar, BMG Labtech, Ortenberg, Germany) kept
at 37 ◦C, using an excitation wavelength of 485 nm and emission detection at 520 nm.
Fluorescence was read continuously during injection of an iodide (I−)-substituted Ringer
solution (mmol/L: NaCl 120; NaI 20; KCl 5; MgCl2 1; CaCl2 2; D-Glucose 10; HEPES 10)
by a syringe pump and following injections of a symmetrical Ringer solution (in mmol/L:
NaCl 100–120; Na+-Gluconate 10–20; NaI 10–20; KCl 5; MgCl2 1; CaCl2 2; D-Glucose 10;
HEPES 10) carrying test compounds. Original data were collected, background fluorescence
was subtracted, and the initial rate of maximal fluorescence decay caused by I- influx/YFP
fluorescence-quenching upon acute injection (or pre-incubation) of test compounds was
measured to determine anion conductance/activity of TMEM16A.

2.6. Materials and Statistical Analysis

All compounds used were of highest available grade of purity and were obtained
from Sigma-Aldrich (St. Louis, Missouri, USA), unless indicated otherwise. Data are
shown as individual traces/representative images and/or as summaries with mean values
± SEM, with the respective number of experiments given in each figure’s legend. The
population-effective sizes for the experiments were typically around 0.87–0.94. As we did
not want to rely on results obtained in one cell line only, we compared results obtained in
overexpressing HEK293 cells with those obtained in cell expressing endogenous TMEM16A
channels (CFBE, BCi-NS1, HT29 cells). For statistical analysis, paired or unpaired Student’s
t-test or ANOVA were used where appropriate. A p-value of < 0.05 was accepted as a
statistically significant difference.

3. Results

3.1. Overexpressed TMEM16A Is Spontaneously Active Due to Enhanced Ca2+ Sensitivity

We observed in earlier studies that TMEM16A, when overexpressed in HEK293 cells,
produces whole cell currents in the presence of basal cytosolic Ca2+ concentrations of
0.1 µM and with physiological concentrations of K+, Na+, and Cl− in the patch pipette
filling solution [30,31] (Figure 1C,D). Such basal currents were not observed in cells ex-
pressing TMEM16A endogenously, such as HT29 colonic epithelial or CFBE airway ep-
ithelial cells [31] (Figure 1A,B). Here, TMEM16A was activated only after increase in the
intracellular Ca2+ concentration, e.g., by application of the purinergic agonist ATP [31]
(Figure 1A,B). In overexpressing cells, application of ATP activated whole cell currents in
addition to the already enhanced basal currents. Enhanced and activated currents were
inhibited by different blockers of TMEM16A such as CaCCinhAO1 (AO1) or niflumic
acid [1,30]. Moreover, enhanced basal currents were inhibited by application of AO1 or
in the absence of pipette (cytosolic) Ca2+, indicating that TMEM16A is in charge of both
enhanced basal and ATP-activated currents (Figure 1E–H). These data strongly suggest
a higher Ca2+ sensitivity of overexpressed TMEM16A when compared with endogenous
TMEM16A.
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pressing HEK293 cells at Ca2+ concentrations as low as 0.01 µM (10−8 M), while TMEM16A 
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TMEM16A [23]. No whole cell currents were activated in mock-transfected HEK293 cells. 

Figure 1. Overexpressed TMEM16A is spontaneously active due to enhanced Ca2+ sensitivity. TMEM16A whole cell
currents were activated by 100 µM ATP in CFBE airway epithelial cells expressing TMEM16A endogenously (A,B) and
in HEK293 cells overexpressing TMEM16A (C,D). A,B) TMEM16A is closed under control conditions ([Ca2+]i = 0.1 µM)
and is opened by ATP-induced increase in [Ca2+]i.(C,D) Whole cell currents were detected in TMEM16A-overexpressing
cells under control conditions, with additional activation by ATP. (E,F) Whole cell currents detected under basal conditions
were inhibited by the TMEM16A-blocker CaCCinhAO1 (AO1, 20 µM). (G,H) Whole cell currents detected under control
conditions ([Ca2+]i = 0.1 µM) were not detected in the absence of Ca2+ in the pipette filling solution. (I) Summary of the
current densities. Mean ± SEM (n = number of experiments). * Significant activation by ATP and inhibition by AO1,
respectively (p < 0.05; paired t-test). # Significant difference when compared to endogenous currents or in presence of 0 µM
[Ca2+]i, respectively (p < 0.05; unpaired t-test).

To further demonstrate enhanced Ca2+ sensitivity of overexpressed TMEM16A, we
performed patch clamp experiments in which we loaded the patch pipette with pipette
filling solution containing different free Ca2+ concentrations. At 0 µM pipette Ca2+ no
TMEM16A, whole cell currents were observed in overexpressing HEK293 cells or CFBE cells
expressing endogenous TMEM16A. Whole cell currents were activated in overexpressing
HEK293 cells at Ca2+ concentrations as low as 0.01 µM (10−8 M), while TMEM16A currents
in CFBE cells were only observed at 1 µM (10−6 M) Ca2+, again strongly suggesting a higher
Ca2+ sensitivity for overexpressed TMEM16A (Figure 2). At 10 µM Ca2+, whole cell currents
were smaller due to the well-known Ca2+-dependent inactivation of TMEM16A [23]. No
whole cell currents were activated in mock-transfected HEK293 cells.
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Figure 2. Enhanced Ca2+ sensitivity of overexpressed TMEM16A. Patch pipettes were filled with so-
lutions containing different free Ca2+ concentrations (0–10 µM). At 0 µM pipette Ca2+ no TMEM16A,
whole cell currents were observed in overexpressing HEK293 cells or CFBE cells expressing endoge-
nous TMEM16A. (A,B) Whole cell currents were activated in overexpressing HEK293 cells at Ca2+

concentrations as low as 0.01 µM. (C,D) TMEM16A currents in CFBE cells were only observed at
1 µM Ca2+. Mean ± SEM (n = number of experiments). # Significant activation when compared to
0 µM Ca2+ (p < 0.05; ANOVA).

3.2. Enhanced Ca2+ Sensitivity of Overexpressed TMEM16A Is Modulated by CAM

We previously reported regulation of TMEM16A by CAM [1], which, however, has
been discussed controversially (c.f. Introduction). Here, we examined activation of overex-
pressed TMEM16A by the activator of the CAM/KCNN4 complex, 1-EBIO. No effects were
seen for 1-EBIO in mock-transfected HEK293 cells. In contrast, TMEM16A-overexpressing
cells showed enhanced basal currents, which were further augmented by 1-EBIO, clearly
suggesting CAM-regulation of TMEM16A. Application of the CAM-inhibitor trifluop-
erazine (TFP) inhibited enhanced basal currents and attenuated activation by 1-EBIO.
Moreover, the TMEM16A-inhibitor CaCCinhAO1 (AO1) [32] strongly inhibited enhanced
basal currents and abolished the effect of 1-EBIO (Figure 3A–E). Finally, activation by
1-EBIO was examined in overexpressing HEK293 cells treated with scrambled RNA or with
siRNA for CAM. Activation by 1-EBIO was attenuated in cells in which expression of CAM
was knocked down (Figure 3F,G). Knockdown of CAM was assessed by semiquantitative
RT-PCR and was 94 ± 2 % (n = 5). A similar number of CAM-transcripts are expressed
in CFBE and HEK293 cells (Figure 3H). Notably, in contrast to TMEM16A-overexpressing
HEK293 cells, no effect of siRNA-CAM was observed on the activation of TMEM16A in
CFBE cells. These results suggest that enhanced basal TMEM16A currents are due to
enhanced Ca2+ sensitivity, probably modulated by association of CAM with TMEM16A.



Membranes 2021, 11, 723 7 of 14
Membranes 2021, 11, 723  7  of  14 
 

 

 

Figure 3. Enhanced Ca2+ sensitivity of overexpressed TMEM16A is mediated by CAM. (A–D) No 

effect of 1‐EBIO (1 mM) on whole cell currents in mock‐transfected HEK293 cells. Basal activity of 

TMEM16A and further activation by 1‐EBIO in TMEM16A‐overexpressing HEK293 cells. Inhibition 

of  basal  TMEM16A‐activity  and  attenuation  of  the  effect  of  1‐EBIO  by  the  CAM‐inhibitor  tri‐

fluoperazine (TFP, 10 μM). Inhibition of basal TMEM16A‐activity and inhibition of TMEM16A‐ac‐

tivation by 1‐EBIO using CaCC‐inhAO1 (AO1, 20 μM). (E) Summary of the current densities. (F,G) 

Basal activity of TMEM16A and further activation by 1‐EBIO in overexpressing HEK cells treated 

with  scrambled RNA  (scrbld) or with  siRNA  for CAM  (siCAM).  (H) Knockdown of CAM was 

Figure 3. Enhanced Ca2+ sensitivity of overexpressed TMEM16A is mediated by CAM. (A–D) No
effect of 1-EBIO (1 mM) on whole cell currents in mock-transfected HEK293 cells. Basal activity of
TMEM16A and further activation by 1-EBIO in TMEM16A-overexpressing HEK293 cells. Inhibition of
basal TMEM16A-activity and attenuation of the effect of 1-EBIO by the CAM-inhibitor trifluoperazine
(TFP, 10 µM). Inhibition of basal TMEM16A-activity and inhibition of TMEM16A-activation by 1-
EBIO using CaCC-inhAO1 (AO1, 20 µM). (E) Summary of the current densities. (F,G) Basal activity of
TMEM16A and further activation by 1-EBIO in overexpressing HEK cells treated with scrambled RNA
(scrbld) or with siRNA for CAM (siCAM). (H) Knockdown of CAM was assessed by semiquantitative
RT-PCR in both CFBE cells expressing endogenous TMEM16A and in HEK293 cells overexpressing
TMEM16A. Similar number of CAM-transcripts are expressed in CFBE and HEK293 cells. Mean
± SEM (n = number of experiments). * Significant activation by 1-EBIO and inhibition by AO1 or
TFP, respectively (p < 0.05; paired t-test). # Significant difference when compared to activation in the
absence of AO1, TFP, or siCAM, respectively (p < 0.05; unpaired t-test).
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3.3. No Activation of Endogenous TMEM16A by 1-EBIO and No CAMKII-Dependent Regulation
of TMEM16A in Airway Epithelial Cells

We examined whether CAM-dependent regulation can also be detected for TMEM16A
expressed endogenously in CFBE airway epithelial cells. Expression of TMEM16A in CFBE
cells has been shown previously [25,27]. We also found expression of Ca2+-activated KCNN4
channels in CFBE (and H441) airway epithelial cells, but not in HEK293 cells (Figure 4A). Both
CFBE and HT29 colon epithelial cells express the splice variant TMEM16Aa,b,c (Figure 4B).
Patch clamp experiments were performed in the absence or presence of TRAM-34, a potent
inhibitor of Ca2+-activated KCNN4 K+ channels. In the absence of TRAM-34, 1-EBIO activated
a whole cell current and hyperpolarized the membrane voltage (Figure 4C,D). In contrast, in
the presence of TRAM-34, no hyperpolarization was observed, and 1-EBIO did not activate
whole cell currents (Figure 4E,F). Under both conditions, ATP activated whole cell currents.
The data suggest that in airway epithelial cells with endogenous TMEM16A, 1-EBIO activates
KCNN4 but not TMEM16A.
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Figure 4. No activation of endogenous TMEM16A by 1-EBIO in CFBE airway epithelial cells. (A) RT-
PCR analysis indicating expression of Ca2+-activated KCNN4 channels in H441 and CFBE airway
epithelial cells but not in HEK293 cells. (B) RT-PCR analysis indicating expression of the splice
variant TMEM16Aa,b,c in HT29 colonic epithelial and CFBE airway epithelial cells. (C,D) Whole cell
currents and current/voltage relationships demonstrating current activation and hyperpolarization
by 1-EBIO (1 mM) and additional activation by ATP (100 µM). (E,F) Activation of whole cell currents
and hyperpolarization by 1-EBIO is inhibited by the KCNN4 blocker TRAM-34 (100 nM). Mean ±
SEM (n = number of experiments). * Significant activation by 1-EBIO and additional activation by
ATP (p < 0.05; paired t-test).

Because CAM-dependent kinase (CAMKII) and the serine/threonine-phosphatase
calcineurin require CAM to operate, we examined the effects of other CAM-activators (DCE-
BIO, riluzole), CAMKII-inhibitors (KN-62, KN-93), and the calcineurin-inhibitor tacrolimus
(FK-506) on basal and ATP-activated endogenous currents in airway epithelial cells. No-
tably, DCEBIO enhanced basal currents, and both DCEBIO and riluzole somewhat aug-
mented ATP-activated currents but failed to reach significance (Figure 5A,B). Tacrolimus
and inhibition of CAMKII attenuated ATP-activated currents. Taken together, apart from
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CAMKII-dependent activation, there is no clear evidence for CAM or calcineurin-dependent
regulation of endogenous TMEM16A in CFBE airway epithelial cells.
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Figure 5. Evidence for CAMKII-dependent activation of TMEM16A but not for CAM- or calcineurin-
dependent regulation of endogenous TMEM16A in CFBE airway epithelial cells. (A) Whole cell patch
clamp analysis of ATP (100 µM)-activated TMEM16A currents and effects of the 1-EBIO analogues
DCEBIO and riluzole (both 10 µM), the CAMKII-inhibitors KN-62 and KN-93 (both 10 µM) and
the calcineurin inhibitor tacrolimus (10 µM). Cells were pre-incubated with the compounds, which
were also present during the experiment. Under all conditions, significant activation of whole cell
currents by ATP was observed. While the KCNN4 activators DCEBIO and riluzole enhanced ATP-
activated currents, KN-62, KN-93, and tacrolimus reduced current activation. The time course for
ATP-activation of TMEM16A remained unchanged by the drugs. (B) Calculated current densities.
All experiments were performed in the presence of the KCNN4-inhibitor TRAM-34. Mean ± SEM
(n = number of experiments). * Significant activation by ATP (p < 0.05; paired t-test).
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3.4. No Evidence for CAM, CAMKII, or Calcineurin-Dependent Regulation of Endogenous
TMEM16A Expressed in Bci-NS1 Airway Epithelial Cells

In order to exclude cell-specific or methodological factors, we re-examined CAM,
CAMKII, or calcineurin-dependent regulation in Ussing chamber recordings with human
BCi-NS1 airway epithelial cells. When grown on permeable supports, these cells differenti-
ate into a polarized epithelium with airway epithelial typical properties [25,33]. Cells were
measured under control conditions or after exposure to KN-93, DCEBIO, or tacrolimus.
Compounds were added subsequently to luminal or basolateral sides of the epithelium,
and the effects of TRAM-34 (T-34), the epithelial Na+ channel inhibitor amiloride (amil),
the inhibitor of the cystic fibrosis transmembrane conductance regulator Cl− channel
CFTRinh172 (Inh172), and ATP on short circuit currents (Isc) were examined. Neither Na+

absorption by ENaC nor basal Cl− currents by CFTR or ATP-activated TMEM16A/CFTR
currents were significantly affected by any of the inhibitors (Figure 6).
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Figure 6. No evidence for CAM, CAMKII, or calcineurin-dependent regulation of endogenous
TMEM16A in BCi-NS1 airway epithelial cells. Left panels: Ussing chamber recordings from hu-
man BCi-NS1 airway epithelial cells, assessing the ion transport by continuously measuring the
transepithelial short circuit current Isc. Original continuous recordings of the short circuit currents
Isc in the absence or presence of different inhibitors. The transepithelial resistance was continuously
monitored in parallel. Cells were measured under control conditions or after exposure to KN-93
(10 µM), DCEBIO (10 µM), or tacrolimus (100 nM). Right panels: Summaries for the short circuit
currents corresponding to continuous Isc recordings shown in the left panels. The effects of TRAM-34
(T-34, 100 nM), amiloride (amil, 10 µM), CFTRinh172 (Inh172, 20 µM), and ATP (5 µM) on Isc are
summarized. Mean ± SEM (n = number of experiments). * Significant effects of amil, Inh172, and
ATP (p < 0.05; paired t-test).
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3.5. No Evidence for CAM, CAMKII, or Calcineurin-Dependent Regulation of Endogenous
TMEM16A in HT29 Colonic Epithelial Cells

We finally examined if any of the inhibitors affect ATP-activated TMEM16A whole
cell currents in HT29 colonic epithelial cells. Here, we used iodide quenching of halide-
sensitive yellow-fluorescent protein (YFP), stably expressed in HT29 cells. ATP-induced
quenching in HT29 cells transfected with scrambled RNA was impressive (Figure 7A) and
was completely abolished by siRNA-knockdown of TMEM16A (Figure 7B), indicating that
TMEM16A was fully in charge of ATP, i.e., Ca2+-activated whole cell currents in HT29 cells.
None of the inhibitors DCEBIO, KN-62, KN-93, riluzole, or tacrolimus, applied at different
concentrations, affected current activation by ATP (Figure 7C,D). Taken together, the
results suggest that CAM-dependent regulation of TMEM16A is present in overexpressing
HEK293 cells but shows little effects on TMEM16A expressed endogenously in airway and
colonic epithelial cells.
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Figure 7. No evidence for CAM, CAMKII, or calcineurin-dependent regulation of endogenous TMEM16A
in HT29 colonic epithelial cells. Iodide quenching of YFP stably expressed in HT29 colonic epithelial
cells was used to assess 5µM ATP-activated halide permeability by activation of TMEM16A. (A) ATP-
induced quenching in mock transfected HT29 cells. (B) ATP-induced quenching in HT29 cells
with siRNA-knockdown of TMEM16A. (C) Preincubation of the cells with DCEBIO, KN-62, KN-
93, and riluzole (all 10 µM) did not affect ATP-induced quenching. (D) Incubation with different
concentrations of tacrolimus did not affect ATP-induced quenching. All experiments were performed
in the presence of TRAM-34. Mean ± SEM (n = number of experiments). au = arbitrary units for
fluorescence quenching.

4. Discussion

Regulation of the Ca2+-activated Cl− channel TMEM16A has been studied exten-
sively. In most patch clamp studies, the channel is examined as overexpressed protein
activated by high pipette Ca2+ in the presence of unphysiological salt concentrations
and at 20 ◦C [34,35]. Our previous work showed that activation of TMEM16A by phos-
phatidylinositol 4,5-bisphosphate or inositol 3,4,5,6-tetrakisphosphate is well detected for
overexpressed TMEM16A, but not for endogenous TMEM16A [23,24]. Moreover, other ac-
tivators or inhibitors also show differential effects between overexpressed and endogenous
channels [24]. The overexpressed channel is already active at basal intracellular (pipette)
Ca2+ as low as 0.01 µM. This enhanced basal current is reduced at temperatures lower
than 37 ◦C [30,31]. Notably, similar is observed for TMEM16F, which is a phospholipid
scramblase and a nonselective ion channel [31]. Interestingly, the calcium-hypersensitive
aspartic acid 408-to-glycine 408 (D408G) TMEM16F mutant showed spontaneous scram-
bling and ion channel activity when overexpressed in HEK293 cells, but both scrambling
and ion currents were not enhanced in macrophages isolated from knockin-mice expressing
D408G-TMEM16F instead of wt-TMEM16F [31,36] (data not shown). For both TMEM16A
and TMEM16F, we proposed a role of lipid-dependent regulation modulating their Ca2+
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sensitivity and activity at basal Ca2+ activity. Lipid-dependent regulation may depend on
the ambient temperature and other factors such as temperature-sensitive phospholipase
A2, reactive oxygen species, and the cytosolic (pipette) ion composition [31,37]. Moreover,
we speculated earlier that i) massively overexpressed TMEM16A may end up in non-raft
compartments, which are more accessible to other cellular Ca2+ sources, ii) overexpressed
TMEM16A may translocate its activating Ca2+ source, i.e., the endoplasmic reticulum, by
membrane tethering, and iii) unknown antagonistic accessory proteins may be stoichio-
metrically underrepresented in TMEM16A-overexpressing cells [23,24,38,39]. It is also
entirely possible that temperature-sensitive Ca2+-permeable transient receptor potential
(TRP) channels are involved in the temperature-sensitive activation of TMEM16A [40–42].
Notably, TRP channels have also been shown to be regulated by PIP2 and CAM [43,44].
Alternatively, other accessory proteins may interact differentially under overexpressed or
endogenous conditions [24].

Pre-association of Ca2+-free CAM (apoCAM) may preferentially occur with overex-
pressed TMEM16A and thus sensitize the channel for intracellular Ca2+ [3,4]. Accordingly,
the benzimidazolone 1-EBIO may then promote the association between apoCAM and
TMEM16A. 1-EBIO is a known activator of Ca2+ sensitive SK-channels [45,46]. SK channels,
e.g., KCNN4, consist of a α-subunit that requires CAM as ß-subunit to gate the channel
upon binding of Ca2+ to CAM. 1-EBIO enhances the interaction between the α-subunit and
CAM and thereby shifts the [Ca2+]i/channel activity-relationship to lower [Ca2+]i [47]. No-
tably, 1-EBIO did not activate any SK currents in the absence of [Ca2+]i [47], and similarly,
TMEM16A was not spontaneously active and was not activated by 1-EBIO in the absence
of cytosolic (pipette) Ca2+ (Figure 1).

Association of a ß-subunit such as holoCAM or apoCAM with TMEM16A may not be
surprising, given the recent findings of an association of the KCNQ1-K+ channel ß-subunit
KCNE1 with TMEM16A [48]. Nevertheless, activation of TMEM16A by benzimidazolone
compounds and the effects of CAM-regulated CAMKII or calcineurin were very moderate
in epithelial cells with endogenous expression of TMEM16A. Taken together, it appears
indispensable to examine whether activation by CAM and other accessory proteins/ß-
subunits [48], phosphatidylinositols, temperature or small molecule activators, respectively,
does exist for endogenous channels expressed in non-cultured cells and tissues under
physiological conditions.
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