Supplemental materials

Development of a Short-Cut Combined Magnetic Coagulation–Sequence Batch Membrane Bioreactor for Swine Wastewater Treatment

Yanlin Chen ^{1,2,3}, Qianwen Sui ^{1,2}, Dawei Yu ^{1,2}, Libing Zheng ^{1,2}, Meixue Chen ^{1,2} and Tharindu Ritigala ^{1,2,3}, Yuansong Wei ^{1,2,3,4,*}

- ¹ State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; ylchen_st@rcees.ac.cn (Y.C.); qwsui@rcees.ac.cn (Q.S.); dwyu@rcees.ac.cn (D.Y.); lbzheng@rcees.ac.cn (L.Z.); mxchen@rcees.ac.cn (M.C.); tharindu_st@rcees.ac.cn (T.R.)
- ² Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- ³ University of Chinese Academy of Sciences, Beijing 100049, China;
- ⁴ Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330029, China
- * Correspondence: yswei@rcees.ac.cn.

Eq. S1: Activity of ammonia oxidation bacteria

$$K_{AOB} = \frac{K}{MLSS}$$
(S1)

Where K is the degradation rate constant of ammonia nitrogen, mgN/(L·h); MLSS is the mixed liquor suspended solids in SMBR, mg/L.

Eq. S2: Activity of nitrite oxidation bacteria

$$K_{NOB} = \frac{K}{MLSS}$$
(S2)

Where K is the formation rate constant of nitrate, $mgN/(L\cdot h)$; MLSS is the mixed liquor suspended solids in SMBR, mg/L.

Eq. S3: Free ammonia (FA)

$$FA = \frac{17}{14} \times \frac{([NH_3 - N] + [NH_4 - N]) \times 10^{pH}}{e^{\frac{6344}{273 + t} + 10^{pH}}}$$
(S3)

Where FA is the free ammonia concentration, mg-NH₃/L; ([NH₃-N]+[NH₄⁺-N]) is the total ammonium nitrogen in the reactor, mg/L; t is the temperature, $^{\circ}$ C; and pH is the pH value.

Stage		PO3P		C/N	
	Influent(mg/L)	Effluent(mg/L)	Removal efficiency (%)	Influent	Effluent
Ι	114.3			8.7	
	±8.6	-	-	±1.7	-
II	140.2	43.4	68.8	8.1	5.4
	±15.2	±2.7	±2.7	±1.3	±1.4
Ш	134 4	30.5	77.3	11.2	4.1
111	104.4	50.5	11.5	11.2	4.1
	±13.9	±3.7	±4.9	±2.1	±1.6

Table.S1 Performance of magnetic coagulation pretreatment of swine wastewater at different stages

Table S2 Operating parameters and performance of the SMBR at different stages (mg/L)

		Loa	ad / kg(kg\	/SS·d)-		TN		TP			
Stag e	HRT (d)	COD	TN	NH4*-N	Inf	Eff	Remove rate (%)	Inf	Eff	Remove rate (%)	
Ι	5.0	0.4	0.049	0.042	1097.0	38.0	97.0	132.4	125.3	5.5	
		±0.04	±0.008	±0.005	±184.5	±4.4	±0.5	±5.8	±8.3	±1.2	
II	4.7	0.3	0.067	0.057	1422.7	36.9	97.1	52.2	49.2	5.8	
		±0.09	±0.025	±0.014	±534.8	±7.2	±0.9	±2.7	±3.9	±0.4	
III	4.3	0.2	0.062	0.050	1201.4	32.3	97.3	35.8	33.2	6.4	
		±0.12	±0.015	±0.009	±297.5	±5.8	±0.4	±5.1	±2.8	±0.7	

	HR	COD		NH4*-N			TN			ТР				
Reactor	T (d)	Influen t	Effluen t	Removal efficiency (%)	Influe nt	Effluent	Removal efficiency (%)	Influen t	Effluen t	Removal efficiency (%)	Influen t	Effluen t	Removal efficiency (%)	Reference
SMBR	6.0	7046.27	327.34	95.3	811.71	10.19	98.7	1042.54	75.39	92.8	-	-	-	[1]
SMSBR ^a	4.0	4400	132	97.0	-	-	-	1300	143	89.0	344.0	68.8	80.0	[2]
SMBR in Stage I	5.0	9227.2	335.9	96.4	943.4	8.6	99.1	1097.0	38.0	96.5	132.4	125.3	5.4	This study
MC-SMBR process in	4.7	10141.3	401.6	96.0	1245.7	12.4	99.0	1514.9	36.9	97.6	159.1	49.2	69.1	This study
MC-SMBR process in Stage III	4.3	11507.3	340.3	97.0	1031.3	7.1	99.3	1201.5	32.3	97.3	152.4	33.2	78.2	This study

Table S3 Performance comparison of the combined magnetic coagulation-SMBR process treating swine wastewater (mg/L)

^a SMSBR: submerged membrane sequencing batch reactor; MC: magnetic coagulation

Figure S1. Activity of AOB&NOB in the SMBR at different stages

Figure S2. TMP and membrane flux in SMBR at different stages

Figure S3. Principle component analysis of the microbial community in the SMBR

Reference

- [1] Sui, Q., Jiang, C., Yu, D., Chen, M., Zhang, J., Wang, Y., Wei, Y. 2018. Performance of a sequencingbatch membrane bioreactor (SMBR) with an automatic control strategy treating high-strength swine wastewater. *Journal of Hazardous Materials*, 342(15), 210-219.
- [2] Han, Z., Chen, S., Lin, X., Yu, H., Duan, L.A., Ye, Z., Jia, Y., Zhu, S., Liu, D. 2017. Performance and membrane fouling of a step-fed submerged membrane sequencing batch reactor treating swine biogas digestion slurry. *Journal of Environmental Sciences And Health, Part A*, 1-8.