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Abstract: In this study, cellulose acetate (CA) was blended with sulfonated graphene oxide (SGO)
nanomaterials to endow a nanocomposite membrane for wastewater treatment with improved hy-
drophilicity and anti-biofouling behavior. The phase inversion method was employed for membrane
fabrication using tetrahydrofuran (THF) as the solvent. The characteristics of CA-SGO-doped mem-
branes were investigated through thermal analysis, contact angle, SEM, FTIR, and anti-biofouling
property. Results indicated that anti-biofouling property and hydrophilicity of CA-SGO nanocom-
posite membranes were enhanced with addition of hydrophilic SGO nanomaterials in comparison to
pristine CA membrane. FTIR analysis confirmed the successful decoration of SGO groups on CA
membrane surface while revealing its morphological properties through SEM analysis. Thermal
analysis performed using DSC confirmed the increase in thermal stability of CA-SGO membranes
with addition of SGO content than pure CA membrane.

Keywords: cellulose acetate; sulfonated graphene oxide; nanocomposite membrane; anti-biofouling

1. Introduction

Membrane technology has undergone advances in various fields of application like
wastewater treatment, water purification, food, seawater desalination, and medicine, which
is attributed to its advantageous features like simplicity, high efficacy, eco-friendly nature,
insignificant chemical utilization, and cost effectiveness [1]. In previous years, a great focus
has been on the development of polymeric materials with high performance which must
possess good hydrophilicity, high permeability, and excellent separation [2]. However, the
main obstacle which economically and from technical point of view restricts membrane
performance is its “biofouling”.

Biofouling is caused by the deposition, attachment, and proliferation of biological
foulants (e.g., proteins and bacterial cells) present in feed water on the surface of a mem-
brane, resulting in biofilm formation. Biofouling assists in the concentration polarization
(i.e., the ratio among solute concentration on the surface of membranes and inside bulk so-
lution) of nutrients on the membrane surface [3], which consequently blocks the membrane
pores, causes tremendous reduction in salt rejection, permeates flux, and increases trans-
membrane pressure, thus requiring further energy for filtration [4,5]. Therefore, the key
focus in context of membrane modification is fabrication of anti-biofouling membranes [6].

Membranes 2021, 11, 563. https://doi.org/10.3390/membranes11080563 https://www.mdpi.com/journal/membranes

https://www.mdpi.com/journal/membranes
https://www.mdpi.com
https://orcid.org/0000-0001-8407-6886
https://orcid.org/0000-0001-8508-3156
https://orcid.org/0000-0003-2986-9992
https://orcid.org/0000-0001-8964-1389
https://orcid.org/0000-0003-2607-0050
https://doi.org/10.3390/membranes11080563
https://doi.org/10.3390/membranes11080563
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/membranes11080563
https://www.mdpi.com/journal/membranes
https://www.mdpi.com/article/10.3390/membranes11080563?type=check_update&version=1


Membranes 2021, 11, 563 2 of 13

As membrane morphology and hydrophilicity play pivotal roles in membrane-based
separation processes, they can be helpful in resolving biofouling issues [7].

Cellulose acetate (CA) is the most commonly employed polymer in membrane fabri-
cation and is known as first one to use for filtration membranes in purification of water [8].
It is a biobased material; is renewable; and possesses various reliable properties, i.e., high
biocompatibility, potential flux, and moderate hydrophilicity. Besides these advantages,
CA exhibits poor resistance towards fouling issues [9,10]; biofouling is more favorable on
polymeric membranes of hydrophobic nature, as when the membrane comes into contact
with proteins, strong hydrophobic–hydrophobic interactions occur. Therefore, improv-
ing hydrophilicity and morphological features of a membrane is a common strategy in
biofouling mitigation [11].

Therefore, for enhancing hydrophilicity and anti-biofouling features of cellulose ac-
etate membrane it is blended with hydrophilic inorganic materials to generate a nanocom-
posite membrane, which is recognized as a common modification strategy for polymeric
membranes in recent years. Addition of nanomaterials results in considerable change
in membrane properties like mechanical, magnetic, thermal, morphological, hydrophilic,
and anti-biofouling in comparison to unfilled membranes [12–14]. Some nanoparticles
commonly utilized in the modification of polymer membranes include titanium dioxide
(TiO2), alumina (Al2O3), silica (SiO2), zinc oxide (ZnO), carbon nanotubes, GO nanosheets,
SGO, Fe3O4, clay, and zirconia (ZrO2) [15–19]. Mostly, the issue encountered by hybrid
membranes is that nanoparticles possessing low specific surface, once added into the
casting solution at high concentration, result in agglomeration, which can cause imper-
fect pore formation of resulting membranes. Therefore, the selection of nanoparticles
with high specific surface area but low additive proportion is important [20,21]. The anti-
biofouling property is determined usually by antibacterial activity and the mechanism
occurs during the interaction of nanoparticles with thiol group of cysteine that usually
exist in membrane’s cell of bacteria [11].

Graphene oxide (GO) is a remarkable material with abundance of oxygen-containing
functional groups, i.e., carbonyl, carboxyl, hydroxyl, and epoxy groups, which are hy-
drophilic in nature [22]. GO exhibits extremely low density, high strength, high aspect
ratio, unique planar structure, and easy surface functionalization [22]. However, the am-
phiphilic nature of graphene oxide limits its water uptake ability (hydrophilicity) in the
case of composite membranes [23], which means that hydrophobic pollutants like proteins
can be absorbed upon the membrane surface. Therefore, an increase in hydrophilicity
offers enhanced resistance against biofouling as most of microbes, plants, and proteins
are hydrophobic in nature [24]. Another problem associated with GO is the difficulty
in producing a homogenous dispersion inside the membrane matrix; due to the high
nanomaterial concentration, agglomeration can easily occur, which eventually reduces the
membrane performance in terms of decreased hydrophilicity and water flux. Thus, in order
to achieve a membrane with high performance, it is important to decrease the nanoparti-
cles agglomeration through attachment of various functional groups on its surface using
different chemical reactions [1].

In the current research work, graphene oxide (GO) surface was functionalized with
hydrophilic sulfonic acid groups to form a nanocomposite additive with increased hy-
drophilicity, anti-agglomeration, and an improved negative charge that is subsequently
blended with cellulose acetate for fabrication of novel cellulose acetate-doped SGO compos-
ite membrane. The influence of SGO additives upon membrane properties, i.e., wettability,
morphology, structure, and chemistry, along with membrane performance in terms of
anti-biofouling behavior and water permeability, were investigated.

2. Materials and Methods
2.1. Materials

Cellulose acetate (CA) of Mw = 50 kDa in powder form was purchased from Sigma
Aldrich (St. Louis, MO, USA). Before use, CA powder was dried in vacuum oven at 105 ◦C.
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Tetrahydrofuran (THF, 99.5%), sodium nitrate (NaNO3), ethylene glycol (99.5%), sulfuric
acid (98.5%), KMNO4 (99.7%), graphite powder (99.99%), and NH4OH were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Ultrapure water (Pure lab Elga, High Wycombe,
UK) was used for the preparation of the solutions. Unless specified, all of the reagents were
used as received without further purification.

2.2. Preparation of Graphene Oxide (GO)

Synthesis of Graphene oxide was done using Hummer’s method. The procedure
involves the following steps:

The graphite powder (6 g) was added along with 200 mL sulfuric acid and 2.5 g
sodium nitrate into flask with constant stirring. In the next step, 30 g of KMnO4 (Potassium
Permanganate) was then slowly added into flask containing suspension for temperature
maintenance up to 5 ◦C and kept in an ice bath with continuous agitation for 3 h. The
ice bath was then removed, and the temperature of suspension increased for 45 min up
to 35 ◦C. Distilled water (200 mL) then subsequently added into suspension with rise
in temperature for 20 min up to 98 ◦C. The color of suspension turned brown. Distilled
water (250 mL) was added for suspension dilution followed by the addition of 20 mL of
H2O2 (10%) for reduction of unreacted manganese dioxide and permanganate into soluble
manganese sulfate. During this process, the suspension turned bright yellow followed by
centrifugation of suspension which resulted in a yellow brownish paste. The suspension
was washed twice using 95% alcohol and three times with deionized water, yielding
graphitic oxide. At last, we sonicated graphitic oxide to generate separate layers known as
graphene oxide. The resulting GO placed in oven for drying at 60 ◦C for 12 h [25].

Sulfonation of GO was achieved using Diazonium salt of Sulfanilic acid. Steps in-
volved in Diazonium salt preparation are as follows:

(a) First, sulfanilic acid was dissolved in solution of NaOH (10%) using water bath and
little bit heating. (b) Then, the heated solution was allowed to cool at room temperature
followed by addition of sodium nitrite (NaNO2). (c) The solution was then placed in an
ice bath under continuous stirring followed by addition of 10 mL concentrated HCl and
10 mL cooled water until the formation of white solution. (d) Afterwards, 1 g of the GO
suspension was added to 100 mL of distilled water using sonication, which was then added
into the above solution of diazonium salt for 4 h with addition of few drops of hydrazine to
ensure a bit reduction of GO surface. (e) The suspension so obtained using centrifugation
was then washed several times with distilled water (f) Last, the sulfonated graphene oxide
(SGO) was obtained [26].

2.3. Fabrication of SGO-Cellulose Acetate Membranes

The preparation of the SGO-blended CA membrane was done using non-solvent-
induced phase inversion (NIPS) [27]. The compositions of casting solutions of CA, THF
as solvent, and the desired concentration of SGO nanomaterials are given in Table 1.
In the beginning, the precise SGO nanoparticle amount was poured into THF solvent
and dispersed for 30 min using a sonicator (ultrasonic water bath) for improvement in
homogeneity. On other side, CA was added into the THF solution and under continuous
stirring was poured with the dispersion of SGO at room temperature. For better dispersion
of SGO, nanomaterials into CA matrix and elimination of air bubbles the solution was kept
for 24 h. The casting solution was then ready to be casted using casting glass plate with
thickness of (150 µm) and casting knife, and the film so obtained was then submerged
into coagulation bath containing distilled water for almost 2–3 min. Afterwards, the
prepared film was detached from casting plate by washing three times using pure water.
The membrane so obtained was allowed to dry at room temperature and then stored for
further use (Figure 1).
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Table 1. The compositions of SGO-doped CA casting solutions.

Membrane Type Cellulose Acetate
(CA) (wt %)

Tetrahydrofuran
(THF) (wt %)

Graphene Oxide
(GO) (wt %)

Sulfonated GO
(SGO) (wt %)

CA 15 85 - -
SGO-0 (CA-GO) 15 84.9 0.10 -

SGO-1 15 84.98 - 0.02
SGO-2 15 84.94 - 0.06
SGO-3 15 84.9 - 0.1
SGO-4 15 84.86 - 0.14
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Figure 1. Phase inversion process for membrane fabrication.

2.4. Characterization of GO and SGO Nanoparticles and CA-Composite Membranes

FTIR spectra for GO and SGO composite membranes were taken using a Perkin Elmer
FTIR spectrometer (Waltham, MA, USA). The morphological features (i.e., top surface and
membrane microstructures) of the prepared membranes were characterized using SEM
(FEI, Quanta FEG 450, Thermo Scientific, Waltham, MA, USA). The crystalline structure
of prepared SGO doped CA membranes was characterized through X-ray diffraction
(PANalytical X’pert, Malvern Panalytical, Malvern, UK) technique, respectively.

Thermal properties of SGO doped composite membranes were determined using
differential scanning calorimetry (DSC-250, TA instruments, New Castle, DE, USA) at a
10 ◦C/min heating rate under nitrogen flow of 30 mL/min. Ten milligram samples were
sealed in an aluminum pan and scanned over a range of 25 ◦C to 500 ◦C [28].

2.5. Measurement of Water Contact Angle, Pure Water Flux, Tensile Strength

The contact angle was measured through Attension Theta Tensiometer using the
sessile-drop method. The amount of water used was 5 µL. In this method, a droplet
of distilled water was dropped on the membrane surface and then the contact angle of
the droplet with surface was calculated. Five random locations of each membrane were
selected for each measurement of the contact angle to minimize the investigation error
and then the average was reported. Pure water flux of membrane was checked using
a cross-filtration apparatus and mechanical properties like tensile strength of fabricated
membrane were evaluated using Instron tensile testing machine. Particularly, for each type
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of membrane the specimens were stretched in unidirection at the rate of 5 mm/min [29].
The pure water flux of SGO membranes was determined using dead end stirred filtration
system having membrane active area of ~18.5 cm2. The filtration cell was mounted to a
reservoir containing deionized water and compressed via nitrogen gas. First, the membrane
was compacted for 30 min using filtering water at 2 bar (gauge), and then filtration tests
were performed at 1 bar (gauge). Permeated water was then collected and weighed out
using digital balance. The following formula was employed for the calculation of pure
water flux Jw (L m−2h−1) [29]:

Jw =
V

A × ∆t

where V is the permeate volume (L), A is the effective area of membrane (m2) and ∆t is the
time of filtration (h).

2.6. Antibacterial Testing

Antibacterial testing was conducted using disc diffusion method. The inoculum of
bacteria was dispersed homogeneously using nutrient agar on sterile petri dish with the
help of sterile cotton swab. In this study, Escherichia coli pathogenic bacteria was used. For
testing, each membrane punched in the shape of disks was transferred into a petri dish
containing culture of grown bacteria. Afterwards, these plates were placed for incubation
at 36 ◦C ± 1 ◦C for 24 h, under aerobic conditions. Then, the inhibition zone was measured
at the end against each sample [25].

3. Results and Discussion

The analysis of sample using FTIR was done for the determination of functional
groups. Graphene oxide and SGO were analyzed using this spectroscopic technique. The
FTIR spectra given in Figure 2 give the comparison among sulfonated graphene oxide
(SGO) and GO. GO shows its characteristic peaks at 3000–3389 cm−1 corresponding to
hydroxyl (–OH) group and peak at 1731 cm−1 to carbonyl (C=O) groups, whereas at 1210,
1035 cm−1, 1361 cm−1 is related to stretching vibrations of epoxy (C–O), alkoxy (C–O)
groups, and C=C aromatic bonds (un-oxidized sp2), respectively [26]. The peak obtained
at 1150 cm−1 corresponds to group, i.e., of sulfonic acid [–SO3H], whereas it is absent in
GO spectrum. The peak at 1733 cm−1 in spectrum is decreased as in GO, which showed
that in process of sulfonation the graphite oxide is reduced partially. The sharp peaks
obtained at 1204 cm−1 and 1382 cm−1 reveal asymmetric and symmetric S=O stretching
modes, confirming the successful substitution of sulfonic groups upon the GO surface. The
peaks obtained close to 823 cm−1 and 875 cm−1 are related to stretching modes of S–C
and S–O bonds, respectively, signifying the covalent existence of –SO3H on the surface of
reduced GO. The reduction in broad peak at 3369 cm−1 suggested the partial reduction of
sulfonated GO [30].

The FTIR spectra of pristine CA and CA-SGO nanocomposite membranes at various
concentrations (SGO-1 = 0.02%; SGO-2 = 0.06%; SGO-3 = 0.1%; SGO-4 = 0.14%) are shown
in Figure 3. Characteristic peaks exhibited by pure CA membrane are at 1037, 1224, 1369,
and 1745 cm−1 which corresponds to C–O cm−1, C–O–C cm−1, C–CH3 cm−1, C=O cm−1,
and O–H cm−1 stretching modes of vibration. The IR absorptions frequency of pristine
CA membrane is almost identical to CA–SGO nanocomposite membranes. However, the
characteristic peaks exhibited by SGO at 823 and 896 cm−1 related to stretching mode
of vibration for S–O and S–C, respectively. The presence of peak at 1739 cm−1 in spec-
trum for all SGO membranes showed that in process of sulfonation the graphite oxide is
reduced partially.
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Figure 4a–d depicts the surface morphological features of CA and composite mem-
branes, respectively. We provide a SEM image of pure CA membrane given in Figure 4a
with homogeneous surface, whereas Figure 4b–d represents cellulose acetate composite
membranes with varying concentrations of SGO. SGO-1 shows membrane with less anti-
biofouling behavior due to less loading of SGO particles. However, with the increase in
concentration of SGO within CA membrane, the anti-biofouling behavior of the corre-
sponding membranes enhances due to reduction in fouling layer on the membrane surface
(Figure 4c,d). Furthermore, the SGO-2 and SGO-3 membranes show a smooth surface
with fewer particles spreading, meaning that the addition of SGO nanofiller did not crack
membrane surface at this concentration. On further increase in concentration, particles start
aggregating on membrane surface at intervals which reflect incomplete particles dispersion
within polymeric material and low anti-biofouling behavior [31].
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Figure 5a,b shows the morphological features of SGO with particles sizes determined.
The SEM analysis indicates the thickness in the range of 11 to 14 nm for prepared SGO
nanoparticles. Moreover, particle size was also calculated through Scherrer calculator
feature, which measured particle size of 6–8 nm thus confirms the fabrication of sulfonated
graphene oxide [32].
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The crystallinity of CA-SGO nanocomposite membranes, determined by XRD analysis,
reflects the halo amorphous structure as shown in Figure 6. An amorphous halo exits
within the range of 15 to 30◦. The existence of broader peaks at 2 theta values of 19.57 and
20.18 corresponds to GO and SGO, respectively. It suggests that all the membranes exist in
an amorphous structure. Similar patterns are reported in another work conducted in [3].
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Contact angle measurement of membranes is widely used for characterizing the
membrane surface hydrophilicity. One of the most significant characteristics of membranes
is their hydrophilicity because it can influence the anti-biofouling ability and flux of
membranes [12]. The highest contact angle of 70◦ is shown by CA membrane. After
adding hydrophilic SGO nanofillers, a decrease in contact angle of composite membranes is
observed which suggested better hydrophilicity and improved affinity of water for CA-SGO
composite membranes (Figure 7). Furthermore, all CA-SGO membranes exhibited higher
hydrophilicity than the CA–GO (SGO-0 membrane). This is attributed to the introduction
of water holding sulfonic acid –SO3H, –COOH, and O–H moieties both on the surface and
within the matrix of respective hybrid membranes.
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These functionalities have the ability to absorb water molecules quickly through ion-
dipole and dipole–dipole interactions. Consequently, an increase in hydrophilic character
of CA composite membranes will help in promoting anti-biofouling performance and
membrane permeability [21,33].

Figure 8 shows the effect of GO and SGO nanofillers on water flux of cellulose acetate
blended membranes. The results suggested that CA blended membranes with GO and
SGO led to an increase in water flux as compared to pure CA membrane. The water flux
for pristine CA membrane was 50 Lm−2 h−1/bar. Addition of SGO (SGO-1, SGO-2, SGO-3,
and SGO-4) nanofillers in the casting solution of CA improved the visible changes in the
pure water flux. Among the CA-SGO blended membranes, the water flux of SGO-3 reached
a peak value of 152 Lm−2 h−1/bar in comparison to pure CA membrane. This indicates
that the presence of additional sulfonic groups (SO3H) upon graphene oxide (GO) holds a
thick layer of water and hence increases the water flux. The –SO3H group anchored within
SGO is a strong H-bonding group rather than the –OH/–COOH groups present on GO.
Additionally, SGO nanofillers showed a decrease in contact angle which can positively
act in promoting the permeability of water [21]. Moreover, the slight decrease in water
flux is shown by high SGO-4 (1.4 wt %) content mainly due to pore blockage because of
nanoparticles agglomeration at highest concentration of embedded nanoparticles within
fabricated membranes.
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Figure 8. Pure water flux of CA and composite membranes.

The antibacterial activity of fabricated CA-based SGO-doped membranes was evalu-
ated via agar well diffusion method through measurement of inhibition zone. Our chosen
testing microbe, Escherichia coli, was inoculated into the plate containing agar medium
through spreading over whole space. Afterwards, five to six holes of 6 to 8 mm diame-
ter were aseptically punched with a tip or sterile cork borer into a plate containing agar
medium followed by introduction of antimicrobial extract solution and control with highest
antibacterial activity (Ampicillin) using microliter syringe into wells which already con-
tained E.coli as a testing microbe. The agar plates were then incubated under suitable
conditions depending on the test microorganism. This causes diffusion of antimicrobial
agent into agar medium which inhibits the tested microbial strain growth. The inhibition
zone was developed against each well by antimicrobial extract. From Figures 9 and 10, it is
revealed that antibacterial activity is increased with increased content of SGO within CA
membrane. The surface of CA-SGO composite membrane exhibited negative charge due to
hydrophilic SGO functional groups like sulfonic acid and hydroxyl groups which creates
electrostatic repulsion among microbe and membrane [14].



Membranes 2021, 11, 563 10 of 13
Membranes 2021, 11, x FOR PEER REVIEW 11 of 15 
 

 

 

Figure 9. Inhibition zone measurement using agar diffusion method. 

CA CA-GO SGO-1 SGO-2 SGO-3 SGO-4

0

5

10

15

20

25

In
h

ib
it

io
n

 Z
o

n
e
 (

m
m

)

Membranes

 

Figure 10. Anti-biofouling evaluation of CA and composite membranes. 

DSC curves of prepared CA/SGO membranes with different concentrations in this 

study are given in Figure 11. The Tg (Glass transition temperature) is generally used for 

interpretation of membrane structure while employing the thermal analysis upon mem-

brane.  

It is reported that the Tg value of pure CA membrane is 55 °C [34] without any addi-

tives. The endothermic peaks shift to region of higher temperature (100–170 °C) with ad-

dition of nanofillers at higher concentration. All membranes, i.e., SGO-0, SGO-1, SGO-2, 

SGO-3, and SGO-4, possess a Tg value greater than 60 °C of pristine CA membrane, which 

Figure 9. Inhibition zone measurement using agar diffusion method.

Membranes 2021, 11, x FOR PEER REVIEW 11 of 15 
 

 

 

Figure 9. Inhibition zone measurement using agar diffusion method. 

CA CA-GO SGO-1 SGO-2 SGO-3 SGO-4

0

5

10

15

20

25

In
h

ib
it

io
n

 Z
o

n
e
 (

m
m

)

Membranes

 

Figure 10. Anti-biofouling evaluation of CA and composite membranes. 

DSC curves of prepared CA/SGO membranes with different concentrations in this 

study are given in Figure 11. The Tg (Glass transition temperature) is generally used for 

interpretation of membrane structure while employing the thermal analysis upon mem-

brane.  

It is reported that the Tg value of pure CA membrane is 55 °C [34] without any addi-

tives. The endothermic peaks shift to region of higher temperature (100–170 °C) with ad-

dition of nanofillers at higher concentration. All membranes, i.e., SGO-0, SGO-1, SGO-2, 

SGO-3, and SGO-4, possess a Tg value greater than 60 °C of pristine CA membrane, which 

Figure 10. Anti-biofouling evaluation of CA and composite membranes.

DSC curves of prepared CA/SGO membranes with different concentrations in this
study are given in Figure 11. The Tg (Glass transition temperature) is generally used for in-
terpretation of membrane structure while employing the thermal analysis upon membrane.
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Figure 11. Thermal analysis of CA and CA-SGO composite membranes through DSC.

It is reported that the Tg value of pure CA membrane is 55 ◦C [34] without any
additives. The endothermic peaks shift to region of higher temperature (100–170 ◦C) with
addition of nanofillers at higher concentration. All membranes, i.e., SGO-0, SGO-1, SGO-2,
SGO-3, and SGO-4, possess a Tg value greater than 60 ◦C of pristine CA membrane, which
confirms the enhanced thermal stability of composite membranes. A broad endothermic
peak is shown generally by all membranes. This difference is attributed to differences in
contents of SGO plus the density of packing among various membranes. The increase in
Tg value is related to the cross-linking density of the membrane, meaning the chains of
polymer are more stiff and compact [35,36].

A tensile test was used for evaluating mechanical properties of CA-SGO nanocompos-
ite membranes. An improved in tensile strength is shown in all membranes (SGO-0, SGO-1,
SGO-2, and SGO-3) as compared to pure CA membrane. As indicated from (Figure 12)
due to high surface area of SGO nanoparticles an interface was obtained with CA matrix
due to their better dispersion and increase in cross-linking due to SO3H groups presence
which enhances the mechanical properties of resulting membranes. However, further
increases in concentration of nanofillers, as in SGO-4, might result in decrease in tensile
strength, which is related to particles aggregation on selective points of membrane during
membrane fabrication.
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4. Conclusions

In summary, CA membranes doped with SGO additives were fabricated through phase
inversion method. The influence of SGO nanoparticles has been studied with main focus
on the hydrophilicity, morphology, permeability, mechanical strength, and anti-biofouling
behavior of CA-SGO nanocomposite membranes. With the addition of SGO nanoparticles
within CA polymer matrix, an enhancement in water uptake level was observed with
reduction in contact angle. SGO-3 showed maximum water flux with reduced contact
angle than pristine CA membrane. The anti-biofouling behavior was enhanced through
hydrophilic SGO additives which provide resistance against microbes. An increase in
thermal stability was also attributed to SGO content, which efficiently reduces Tg value as
compared to pure CA membrane. Based on such comprehensive results, SGO additives can
be regarded as potent inorganic additives for application in wastewater treatment using
various polymeric membranes.
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