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Abstract: Novel high-quality thin film nanocomposite (TFN) membranes for enhanced forward
osmosis (FO) were first synthesized through organic phase controlled interfacial polymerization by
utilizing functional multi-walled carbon nanotubes (MWCNTs). As 3-aminopropyltriethoxysilane
(APTES) grafted MWCNTs via an amidation reaction significantly promoted the dispersion in
organic solution, MWCNTs-APTES with better compatibility effectively restricted the penetration of
trimesoyl chloride (TMC), thus adjusting the morphology and characters of TFN membranes. Various
techniques such as Fourier transform infrared spectra (FTIR), transmission electron microscopy
(TEM), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), sessile droplet
analysis and FO experiments and reverse osmosis (RO) operation were taken to characterize and
evaluate the performance of nanocomposites and membranes. The prepared TFN FO membranes
exhibited good hydrophilicity and separation efficiency, in which water flux was about twice those of
thin film composite (TFC) membranes without MWCNTs-APTES in both AL-DS and AL-FS modes.
Compared with the original TFC membrane, the membrane structural parameter of the novel TFN
FO membrane sharply was cut down to 60.7%. Based on the large number of low mass-transfer
resistance channels provided by functional nanocomposites, the progresses may provide a facile
approach to fabricate novel TFN FO membranes with advanced selectivity and permeability.

Keywords: multi-walled carbon nanotubes (MWCNTs); 3-aminopropyltriethoxysilane (APTES); thin
film nanocomposite (TFN); interfacial polymerization; forward osmosis (FO)

1. Introduction

With continuous development of the world’s population and serious environmental
pollution, water resources are far from being adequate to meet the needs of human beings
for drinking and freshwater shortages have become a serious problem in the world [1,2].
In order to mitigate the water crisis, scientists have focused on using membrane separa-
tion technology to desalination recently [3–7]. Among various membrane desalination
technologies, the osmotic pressure driven forward osmosis (FO) technology has attracted
extensive attention [8,9]. Different from reverse osmosis (RO) with external pressure driven,
osmotic pressure is the driving force of FO process, in which the pure water of the low
osmotic pressure solution is spontaneously diffused to the high osmotic pressure solution.
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Therefore, FO may break the limitations of RO for its low energy consumption, higher
pollution reversibility and higher water reuse, and is expected to become a new type of
seawater desalination technology to alleviate water and energy crisis [10–12].

Nevertheless, a major challenge that impedes FO technology application is the short-
age of FO membranes with high separating property [13]. Among all kinds of FO mem-
branes, thin film composite (TFC) membranes containing polyamide (PA) active layers on
the support layer is regarded as the state-of-art FO membrane, due to that TFC membranes
still have desirable separation ability over a wide range of operating temperature and pH
and can independently optimize the support and selective layers [14,15]. However, the
relative low water permeability, material fouling, harsh internal concentration polarization
(ICP) and undesirable reverse solute flux of TFC membranes restricted the applications of
the TFC FO membrane [16,17]. Therefore, to achieve the optimal separation performance,
the chemical and structure properties of TFC FO membrane must be intensively designed
and greatly enhanced.

With the rapid development of nanotechnology, incorporating nanomaterials into the
FO membrane may be a practical strategy to enhance the separating property of mem-
branes [18–21]. In this respect, there are usually two ways. One is to increase the support
layer capability of the TFC membrane, for example, optimizing the pore structure, boosting
hydrophilicity and porosity and thus mitigating the ICP of the FO membrane. Another
way is to enhance the PA active layer performance of the FO membrane. The concept of
thin film nanocomposite (TFN) membrane formed by incorporating nanofillers into the
PA layer was proposed. Up to now, a wide variety of nanomaterials, such as graphene
oxide, metal/metal oxide and molecular sieve nanoparticles and so on, have been used as
a filler to fabricate TFN membranes [22–27]. Among them, multi-walled carbon nanotubes
(MWCNTs) were focused on modifying the TFC membrane for its excellent stability, high
mechanical property and intrinsically remarkable transport channels. With embedded
MWCNTs in the active layer of the TFN membrane, the water flux and antifouling capa-
bility can be improved [28]. However, because of their large aspect ratio and high surface
energy, the compatibility between MWCNTs and PA active layer was always unsatisfac-
tory, leading to localized defects and the damaged integrity of the PA active layer of FO
membrane [29–31]. Moreover, the hydrophilicity of MWCNTs was poor, which turned out
to be bad for the flux improvement of the FO membrane. Considering that the affinity with
the polymeric matrix and the dispersion in the solution of nanofillers can be effectively
improved by applying the appropriate modification strategy [28,32], we expect that explo-
ration of modified MWCNTs to prepare the TFN membrane may be an effective way to
break through the current bottlenecks.

Generally, since the nanofillers display better dispersibility in aqueous solution, TFN
membranes can be prepared by adding nanofillers into the aqueous solution [33,34]. When
nanofillers are incorporated to the aqueous solution, most of the nanofillers will be lost
from the membrane surface with the removal of excess aqueous solution, greatly reducing
the load of nanofillers and weakens its excellent performance [35]. Comparatively, with
adding nanofillers into the organic solution, most of the nanofillers will remain because
the nanofillers are embedded in the PA layer and can hardly be removed from the organic
solution. In this view, since MWCNTs have one-dimensional nanostructures with large
open channels of more than 5 nm, incorporation of MWCNTs into the active layer of the
TFN membrane may reduce the mass transfer resistance to a great extent. Even if taking
account of the characteristics of MWCNTs, the modification of MWCN.

Ts can obviously improve the hydrophilicity and dispersity of the MWCNTs in or-
ganic solution, and the new type of material compatibility between the MWCNTs and PA
separation layer will be achieved. Although nanofillers such as metal organic frameworks
(MOFs) and microporous carbon have been attempted to prepare the TFN FO membrane
by incorporating them in the organic phase of interfacial polymerization [26,36] and the
as-synthesized TFN membrane showed good water permeability and, so far, there is no
report on fabricating the TFN FO membrane by adding MWCNTs, especially modified
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MWCNTs, as efficient nanofillers in the organic phase during the interfacial polymerization
process for enhanced forward osmosis.

Based on the above considerations, in this study, we propose a facile and low-cost
method of the organic phase controlled interfacial polymerization to synthesize the novel
TFN membrane for enhanced forward osmosis by applying 3-aminopropyltriethoxysilane
(APTES) grafted MWCNTs (Figure 1). Our strategy has the following advantages. First,
grafting APTES (MWCNTs-APTES) to the MWCNTs promoted their dispersion in or-
ganic solution. Second, MWCNTs-APTES with better compatibility towards TMC sharply
restricted the penetration of TMC, making the favorable morphology of the TFN FO mem-
brane. Third, the MWCNTs-APTES contained hydrophilic amide groups, a carboxyl group
and ethoxy silane, which can hydrolyze into the hydrophilic hydroxyl group and thus
increased the hydrophilicity of the resulted TFN FO membranes. As far as we know, it
is the first time exploring APTES modified MWCNTs to fabricate a high-quality TFN FO
membrane. The resulted TFN membranes made by this strategy displayed considerable FO
desalination behaviors due to the hydrophilic groups and intrinsic mass transfer channels
of MWCNTs-APTES.
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Figure 1. Schematic illustration of MWCNTs grafted with APTES (a) and TFN membrane synthesis (b).

2. Materials and Methods
2.1. Materials

Multi-walled carbon nanotubes (MWCNTs) were supplied by Nanotech Port Co.,
Ltd. (Nanjing, China), with an average length of greater than 5 µm and the average
diameter of 10–20 nm. The polysulfone (PSF) particle (molecular weight of 65,000 Da)
was purchased from Dalian Polysulfone Plastic Co., Ltd. (Dalian, China). Concentrated
sulfuric acid, nitric acid and tetrahydrofuran were purchased from Lingfeng chemical
reagent co., Ltd. (Shanghai, China). N,N-dimethyl formamide (DMF), HNO3, H2SO4,
methanol, ethanol, thionyl chloride (SOCl2) and n-hexane were supplied by Sinopharm
Chemical Reagent Co., Ltd. (Hangzhou, China). and were not purified before being used.
Trimesoyl chloride (TMC), m-phenyldiamine (MPD) and 3-aminopropyltriethoxysilane
(APTES) were supplied by Aladdin Chemical Co., Ltd. (Shanghai, China). The deionized
(DI) water was made through the RO-EDI high purification system.

2.2. Preparation of MWCNTs-APTES

The synthesis mechanism of MWCNTs-APTES was shown in Figure 1. The carboxyl-
modified MWCNTs were first prepared similar to that reported elsewhere [37]. Specifically,
the pristine MWCNTs were added into the mixed solution of concentrated HNO3 and
H2SO4 (v/v: 1:3) and was followed by refluxing at 80 ◦C. Subsequently, the resulted
samples were washed with DI water until the water pH was about 7 and then was dried.
The as-synthesized MWCNTs with oxidized carboxylic groups on the outer walls were
referred to as MWCNTs-COOH. Then, MWCNTs-COOH were mixed with SOCl2 and DMF
and a refluxed reaction at 70 ◦C occurred, the products were washed with tetrahydrofuran
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and dried (referred as MWCNTs-COCl). MWCNTs-COCl was added into APTES and a
refluxed reaction at 80 ◦C occurred. The final products MWCNTs-APTES was washed with
DMF and methanol washing and dried.

2.3. Preparation of the PSF Support Layer

A total of 12 wt % of PSF particles were soluted in DMF at room temperature. Subse-
quently, the resulting casting solution was treated with ultrasonic vibrations for 30 min
to remove air bubbles. The resultant solution was cast on the glass substrate and then the
coated glass was immediately immersed in the DI water coagulation bath. The obtained
PSF substrate was kept in DI water for at least one day before being used.

2.4. Fabrication of TFC and TFN FO Membranes

The TFC and TFN FO membranes were produced by interfacial polymerization on PSF
substrates. The upper surface of the membrane was contacted with the organic/aqueous
phase solution. In detail, the PSF substrate membrane was first exposed to the MPD (1%
w/v) solution. Accordingly, the MPD-soaked PSF substrate was immersed in the n-hexane
solution containing TMC (0.05% w/v) and MWCNTs-APTES (0.00%, 0.05%, 0.10%, 0.20%
and 0.40% w/v). The as-synthesized membrane was placed at 60 ◦C. The prepared FO
membranes were completely rinsed and stored in DI water before being used. These FO
membranes were noted as TFC and TFN-x, where ‘x’ is the loading content of MWCNTs-
APTES.

2.5. Characterizations

Fourier transform infrared spectra (FTIR, Nicolet 6700, Thermo Fisher Scientific,
Waltham, MA, USA) and X-ray photoelectron spectroscopy (XPS, Thermo Scientific Inc.,
London, UK) was used to test the chemical structure of the samples. The weight loss
of MWCNT-based materials was determined using thermogravimetric analysis (TGA,
Pyris1TGA, PerkinElmer, Waltham, MA, USA). Scanning electron microscope (SEM, SU-70,
Hitachi, Tokyo, Japan) transmission electron microscopy (TEM, Tecnai G2 F30 S-Twin,
Amsterdam, The Netherlands) were used to examine the sample morphology. The water
contact angles (WCAs) of membranes were gauged by the contact angle meter (OCA20).
In order to reduce the error of measurement, the test was at a different location test for at
least five times.

2.6. Determination of Membranes Intrinsic Separation Performance

The pure water permeability (A) and salt rejection (R) of the as-synthesized membranes
were assessed at 6 bar by a cross-flow RO setup (Figure S1). The effective membrane area
was 7.065 cm2. A 20 mM NaCl solution was employed as the feed solution. A, R and the
salt permeability coefficient (B) of the TFC and TFN membranes were obtained by applying
Equations (1)–(3).

A =
J

∆P
(1)

R(%) = (1−
Cp

Cf
)× 100 (2)

1 − R
R

=
B

A(∆P−∆π)
(3)

where J represents the water flux. Cf and Cp are the feed concentration and permeate
concentration, respectively, while ∆P and ∆π represent the actuating operation pressure
and osmotic pressure across the FO membrane respectively.

2.7. Estimation of TFC and TFN Membranes’ FO Performance

FO performances of the resulted membranes were valued by homemade cross-flow FO
equipment (practical membrane area of 3.00 cm2). The cross-flow rate was 5.0 m min−1. DI
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water and 1 M NaCl solution were the feed and draw solution, respectively. The membrane
performance was assessed under both AL-FS (feed solution on the PA selective layer side)
and AL-DS (draw solution on the PA selective layer side) modes.

The FO water flux (JV) was determined according to Equation (4).

JV =
∆mfeed

ρfeed × Am × ∆t
(4)

where ∆mfeed, ρfeed, Am and ∆t are the mass change of the feed solution, the density of
water, the effective membrane area and the operation time, respectively. There solute flux
JS was obtained according to Equation (5).

JS =
∆(Ct×Vt)

Am × ∆t
(5)

where Vt and Ct stand for the volume and solute concentration of the feed solution,
respectively.

According to the traditional ICP model [38], FO water flux of the membrane under AL-
FS and AL-DS modes are computed from Equations (6) and (7) respectively, consequently,
the membrane structural parameter (S) can be procured.

AL-FS mode:

JV =
D
S

[
ln

Aπdraw+B
Aπfeed + JV + B

]
(6)

AL-DS mode:

JV =
D
S

[
ln

Aπdraw − JV+B
Aπfeed+B

]
(7)

where D represents the solute diffusion coefficient, πfeed and πdraw are the feed and draw
solution osmotic pressures, respectively.

3. Results and Discussion
3.1. Characterization of MWCNTs-APTES

FTIR spectroscopy was used to analyze the chemical structure of the MWCNTs-
based materials. Figure 2 showed the FTIR result of original MWCNTs, MWCNTs-COOH,
MWCNTs-COCl and MWCNTs-APTES. For the untreated MWCNTs, the peak appear-
ing at 2800–2980 cm−1 accorded with the C-H stretching vibration in methylene, the
band range of 1400–1600 cm−1 was the feature absorption peak of aromatic ring, the
range of 700–750 cm−1 and 850–900 cm−1 corresponded to the out of plane bending
vibration of the aromatic ring. The new characteristic peak of MWCNTs-COOH ap-
peared at 1700–1750 cm−1, which was caused by the C=O stretching vibration, proving
that mixed acid successfully oxidized MWCNTs to bring the carboxyl group on the sur-
face [39]. After acyl chlorination, a new characteristic peak of MWCNTs-COCl appeared at
1785–1815 cm−1, which was caused by the acyl chloride group stretching vibration. After
further grafting APTES, a broad peak appeared between 3400 and 3500 cm−1 originated
from the stretching vibration of the N-H bond. In addition, the characteristic peaks of
1370–1400 cm−1 and 1050–1100 cm−1 corresponded to stretching and bending vibrations
of C-N and Si-O-C respectively, and the characteristic peaks of acyl chloride groups disap-
peared, indicating that APTES were favorably grafted onto the surface of MWCNTS by
a covalent bond [40]. TEM was then applied to observe the MWCNTs-APTES (Figure 3).
The TEM images suggest that the overall structure of MWCNTs was not damaged after
grafting APTES and the outer surface of MWCNTS-APTES had more amorphous struc-
ture, proving that the APTES was successfully grafted onto the out surface of MWCNTs.
The TGA test of pure MWCNTs, MWCNTs-COOH, MWCNTs-COCl and CNTs-APTES
showed that the mass of MWCNTs had almost no change when the temperature was
below 500 ◦C (Figure S2). However, compared with the original MWCNTs, the mass loss
of MWCNTs-COOH and MWCNTs-APTES was obvious, which was due to the carboxyl
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and organosilane functional groups respectively, further demonstrating that the MWCNTs
had been modified successfully.
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To further analyze the functional groups of the MWCNTs-based materials, XPS anal-
ysis was conducted. As shown in Figure 4, it can be found that the MWCNTs-COOH,
MWCNTs-COCl and MWCNTs-APTES primarily comprised carbon and oxygen elements.
After acyl chlorination, a new peak appeared at 201.4 eV, which was the characteristic peak
of Cl 2p3. After treating MWCNTs-COCl with APTES, the characteristic peaks correspond-
ing to Si 2p3 and N 1s appeared at bond energies of 104 eV and 398.4 eV [40], respectively,
indicating that APTES had been successfully grafted onto the MWCNTs-COCl, which was
consistent with the results of the FTIR spectra analysis.

C 1s and N 1s spectrum were analyzed to further investigate the reaction principle of
the MWCNTs modification approach (Figure 5). The C1s spectrum of MWCNTs-COOH
(Figure 5a) was resolved into C-C=C (284.6 eV), C-OH (286.2 eV) and O-C=O (289.4 eV),
indicating that the surface of carbon nanotubes after oxidation contained hydroxyl and
carboxyl functional groups. After the acyl chlorination reaction (Figure 5b), a characteristic
peak belonging to C-Cl (286.4 eV) was detected, the peak of the -O-C=O bond disappeared
and was transformed into the peak of C=O, confirming the transformation of carboxyl
groups on MWCNTs-COOH to acyl chloride. From the XPS C 1s nuclear spectrum of
MWCNTs-APTES (Figure 5c), a peak of the C-N bond appeared at 286.2 eV, and the
C=O still existed, while the C-Cl disappeared. This indicates that the acyl chloride group
(-COCl) on MWCNTs-COCl reacted with the amino (-NH2) of APTES, which are grafted to
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MWCNTs by covalent bonds. The N 1s XPS result of MWCNTs-APTES also confirmed the
above conclusion. For MWCNTs-APTES (Figure 5d), three peaks corresponding to C-N
(398.2 eV), O=C-N (299.8 eV) and C-N+H (401.4 eV) could be observed, therefore, it can be
concluded that APTES was grafted onto MWCNTs-COCl through a covalent bond.
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The dispersity of MWCNTs and MWCNTs-APTES in the n-hexane solution was
tested (Figure S3). After 10 min of the ultrasonic dispersion treatment, it was found that
both MWCNTs and MWCNTs-APTES were uniformly dispersed in the n-hexane solution.
However, after the two dispersions were stand for only 30 min, it was found that MWCNTs
had precipitated and the supernatant was almost completely transparent, indicating that
MWCNTs had almost completely precipitated. For MWCNTs-APTES, almost no particle
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precipitation was found. The above results showed that the dispersity of MWCNTs-APTES
in n-hexane was obviously better than that of unmodified MWCNTs, indicating that the
APTES chain segment promoted the dispersion of MWCNTs in the n-hexane solution.

3.2. Characterization of TFC and TFN Membranes

The membrane morphologies were displayed by using SEM. From Figure 6a,b, the
PSF membrane had large pore structure and spongy pore structure, and the large open-
ing structure was found at the bottom, which helped to reduce the ICP in the FO pro-
cess. In detail, the upper surface of the PSF membrane showed pores with a diameter of
50–100 nm and thus the water flux of the fabricated PSF membrane was relatively large
(322.7 L m−2 h−1 bar−1). The resulted PSF membrane was applied as a support layer to
synthesize TFC and TFN membranes via the IP process. As is shown in Figure 6, it is visible
that the TFC membrane displayed typical “ridge and valley” morphology owing to the
IP reaction between TMC and MPD. However, after incorporating MWCNTs-APTES, the
PA dense layer morphologies of the resulted TFN membranes were remarkably different
from that of TFC membranes and turned to the “leaf-like” structure. The result may be
attributed to the MWCNTs-APTES that participated in the IP reaction. On the other hand,
the presence of MWCNTs-APTES hindered the diffusion of MPD and slowed down the PA
formation, resulting in a loose surface.
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(c,d) and TFN-0.1 membrane (e,f).

The surface hydrophilicity of the PSF membrane, TFC membrane and TFN membrane
was characterized by estimating the WCA of the membrane (Figure 7). For the PSF
substrate, the WCA value was measured as 83.7◦. After preparing the PA layer on the PSF
support, the WCA value of the TFC membrane increased to 95.9◦, which was due to the
network structure containing a large number of benzene rings through the cross-linking
of TMC and MPD, making the surface of the TFC membrane more hydrophobic. With
introducing MWCNTs-APTES into the PA active layer, the WCA of TFN membranes were
initially decreased. When the loading amount of MWCNTs-APTES increased to 0.2%
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(w/v), the WCA of the TFN membrane was the lowest and reduced to 33.1◦. It can be
attributed to that of the amide group and the remaining carboxyl group of the MWCNTs-
APTES were hydrophilic and the ethoxy silane on the MWCNTs-APTES was hydrolyzed
into hydrophilic hydroxyl, which made the TFN membranes have better hydrophilicity.
Meanwhile, when the loading amount of MWCNTs-APTES amplified to 0.4% (w/v), the
WCA of the TFN membrane slightly increased. The reason may be that in the synthetic
process of the PA layer, too many MWCNTs-APTES tended to agglomerate and heaped up
on the TFN membrane surface, giving rise to the increased roughness of TFN membranes
and reducing the hydrophilicity of TFN membranes.
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3.3. Intrinsic Separation Properties of TFC and TFN Membranes

The interior separation capabilities of synthesized TFC and TFN membranes were
measured by homemade cross-flow filtration equipment and the results were displayed
in Table 1. Generally, a good FO membrane should possess high A and small B. The A
value of the TFC membrane was relatively low (1.56 L m−2 h−1 bar−1). After incorporating
MWCNTs-APTES into the PA layer, the A value of the prepared TFN membrane increased
to 4.1 L m−2 h−1 bar−1, which was about 2.6 times larger than that of the TFC membrane.
Even though the loading amount of MWCNTs-APTES was as low as 0.05% (w/v), the
A value of TFN membrane reached 3.11 L m−2 h−1 bar−1, which was almost 2.0 times
higher than that of the TFC membrane. The increase of the A value of TFN membranes
can be ascribed to the adding of MWCNTs-APTES. The diameter of MWCNTs-APTES
is about 10–20 nm, providing unobstructed channels of water molecules and increasing
the TFN membranes’ pure water flux. In addition, the Si-OH from the hydrolysis of
ethoxy-silane groups of MWCNTs-APTES led to improve the hydrophilicity of the TFN
membrane. Similarly, the water flux decline of the TFN-0.4 membrane may ascribe to the
poorer hydrophilicity of this membrane. The poorer hydrophilicity of the TFN membrane
restricted H2O molecules into the polyamide matrix and was bad for H2O molecule
transport through the membrane.
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Table 1. Salt rejections (R), intrinsic properties and membrane structural parameters (S) of the TFC
and TFN membranes.

Membrane Rejection of
NaCl (%)

A
(L m−2 h−1 bar−1)

B
(L m−2 h−1)

B/A
(Bar)

S
(µm)

TFC 96.1 ± 0.76 1.56 ± 0.08 0.32 ± 0.02 0.205 ± 0.002 1555 ± 93
TFN-0.05 97.3 ± 0.65 3.11 ± 0.03 0.40 ± 0.01 0.129 ± 0.001 1114 ± 64
TFN-0.1 97.4 ± 1.16 3.59 ± 0.12 0.48 ± 0.02 0.134 ± 0.007 646 ± 18
TFN-0.2 95.7 ± 0.84 4.10 ± 0.09 0.92 ± 0.07 0.224 ± 0.013 737 ± 47
TFN-0.4 93.6 ± 0.53 3.40 ± 0.16 1.16 ± 0.05 0.341 ± 0.012 610 ± 32

Besides the water penetrability, the rejection of NaCl by TFC and TFN membranes
were also shown in Table 1. Compared with the TFC membrane (NaCl rejection was
96.1%), the NaCl rejection of the TFN membrane firstly increased with incorporating
MWCNTs-APTES and reached 97.4%. Correspondingly, the B/A value represented the
separation performance of the TFN membrane and was smaller than that of the TFC
membrane, exhibiting that the separation efficiency of the resulted TFN membrane was
better than that of the TFC membrane. However, when the loading amount of MWCNTs-
APTES was further increased, the separation ability of the TFN membrane was the worst
in NaCl rejection on account of the agglomeration of MWCNTs-APTES and the formed
nonselective defects.

3.4. FO Performance

FO separation performance of the fabricated TFC and TFN FO membranes were
measured under both AL-DS and AL-FS modes, respectively. From Figure 8a,b, with
increasing the loading amount of MWCNTs-APTES, the water flux of the resulted FO
membrane presented a similar trend with the pure water flux (Table 1). Moreover, compared
with the TFC membrane, it is obvious that TFN membranes modified with MWCNTs-
APTES had higher water flux under the two operation modes, because of the loose surface
structure and abundant oxygen-containing functional groups of the TFN membranes. For
the TFC membrane, JV was 12.6 in the AL-DS mode and 8.2 L m−2 h−1 in the AL-FS mode.
When the loading amount of MWCNTs-APTES increased to 0.2% (w/v), under AL-DS and
AL-FS modes, JV of the TFN membrane were 22.6 and 19.6 L m−2 h−1, about 80% and
140% larger than that of the original TFC membrane, respectively. The improvement of JV
can be on account of the lower permeation resistance with introducing MWCNTs-APTES
into the PA active layer. It is worth taking into account that the JV of TFN membranes
had no significant changes with further increases in the nanofiller amount. For JS, when
the loading amount of MWCNTs-APTES was lower than 0.1% (w/v), JS increased slightly.
However, a further increase of the MWCNTs-APTES loading amount resulted in a sharp
increase in JS, which was due to the MWCNTs-APTES agglomerates in TFN membranes.

As noted, the concentrative ICP impact can be negligible in the AL-DS mode. Never-
theless, the dilutive ICP impact is more serious in the AL-FS mode, because the osmotic
pressure decreases as the operation is prolonging and thus decreases the water flux to a
great extent [41,42]. This is why the water flux under the AL-FS mode is always less than
that of the AL-DS mode. As shown in Figure 8, for all membranes, JV in the AL-DS direction
was greater than that in the AL-FS direction, which can be ascribed to the better ICP in this
direction. In addition, in the AL-FS mode, the water flux increased more remarkably. Apart
from the effect of MWCNTs-APTES on TFN membrane morphology, MWCNTs-APTES
contained the hydrophilic group and intrinsic mass transfer channels greatly promoted
the infiltration of H2O molecules into the TFN membrane, which was conducive to the
rapid passage of H2O molecules through the TFN membrane and the alleviation of the
ICP phenomenon for the TFN membrane. S is a vital index to estimate the ICP impact of
the FO membrane and was calculated from the FO and RO results. In general, the smaller
the S value is, the lower the ICP impact is, with increasing FO flux. Compared to the TFC
membrane, the S value of the TFN membrane with 0.4% (w/v) MWCNTs-APTES loading
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dropped down to 610 µm, sharply cutting down to 60.7%. The results indicated that the
ICP effect of the fabricated TFN membranes were mitigated after incorporating modified
MWCNTs to some extent. In addition, JS/JV was evaluated to assess the selectivity of
the FO membrane. From Figure 8c,d, with the increase of the MWCNTs-APTES loading
amount, the JS/JV value of the fabricated TFN membrane firstly decreased and subse-
quently increased. When the loading of MWCNTs-APTES was 0.1% (w/v), the lowest JS/JV
was achieved, which was reduced to 0.091 g L−1 (AL-FS mode), demonstrating that the
selectivity of the TFN membrane was greatly improved by incorporating MWCNTs-APTES.
Compared with other CNT-based FO membranes (Table S1), the JS/JV of the resulted TFN
membrane was also very low, indicating that incorporating MWCNTs-APTES into the TMC
solution during interfacial polymerization could effectively enhance the FO performance
of the TFN membrane.
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4. Conclusions

In summary, novel TFN FO membranes with mitigating internal concentration polar-
ization were successfully synthesized by utilizing APTES modified MWCNTs via the or-
ganic phase controlled interfacial polymerization strategy. Through the amidation chemical
reaction, APTES was first successfully grafted onto MWCNTs, and the resulted MWCNTs-
APTES showed better dispersity in the n-hexane solution compared with the original
MWCNTs. After introducing MWCNTs-APTES into the PA layer, the pure water flux
of the TFN membrane was improved to a great extent. When the addition amount of
MWCNTs-APTES was 0.1% (w/v), the permeation flux of the TFN membrane increased
to 140% and reached 22.6 L m−2 h−1 (AL-DS mode). Moreover, the JS/JV value of the
TFN membrane reduced to 0.091 g L−1 (AL-FS mode). Compared with the original TFC
membrane, the membrane structural parameter of the novel TFN FO membrane sharply
cut down to 60.7%. The progresses in this research provide a new way for the production
of high-quality thin film forward osmosis membranes by applying incorporated functional
nanocomposites, which displays great potential in a widely industrial application.
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Optical photographs of MWCNTs and MWCNTs-APTES dispersion after keeping static 78 for (a)
0 second and (b) 10 min. (left: MWCNTs, right: MWCNTs-APTES); Table S1. Performance of TFN
membrane compared with other CNTs-based FO membranes using 108 DI water as feed solution.
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