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Abstract: Poisson–Boltzmann theory provides an established framework to calculate properties
and free energies of an electric double layer, especially for simple geometries and interfaces that
carry continuous charge densities. At sufficiently small length scales, however, the discreteness of
the surface charges cannot be neglected. We consider a planar dielectric interface that separates a
salt-containing aqueous phase from a medium of low dielectric constant and carries discrete surface
charges of fixed density. Within the linear Debye-Hückel limit of Poisson–Boltzmann theory, we
calculate the surface potential inside a Wigner–Seitz cell that is produced by all surface charges
outside the cell using a Fourier-Bessel series and a Hankel transformation. From the surface potential,
we obtain the Debye-Hückel free energy of the electric double layer, which we compare with the
corresponding expression in the continuum limit. Differences arise for sufficiently small charge
densities, where we show that the dominating interaction is dipolar, arising from the dipoles formed
by the surface charges and associated counterions. This interaction propagates through the medium
of a low dielectric constant and alters the continuum power of two dependence of the free energy on
the surface charge density to a power of 2.5 law.

Keywords: Fourier-Bessel sum; dielectric interface; Debye-Hückel; electrostatics; screened Coulomb
potential; dipole interactions

1. Introduction

Charged interfaces in aqueous solution give rise to the formation of an electric double
layer—a diffuse cloud of co- and counter-ions that screen the interfacial charges [1,2].
Electric double layers are abundant in every living cell, as well as in many technological
applications. Among the most prominent examples are biomembranes, which consist of a
mixture of lipids and associated proteins that self-assemble into an extended planar sheet.
Some of the lipids are usually anionic, with their headgroup charges being located at the
dielectric interface between a region of low dielectric constant inside the membrane and
the aqueous phase, which has a large dielectric constant and contains salt ions [3].

The properties of the electric double layer can be described at different levels of ab-
straction, varying from detailed atomistic and coarse-grained computer simulations [4] to
the most simple mean-field models. A major feature of the latter is the neglect of ion-ion
correlations [5]. Mean-field models become especially useful [6,7] and amenable to exten-
sions [8,9] when based on simple geometries and when treating the dielectric interface as
uniformly charged. One of the most important extensions of applying mean-field electro-
statics to the electric double layer involves inhomogeneously charged surfaces, ranging
from continuous charge distributions to discrete point charges. Surfaces with patchy or
non-uniform charge distributions [10–13], domain formation and phase separations [14,15],
and domain boundaries [16–18] all have been modeled using mean-field electrostatics
while maintaining the assumption of charge continuity, which is justified on sufficiently
large length scales. For weakly charged surfaces or on sufficiently small length scales,
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the discreteness of the electric charge will become noticeable. This has inspired a number
of authors to compute the electrostatic potential produced by an ordered array of surface
charges [19–21] or even a single surface charge [22–25] and others to use virial expan-
sions [26,27] and Monte Carlo simulations [28–37] to account for charge discreteness. Some
studies have focused on the pressure that acts across electrolytes due to the presence of
discrete charges [28,35,38], yet—perhaps somewhat surprisingly—there has not been an
attempt so far to compute the free energy of a single planar dielectric interface with discrete
charges and compare this with the corresponding free energy derived for a continuous
charge distribution. Filling this gap on the level of the linearized Debye-Hückel model is
the goal of the present work.

We study the properties of an electric double layer on the basis of the linearized Debye-
Hückel limit, which becomes valid for a sufficiently small average surface charge density.
Discrete charges are attached with a certain density to a planar dielectric interface that
separates a salt-containing aqueous solution from a medium with a low dielectric constant.
We introduce a Wigner–Seitz cell model [39] to account for the interactions between the
interfacial charges, which do not need to form an ordered array. Using a Fourier-Bessel
series and a Hankel transformation, we calculate the electrostatic surface potential at
the position of an individual charge produced by all other charges on the interface and,
from that, the Debye-Hückel free energy of the electric double layer. The discrete nature
of the interfacial charges becomes important for sufficiently small densities. In this case,
the interactions between the interfacial charges are dominated by dipolar contributions
mediated through the salt-free medium of low dielectric constant.

2. Theory and Discussion

We consider a flat interface of sufficiently large lateral area A that separates two
distinct dielectric media. One medium has a dielectric constant ε l , and the other medium
has a dielectric constant εw and contains monovalent anions and cations of a salt such
as NaCl, both of bulk concentration n0. Because a lipid layer is representative of the
systems we intend to model, we chose the subscripts “l” and “w” for the “lipid” hydro-
carbon core and “water”, respectively, where 2 . ε l . 4 and εw ≈ 80. However, our
theoretical model is general and applies to any choices of ε l and εw. The presence of salt
ions entails the formation of an electric double layer in the medium of dielectric constant
εw. The characteristic screening length of the electric double layer is given by the Debye
length lD = [(εwε0kBT)/(2e2n0)]

1/2, where ε0 is the vacuum permittivity, kB Boltzmann’s
constant, T the absolute temperature, and e the elementary charge.

The dielectric interface also carries N uniformly distributed elementary charges e,
either positive or negative ones, implying an average surface charge density σ0 = ±eN/A.
The charges exhibit some short-range order (as is the case in a fluid); long-range order
is not necessary for our model to apply. For a lipid layer, |σ0| . e/nm2, with the exact
value depending on the fraction of charged lipids. When σ0 is sufficiently small, linearized
Poisson–Boltzmann theory—also known as the Debye-Hückel limit—offers a simple and
thus commonly used model to describe properties of the electric double layer such as the
electrostatic surface potential Φ0 = σ0lD/(ε0εw) or the free energy per unit area:

F0

A
=

σ2
0

2
lD

εwε0
(1)

of the charged interface. The validity of Equation (1) rests on a number of assumptions,
including the absence of ion-ion correlations, a uniform dielectric background (of dielectric
constant εw), and a sufficiently small and yet uniform and continuous charge density σ0
at the dielectric interface. The latter assumption must break down at some point due to
the discrete nature of the charges at the interface. That is, when the separation between
individual charges is much larger than the Debye screening length, these charges do not
interact anymore, suggesting that Equation (1) overestimates the free energy F/A that
would account properly for charge discreteness. In the following, we calculate the free
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energy F/A for a set of uniformly distributed discrete charges at the dielectric interface
and compare it with F0/A in Equation (1), which ignores the discrete nature of the charges.

2.1. Ensemble of Charged Disks

Our method to account for the discreteness of the charges on the interface invokes
the consideration of Wigner–Seitz cells [40]. A Wigner–Seitz cell serves as a unit cell of
cylindrical symmetry with a circular cross-section of radius R and corresponding lateral
area A/N = πR2. We identify the z-axis of a cylindrical coordinate system (r, φ, z) with
the symmetry axis of the Wigner–Seitz cell and locate the plane z ≡ 0 at the dielectric
interface. The radial coordinate r varies in the region 0 ≤ r ≤ R, from the symmetry axis to
the boundary of the unit cell. Note that the cylindrical symmetry of the unit cell renders all
system properties invariant with respect to the azimuthal angle φ.

If the charge on the dielectric interface was continuous and distributed uniformly,
the surface charge density σ(r) = σ0 along the radial direction would be strictly constant.
In contrast, we shall consider a non-uniform, step-like surface charge density:

σ(r) =

{
σ̄ if r ≤ r0
0 if r0 < r ≤ R,

(2)

with σ̄ = σ0R2/r2
0. That is, we condense all charge, σ0πR2, contained in the unit cell into a

concentric circular region of radius r0, leaving the outer region r0 < r ≤ R of the dielectric
interface inside the unit cell uncharged. We are free to choose both r0 and the total amount
of charge in the unit cell σ0πR2. Yet, in order to study the influence of charge discreteness,
we will eventually identify σ0πR2 = σ̄πr2

0 with a single elementary charge e and consider
the limit r0 → 0 of a point charge. Our goal is to calculate the corresponding Debye-Hückel
free energy F(r0) in that limit. The left side of Figure 1 shows an illustration of the dielectric
interface (red plane) with seven circular disks of radius r0 (shown in blue color) that carry
a charge density σ̄ each, one with its unit cell (the Wigner–Seitz cell, marked by the blue
transparent cylinder) explicitly shown.

ε
w

ε
l

ε
w

ε
l

σ

σ

n
0 n

0

r

0

z

r
R

0r

z

R

Φ
2

1
Φ (r,z)

(r,z)

Figure 1. Left side: Charged circular regions (blue disks), each carrying a uniform surface charge
density σ̄, located at an interface (the red plane) that separates two media with dielectric constants
εw and ε l from each other. The medium with εw contains a symmetric 1:1 salt solution of bulk
concentration n0. The blue transparent cylinder of radius R represents a unit cell (the Wigner–Seitz
cell). Right side: The unit cell is fully characterized by the r and z directions of cylindrical coordinates
with 0 ≤ r ≤ R and −∞ < z < ∞. We denote the electrostatic potential for z ≥ 0 by Φ1(r, z) and for
z ≤ 0 by Φ2(r, z).

The right side of Figure 1 presents the cylindrical coordinate system associated with
the unit cell; the outer boundary, at r = R, is marked by a dashed line, and the interface is
located at the plane z ≡ 0.
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We denote the electrostatic potential for z ≥ 0 by Φ1(r, z). Due to the presence of
salt, Φ1 fulfills the Debye-Hückel equation l2

D∇2Φ1 = Φ1, where ∇2 denotes the Laplacian
operator. Similarly, we denote the electrostatic potential for z ≤ 0 by Φ2(r, z). The potential
Φ2 fulfills the Laplace equation ∇2Φ2 = 0. The Debye-Hückel and Laplace equations for a
cylindrically symmetric unit cell and the structure of their solution can be written as:

1
r

∂

∂r

(
r

∂Φ1

∂r

)
+

∂2Φ1

∂z2 =
Φ1

l2
D

→ Φ1(r, z) =
∞

∑
n=0

an J0

(
yn

r
R

)
e
−z
√
( yn

R )
2
+ 1

l2D

1
r

∂

∂r

(
r

∂Φ2

∂r

)
+

∂2Φ2

∂z2 = 0 → Φ2(r, z) =
∞

∑
n=0

an J0

(
yn

r
R

)
ez yn

R , (3)

where J0 denotes the Bessel function of the first kind and zeroth order. The sets of the
yet undetermined constants an in the expressions for Φ1(r, z) and Φ2(r, z) are identical to
ensure the electrostatic potential remains continuous when passing through the dielectric
interface at z = 0. In addition, the solutions do not diverge for |z| → ∞. Symmetry requires
the derivatives (∂Φ1/∂r)r=R and (∂Φ2/∂r)r=R at the boundary of the unit cell to vanish.
Because the Bessel function of the first kind and first order, J1(y) = −J′0(y), is the negative
derivative of the Bessel function of the first kind and zeroth order, we demand J1(yn) to
vanish for all yn with integers n ≥ 0. Hence, yn in Equation (3) satisfies J1(yn) = 0 and is
thus the n’th zero of the Bessel function of the first kind and first order. Figure 2 shows
J0(y) and J1(y), with the set yn indicated on the upper axis for 0 ≤ n ≤ 9.

J1 (y)

J0 (y)

0 5 10 15 20 25 30

-0.4

-0.2

0.0
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0.4

0.6

0.8

1.0

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9

y

Figure 2. The Bessel function of the first kind and first order J1(y) and the Bessel function of the first
kind and zeroth order J0(y). The yn’s indicate the solutions of J1(yn) = 0 in increasing order starting
with y0 = 0.

At the dielectric interface, the electrostatic potential must fulfill the boundary condi-
tion:

εw

(
∂Φ1

∂z

)
z=0
− ε l

(
∂Φ2

∂z

)
z=0

= −σ(r)
ε0

. (4)

The functions J0(ynr/R) can be used to represent a given surface charge density σ(r)
through a Fourier-Bessel series σ(r) = ∑∞

n=0 σn J0(ynr/R) in the region 0 ≤ r ≤ R, with a
set of constants σn. Inserting that series and the expressions for Φ1(r, z) and Φ2(r, z) from
Equations (3) into the boundary condition specified by Equation (4), yields the relation:

an =
1
ε0

σn

εw

√( yn
R
)2

+ 1
l2
D
+ ε l

yn
R

(5)

between the coefficients an and σn for all integers n ≥ 0. Note that, as required by symmetry,
the derivative σ′(r) = −∑∞

n=1 σn J1(ynr/R) yn/R = 0 indeed vanishes at the boundary of
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the unit cell. Because of
∫ R

0 dr r σ(r) = ∑∞
n=0 σn J1(yn)R2/yn = R2σ0/2, we identify the first

coefficient:

σ0 =

R∫
0

dr r σ(r)

R∫
0

dr r
(6)

of the Fourier-Bessel series with the average surface charge density, in agreement with how
we have already used it in Equation (1). To find the remaining coefficients σn for n ≥ 1, we
employ the orthogonality

∫ R
0 dr r J1(ynr/R)J1(ymr/R) = δmn[RJ0(yn)]2/2 of the functions

J1(ynr/R) in the region 0 ≤ r ≤ R, where δmn denotes the Kronecker delta. Applying
orthogonality to evaluate the integral

∫ R
0 dr r σ′(r)J1(ynr/R) leads to:

σn = −

R∫
0

dr r σ′(r)J1
(
yn

r
R
)

yn
R
2 [J0(yn)]2

. (7)

Using the results for an in Equation (5) and for σn in Equations (6) and (7) gives rise to
the explicit expression:

Φs(r) = Φ0 −
lD

ε0εw

∞

∑
n=1

J0
(
yn

r
R
)√(

yn
lD
R

)2
+ 1 + ε l

εw
lD
R yn

R∫
0

dr r σ′(r)J1
(
yn

r
R
)

yn
R
2 [J0(yn)]2

(8)

for the surface potential Φs(r) = Φ1(r, z = 0) = Φ2(r, z = 0), valid for any choice of the
surface charge density σ(r). Recall that Φ0 = σ0lD/(ε0εw) is the surface potential for a
strictly uniform and continuous surface charge density σ0.

Our next step is to apply the general formalism of calculating the surface potential
Φs(r) in Equation (8) to our specific choice of σ(r) in Equation (2). It is convenient to
re-express σ(r) = σ̄u(r0 − r) in terms of the Heaviside step function u(r) = 0 for r < 0,
u(r) = 1 for r > 0, and u(r) = 1/2 for r = 0. This implies σ′(r) = −σ̄δ(r − r0), where
δ(r) denotes the Dirac delta function. Hence,

∫ R
0 dr r σ′(r)J1(ynr/R) = −σ̄r0 J1(ynr0/R),

and thus:

σ(r)
σ0

= 1 +
∞

∑
n=1

J0
(
yn

r
R
)

2 R
r0

J1
(
yn

r0
R
)

yn[J0(yn)]2
,

Φs(r)
Φ0

= 1 +
∞

∑
n=1

J0
(
yn

r
R
)√(

yn
lD
R

)2
+ 1 + ε l

εw
lD
R yn

2 R
r0

J1
(
yn

r0
R
)

yn[J0(yn)]2
. (9)

Equations (9) represent the Fourier-Bessel series of the surface charge density accord-
ing to Equation (2) as well as the corresponding electrostatic surface potential Φs(r) at
the dielectric interface. Recall that our choice σ̄ = σ0R2/r2

0 ensures the total charge in the
unit cell is πR2σ0. Both σ(r)/σ0 and Φs(r)/Φ0 are functions of r/R and depend on the
relative size of the charged circular region as compared to the cell size, r0/R. The scaled
potential depends on two additional parameters, lD/R and ε l/εw. Figure 3 shows σ(r)/σ0
(left diagram) and Φs(r)/Φ0 (right diagram) for different choices of r0/R, all with lD = R
and ε l = εw.
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Figure 3. Scaled surface charge density σ(r)/σ0 (left diagram) and scaled surface potential Φs(r)/Φ0 (right diagram)
according to Equation (9), with lD = R and ε l = εw. In both diagrams, the different curves correspond to r0/R = 0.4 (blue),
r0/R = 0.2 (orange), r0/R = 0.1 (green), r0/R = 0.05 (red), and r0/R = 0.025 (purple).

In the limit r0 → 0, the charge distribution σ(r) = σ0πR2δ(r) approaches that of a
single point charge, and the corresponding surface potential becomes:

Φs(r)
Φ0

= 1 +
∞

∑
n=1

J0
(
yn

r
R
)√(

yn
lD
R

)2
+ 1 + ε l

εw
lD
R yn

1
[J0(yn)]2

. (10)

Note that Φs(r) in Equation (10) diverges at the location of the point charge, r = 0.

2.2. Single Isolated Charged Disk

In order to calculate the interaction energy between an ensemble of charged disks
(and eventually an ensemble of point charges), we will also consider a single isolated
charged disk as the reference state. We denote the electrostatic surface potential produced
by an isolated charged disk of radius r0 by Φsel f

s (r). The calculation of Φsel f
s (r) proceeds

analogously to that of Φs(r), yet for an infinitely large unit cell size, R → ∞, while
preserving σ̄ = σ0R2/r2

0 as specified in Equation (2). In this case, we shall make use of a
Hankel transform (also known as Bessel–Fourier transform) instead of a Bessel-Fourier
series. For the surface charge density, we employ the identity:

σ(r) =
∞∫

0

dk k J0(kr)
∞∫

0

dr̄ r̄ σ(r̄)J0(kr̄) (11)

and make use of the electrostatic potentials:

Φ1(r, z) =
∞∫

0

dk k a(k) J0(kr) e
−
√

k2+ 1
l2D

z
, Φ2(r, z) =

∞∫
0

dk k a(k) J0(kr) ekz. (12)

Inserting Equations (11) and (12) into the boundary condition specified in Equation (4)
allows us to calculate the zeroth order Hankel transform:

a(k) =
1
ε0

∞∫
0

dr r σ(r) J0(kr)

εw
√

k2 + 1
l2
D
+ ε lk

=
1
ε0

σ̄ r0 J1(kr0)

k
(

εw
√

k2 + 1
l2
D
+ ε lk

) , (13)

of the surface potential Φsel f
s (r) = Φ1(r, z = 0) = Φ2(r, z = 0), where the equality on the

right-hand side of Equation (13) is based on using the surface charge density in Equation (2)
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with R→ ∞. Knowing the function a(k), introducing the dimensionalized wave number
y = kR, and replacing σ̄ = σ0R2/r2

0 allow us to express the scaled surface potential as:

Φsel f
s (r)
Φ0

=
R
r0

∞∫
0

dy
J0
(
y r

R
)

J1
(
y r0

R
)√(

y lD
R

)2
+ 1 + ε l

εw
lD
R y

. (14)

Note that Φs(r) in Equation (10) applies to a circular disk of size r0 and charge density
σ̄ inside a unit cell of radius R, whereas Φsel f

s (r) in Equation (14) describes the surface
potential in the limit on an infinitely large unit cell for the same circular disk of size r0 and
charge density σ̄. In both cases, R, r0, and σ0—which is contained in Φ0 = σ0lD/(ε0εw)—
define the surface charge density σ̄ = σ0R2/r2

0 of the charged disk. The left diagram

of Figure 4 shows an example for Φsel f
s (r)/Φ0 (black curve), calculated for r0/lD = 1,

R/lD = 1, and ε l = εw. That is, the isolated charged disk described by the black curve has
a radius equal to the Debye length and a surface charge density σ0. Decreasing the unit
cell radius from infinity to finite values (while keeping the disk unchanged) increases the
scaled potential in the unit cell, Φs(r)/Φ0, as shown for R/lD = 4 (purple), R/lD = 2 (red),
R/lD = 1.5 (green), R/lD = 1.2 (orange), and R/lD = 1 (blue). In the final case (the blue
line), the sizes of unit cell and disk are identical, r0 = R = lD, implying Φs(r)/Φ0 = 1.
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Figure 4. Left diagram: The scaled potential Φs(r)/Φ0 for a charged disk of radius r0/lD = 1 and surface charge density
σ0 that resides in a unit cell of radius R/lD = 1 (blue curve), R/lD = 1.2 (orange), R/lD = 1.5 (green), R/lD = 2 (red),
R/lD = 4 (purple), and R/lD → ∞ (black). The black curve is calculated using Φsel f

s (r)/Φ0 in Equation (14), and all others
are based on Φs(r)/Φ0 in Equation (9), with ε l = εw in each case. Right diagram: The difference4Φs(r)/Φ0 between each
colored curve and the black curve on the left diagram. The legend on the left diagram also applies to the right diagram.
Note that4Φs(r) = Φs(r)−Φsel f

s (r) corresponds to the surface potential in the unit cell produced by all charged disks
other than that in the considered unit cell.

The right diagram of Figure 4 shows the scaled difference potential 4Φs(r)/Φ0,
defined through 4Φs(r) = Φs(r)−Φsel f

s (r), for each displayed case in the left diagram,
with the same color coding. For example, the blue curve in the right diagram displays
the difference between the blue and black curves in the left diagram. Importantly,4Φs(r)
corresponds to the electrostatic potential produced by all charged disks other than the
central one located in our unit cell. Below, we will use 4Φs(r) to calculate the Debye-
Hückel free energy of the electric double layer at the dielectric interface.

We also point out that the limit r0 → 0 of Equation (14) describes a single point charge
that is located at the dielectric interface. The resulting scaled surface potential:(

Φsel f
s (r)
Φ0

)
r0→0

=
1
2

∞∫
0

dy y
J0
(
y r

R
)√(

y lD
R

)2
+ 1 + ε l

εw
lD
R y

(15)
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was first computed by Stillinger [22] and was later extended to off-interfacial locations of
the charge and to bilayer geometries [24,41,42]. Hurd [43] demonstrated that in the limit
ε l � εw and lD � r, Equation (15) can be expressed as:(

Φsel f
s (r)
Φ0

)
r0→0

=
1
2

R2

l2
D

[
lD
r

e−r/lD +
ε l
εw

l3
D

r3

]
. (16)

This is the sum of a screened Coulomb and dipole potential. The latter is long-
range and is expected to dominate for sufficiently small average surface charge densities
σ0 = e/(πR2).

2.3. Debye-Hückel Free Energy

Consider N isolated non-interacting circular disks, each of radius r0 and located at the
dielectric interface. Assembling the disks into an array of average surface charge density
σ0 and radius R of the unit cell is associated with an electrostatic interaction free energy
per unit area F/A. We calculate that energy by multiplying the surface charge density at
each point in a unit cell σ(r) with the electrostatic potential produced by all other unit cells
4Φs(r),

F
A

=
1
2

R∫
0

dr r σ(r)4Φs(r)

R∫
0

dr r
, (17)

where the factor 1/2 avoids double-counting of the cell-cell interactions. The free energy
F = F(r0) in Equation (17) is a function of disk size, with the limit r0 → 0 corresponding to
discrete point-like charges. In the other limit, r0 = R, all charge is uniformly spread over the
surface. In this case, F(r0 = R) corresponds to the energy cost of merging initially isolated,
preformed disks (all of radius R and surface charge density σ0) into a uniformly charged
interface with surface charge density σ0. Note that F(r0 = R) would become identical to
F0 upon ignoring the self-energy of the preformed disks (that is, upon replacing4Φs(r)
by Φs(r) in Equation (17)). Using the definition of4Φs(r), as well as the expressions for
σ(r) in Equation (2), for Φs(r)/Φ0 in Equation (9), and for Φsel f

s (r)/Φ0 in Equation (14),
and integrating over the Bessel function give rise to the scaled Debye-Hückel free energy:

F
F0

= 1 +
(

R
r0

)2


∞

∑
n=1

[
2J1(yn

r0
R )

yn J0(yn)

]2

√(
yn

lD
R

)2
+ 1 + ε l

εw
lD
R yn

−
∞∫

0

dy
2
y
[

J1
(
y r0

R
)]2√(

y lD
R

)2
+ 1 + ε l

εw
lD
R y

, (18)

where F0 is specified in Equation (1). Equation (18) is a major result of the present work;
it is the relative change of the Debye-Hückel free energy of an ensemble of uniformly
charged disks (each disk of radius r0 in a Wigner–Seitz cell of radius R) as compared to the
continuum limit, where due to the absence of charge discreteness, self-energies become
irrelevant and where all charge is smeared out to a uniform surface charge density. This
relative change is fully characterized by specifying the three ratios: r0/R, lD/R, and ε l/εw.
To obtain a numerical estimate of F/F0, we carry out the summation and integration up to
an upper limit only:

F
F0

= 1 +
(

R
r0

)2


nmax

∑
n=1

[
2J1(yn

r0
R )

yn J0(yn)

]2

√(
yn

lD
R

)2
+ 1 + ε l

εw
lD
R yn

−
ynmax∫
0

dy
2
y
[

J1
(
y r0

R
)]2√(

y lD
R

)2
+ 1 + ε l

εw
lD
R y

. (19)
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Here, ynmax denotes the nmax’th zero of J1(y); see Figure 2. In Figure 5, we show F/F0
as a function of r0/R for fixed R/lD = 1 and ε l = εw. Different curves correspond to
different nmax.

nmax=10

nmax=33

nmax=100

nmax=333

nmax=1000

0.001 0.01 0.1 1

0.6

0.7

0.8

0.9

1.0

r0 /R

F
/F
0

Figure 5. Scaled Debye-Hückel free energy F/F0 according to Equation (19) as a function of relative
disk size r0/R for fixed R/lD = 1 and ε l = εw. Different curves correspond to nmax = 10 (blue),
nmax = 33 (orange), nmax = 100 (green), nmax = 333 (red), nmax = 1000 (purple).

Clearly, for growing nmax, the numerical approximation for F/F0 in Equation (19)
approaches a limiting value for every non-vanishing disk size r0 > 0, yet not for the point
charge limit r0 → 0. To obtain an accurate estimate even for point charges, we point out
that because the derivative of J1(r0y)/r0 with respect to r0 at the position r0 = 0 vanishes,
the derivative: (

d(F/F0)

dr0

)
r0=0

= 0 (20)

also vanishes. Hence, we obtain an accurate numerical value of F/F0 in the limit r0 → 0
by calculating F/F0 at a sufficiently small non-vanishing position r0 and for sufficiently
large nmax. More specifically, we choose r0 � min(R, lD) and nmax � R/r0. The example
shown in Figure 5 applies to R = lD, for which r0 . 0.1R and nmax & 3R/r0 are convenient
choices. We will use that method instead of the formal limit of Equation (18),

lim
r0→0

F
F0

= 1 +
∞
∑

n=1

1√(
yn

lD
R

)2
+1+

εl
εw

lD
R yn

1
[J0(yn)]2

−
∞∫
0

dy y/2√(
y lD

R

)2
+1+

εl
εw

lD
R y

, (21)

which contains two diverging contributions and thus is unsuitable to be computed numerically.
A this point, we have acquired the ability to numerically compute the Debye-Hückel

free energy of a planar dielectric interface with an ensemble of discrete point charges
(given by Equation (21), yet calculated using Equation (19) for sufficiently large nmax and
small r0/R). The influence of considering discrete charges versus a smeared uniform
charge density is directly reflected by the ratio F/F0. This ratio depends only on the two
parameters lD/R and ε l/εw. The left diagram of Figure 6 shows how F/F0 varies as a
function of lD/R.
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Figure 6. Left diagram: Scaled Debye-Hückel free energy F/F0 for an ensemble of discrete point charges as a function of
the scaled Debye length lD/R, with R =

√
e/(σ0π) being the radius of the Wigner–Seitz cell. Different curves correspond

to ε l/εw = 0 (blue), ε l/εw = 0.1 (orange), ε l/εw = 0.5 (green), ε l/εw = 1 (red), and ε l/εw = 2 (purple). Right diagram: The
scaled free energy fs = 2l3

Dεwε0F/(e2 A) as a function of the scaled surface charge density s = l2
D × (σ0/e) for ε l/εw = 0

(blue), ε l/εw = 0.01 (orange), ε l/εw = 0.1 (green), and ε l/εw = 1 (red). The uppermost straight line (shown in purple)
corresponds to the continuum limit fs = s2 where the discreteness of the charges is ignored (see also Equation (1)). The short
black line segment close to the red line is a guide to the eye; it has a slope of 2.5 and thus indicates a behavior fs ∼ s2.5,
as observed for non-vanishing ε l/εw in the limit of small s.

The cell radius R =
√

e/(σ0π) must be chosen such that one elementary charge
e = σ0πR2 is contained inside a single unit cell. Different curves correspond to different
ε l/εw. The ratio approaches F/F0 = 0 for sufficiently small lD and F/F0 = 1 for sufficiently
large lD. Indeed, while for very small lD, the individual charges are screened and thus do
not significantly interact with each other, the discreteness of the charge becomes irrelevant
at large Debye lengths, implying that F and F0 become identical. Note also that F/F0
increases with growing ε l . Recall that F represents the interaction energy of point charges
that are initially separated on the dielectric interface and are then brought together to form
an ensemble of average surface charge density σ0. When ε l = 0, the charges are only able
to interact through the salt-containing medium, which eliminates long-range interactions.
For ε l > 0, an electric field also forms in the salt-free medium. This field is long-range and
results from the dipole that each surface charge forms with its associated diffuse counterion
cloud; see Equation (16). These additional long-range interactions cause F/F0 to increase
with growing ε l .

When changing the surface charge density σ0 at fixed Debye length lD, it is convenient
to plot the scaled free energy fs = 2l3

Dεwε0F/(e2 A) as a function of the scaled surface
charge density s = l2

D × (σ0/e). The right diagram of Figure 6 shows a double-logarithmic
plot of fs as a function of s, for different ratios of ε l/εw. For the continuum model (see
Equation (1), where the discrete nature of the charges is neglected), fs = s2, as indicated by
the uppermost curve in purple (which has a slope of two in the double-logarithmic plot).
The other curves correspond to different ratios of ε l/εw. The lowest one, for ε l/εw = 0 (blue
color), differs substantially from the second lowest one, derived for ε l/εw = 0.01 (orange
color). Indeed, the absence of long-range interactions for ε l/εw = 0 causes fs to decrease
exponentially, as dictated by the screened Coulomb interaction. For non-vanishing ε l/εw,
the charges on the dielectric interface exhibit dipolar interactions, which leads to the scaled
free energy fs ∼ s5/2. This follows immediately from F/A ∼ (N/A)× 1/r3, as well as
N/A ∼ σ0 and 1/r2 ∼ σ0 plus the definitions of fs and s. Hence, we expect all curves with
ε l/εw > 0 in the right diagram of Figure 6 to adopt a slope of 2.5 for a sufficiently small
scaled average surface charge density s. This is exactly what we observe as indicated by
the short black line segment, which has a slope of 2.5. The change from fs ∼ s2 to fs ∼ s2.5

as a function of decreasing s is the most decisive feature of the Debye-Hückel model for
discrete surface charges at a dielectric interface. Its accurate quantification is the main
achievement of the present work.
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3. Conclusions

Charges are often located at dielectric interfaces between a salt-containing aqueous
solution and a salt-free medium of low dielectric constant. When the surface density
of the charges becomes sufficiently small, their discrete nature cannot be ignored. We
derived a free energy expression (see Equation (21)) that is valid within the linear Debye-
Hückel framework for an ensemble of discrete charges at a planar dielectric interface.
When the charge-to-charge distance on the interface is much smaller than the Debye
length, we recover the well-known Debye-Hückel free energy expression for a continuous
charge distribution, with the free energy F ∼ σ2

0 being proportional to the square of the
surface charge density σ0. When the charge-to-charge distance on the interface becomes
much larger than the Debye length, interactions between dipoles formed by the interfacial
charges with their counterions in solution become dominant, changing the free energy to a
relationship F ∼ σ2.5

0 . Biological cells operate at a Debye length of lD ≈ 1 nm. The nearest-
neighbor distances between charges on biomolecular aggregates are often significantly
larger than the Debye length. For example, the nearest-neighbor distance between the
charges on a lipid membrane with 10% anionic lipids is about three times larger than the
Debye length, necessitating accounting for the discreteness of the charge when using free
energies to model membrane properties, such as domain formation, bending stiffness,
spinodal decomposition, charge reversal [44,45], and renormalization [46], or differential
capacitance [47,48]. Our present work may assist in this kind of modeling.

We emphasize that our model is valid within the Debye-Hückel limit, where corre-
lations and ion size effects are neglected. Applying Poisson–Boltzmann theory or other
non-linear approaches that account for finite ion sizes to discrete charges at a dielectric
interface will likely not yield analytical expressions, but can be implemented numerically.
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