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Abstract: Nowadays, acquiring a water supply for urban and industrial uses is one of the greatest
challenges facing humanity for ensuring sustainability. Membrane technology has been considered
cost-effective, encompasses lower energy requirements, and at the same time, offers acceptable
performance. Electrospun nanofibrous membranes (ENMs) are considered a novel and promising
strategy for the production of membranes that could be applied in several treatment processes,
especially desalination and ion removal. In this study, we apply an unsupervised machine-learning
strategy, the so-called principal component analysis (PCA), for the purpose of seeking discrepancies
and similarities between different ENMs. The main purpose was to investigate the influence of
membrane fabrication conditions, characteristics, and process conditions in order to seek the relevance
of the application of different electrospun nanofibrous membranes (ENMs). Membranes were majorly
classified into single polymers/layers, from one side, and dual multiple layer ENMs, from another
side. For both classes, variables related to membrane fabrication conditions were not separated from
membrane characterization variables. This reveals that membranes’ characteristics not only depend
on the chemical composition, but also on the fabrication conditions. On the other hand, the process
conditions of ENM fabrication showed an extensive effect on membranes’ performance.

Keywords: desalination; principal component analysis; electrospun nanofibrous membrane (ENM);
manufacturing conditions

1. Introduction

Membrane separation has attracted a lot of attention, being an efficient technique
to suffice the urgent need to find low-cost and environmentally-friendly alternatives
to the water treatment methods that were being studied. Membrane technology has
already provided promising and reliable salt/contaminant/ion removal and freshwater
production [1,2]. Several advantages arise from this technology, as it is considered more
selective and requires less energy consumption, smaller systems, and a lower carbon
footprint. These advantages have been highlighted by membranes and membrane
processing, which have been intensively studied and improved over the past decades
by industry professionals in water/wastewater treatment and desalination [3]. The
driving force and membrane structure are the main factors that define how membrane
processes are classified. Based on these factors, as well as the pore sizes, traditional
membrane technologies for water treatment are mostly pressure-driven. These include
microfiltration (MF), ultrafiltration, UF, nanofiltration (NF), and reverse osmosis (RO).
All of these are isothermal processes [4,5]. RO and NF are primarily used for seawater
desalination as well as ion removal from aqueous streams. The MF and UF processes
are widely used for water treatment, particulate (mostly organic) removal from surface
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waters, and wastewater treatment. These membranes have been implemented as
pretreatments for RO-based seawater desalination [1,6].

As previously mentioned, the applied membrane is a key component in all membrane
processes. The fabrication method and the material used determine the intrinsic character-
istics of the membrane. There are many methods to fabricate commercial membranes for
water treatment or desalination. These include phase-inversion, sintering, and stretching,
as well as track-etching. The most popular is the phase inversion technique using interfacial
polymerization in the presence of polymer synthesis. This technique is particularly useful
for RO and NF membranes [7]. Different membrane structures can be achieved using
each technique. Thin-film membranes with nanocomposite structures are used mainly in
commercial water desalination. They can be prepared using combined phase conversion
and interfacial polymerization technologies [8]. Conventional interfacial polymerization re-
mains the most popular method to make thin-film RO and NF membranes. New interfacial
polymerization methods are being developed at the laboratory scale. They can be used to
solve common problems, such as the trade-off between water permeability, solute rejection,
controlled surface roughness, and large amounts of solvent usage. It is also difficult to
embed nanomaterials in the selective layer [9].

It is important to note that membranes must be used with the highest level of selec-
tivity and permeability due to the increasing complexity and quantity of contaminants
in water resources. This has created a new demand for novel and innovative fabrication
techniques. Electrospun nanofibrous membranes (ENMs) have been the focus of intensive
research in water treatment and desalination [10,11]. Comparable to conventional fabri-
cation techniques that were thoroughly tabulated in the literature [12], ENMs consist of
randomly overlapping fibers ranging from several micrometers. A viscoelastic solution of a
polymer solution is required to form one nanofiber in the electrospinning method. Uniaxial
stretching occurs under a high-voltage field. These ENMs are distinguished by their unique
characteristics, such as a high surface-to volume ratio, high porosity, and interconnected
pores with 3-D structures. These properties are due to a unique architecture made from
randomly collected nanofibers. ENMs are widely considered a viable alternative to con-
ventional medical equipment in a variety of applications, such as healthcare, medical stuff,
food packaging, and environmental issues. ENMs are considered a promising candidate
for membrane technology [13].

In the 1990s, electrospinning technology was introduced. The process and its
applications have seen significant improvements in the past few years. Figure 1 shows
a typical schematic of an electrospinning system. It can be divided into four parts:
an injection system for polymer solution, a spinneret supply, a grounded conductive
collector, and a high-voltage supply. A liquid jet (polymer-dope solution) is required
to lengthen a single fiber within the range of a few micrometers. Three general stages
of nanofiber formation can be distinguished: (1) the appearance of jetting and its
development (i.e., formation of Taylor’s cone); (2) bending with wavy motion (spiraling
path and looping path); and (3) random collection of nanofibers [4,14]. The formation of
Taylor’s cone is strongly affected both by the solution injection rate and the DC voltage
between spinneret/collector. A DC electrical potential difference must be created
between the spinneret tip (where Taylor’s cone was formed from the dope solution)
and the collector (Figure 1B). The critical voltage for nanofiber generation strongly
influences the solution’s surface tension, spinneret geometry, and spinning distance (a
distance from the spinneret tip to the collector) [15,16]. The solution jet travels straight
up the collector surface after initiating electrospinning. It then spirals and loops
towards the collector surface. The applied voltage and solution conductivity are all
factors that affect the jet’s movement in this area. It is, however, inversely proportional
to the current passing through the jet and the density of the polymer solution. This
step results in the solidification and evaporation of the solvent. The collector can then
be used to form nanofibers and deposit them randomly. The final morphology and
geometry of nanofibers will depend on the design of the collector [12,17–21].
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Figure 1. (A) Electrospinning process’ elementary principles, the main counterparts of a conventional setup, and influencing
parameters and forces; Coulombic repulsion force, surface tension, and viscoelastic force represent the forces acting on the
solution jet. (B) Different kinds of spinnerets involved in electrospinning for ENM fabrication. (C) Types of collectors for
providing different nanofiber orientations and arrangements (a: flat plate, b: rotary drum, c: rotary drum with wrapped
copper wire, d: rotary wire drum, e: water bath, f: rotating disk, g: parallel rings, h: static blade electrodes, i: counter
electrode collector, and j: long parallel electrodes) (from Sanaeepour et al. [22]).

The above discussion shows that electrospinning presents an excellent and promising
technology for fabricating highly efficient membranes. It can be used as an individual
membrane or as a selective layer with unique features for desalination and ion removal from
a water medium. After overseeing the principles of electrospinning, it can be noticed that
different operating conditions can have an impact on the morphology and appearance of
the nanofibers. These parameters can be divided into three groups: membrane fabrication,
characterization, and performance [10]. These factors will be the heart of our discussion
in this study. Tables S1 and S2 present a set of published results on single and multiple
layer/polymer ENMs for water treatment (desalination and ion removal), respectively
(summarized by Sanaeepour et al. [22]). Understanding the interaction between operating
parameters and membrane characteristics and features is considered tedious and time
consuming [23]. In order to simplify this, a sophisticated data mining technique can be
adopted, such as principal component analysis (PCA). In this study, PCA has been applied
to Tables S1 and S2, separately, to investigate the influence of membrane fabrication
conditions, characteristics, and process conditions, and in order to seek the relevance of the
application of different electrospun nanofibrous membranes (ENMs).

2. Principal Component Analysis

PCA represents a method of analyzing relationships among variables within a system
if all the important variables are known. It is classified as an unsupervised machine-learning
method in the sense that no previous knowledge or output is anticipated by the user [24].
It groups the operating variables to determine their main influencing variables [24–27].
PCA can be used to identify the main variables and their effect on the target population
of the dataset. Karl Pearson introduced PCA in 1901 [28,29]. It is also known as the
discrete Karhunen Loeve transform (KLT). The PCA technique is used to reduce the
problem’s dimensionality by making a large number of input variables smaller. These
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are called principal components (PCs). The accuracy of the problem can be affected by
reducing the number of variables. There is, therefore, a compromise between simplicity
and accuracy. The PCA approach has a primary goal to simplify the problem and preserve
as much accuracy as possible. It reduces the number of variables, but retains most of
the information from the input features. PCA is a statistical process that transforms the
potentially correlated input features into uncorrelated variables. PCA reduces the problem’s
dimensionality by projecting the observation data orthogonally onto the lower-dimensional
subspace PCs. This allows for a lower-dimensional problem and preserves accuracy.

In the desalination process, PCA was used to investigate the effect of transmembrane
pressure (TMP) on fouling during the ultrafiltration process (UF) [24,30], as the effects of
water characteristics on the efficiency of filtration were studied in reverse osmosis (RO).
A process prediction model was then developed using an artificial network [30]. The
following provides a detailed description of the PCA methodology adopted in this study.
The ith PC matrix (Fi) is expressed using a unit-weighting vector (Zi) and the original
data matrix Y with p × n dimensions. (p: number variables, n: number of datasets) as
follows [24]:

Fi = ZT
i Y = ∑j=0zijyj (1)

where z is the loading coefficient and y is the data vector of size n. The variance matrix
Y(Var(Y)), is obtained by projecting Y to Z and should be maximized, as follows:

Var(Y) =
1
n
(ZY)(ZY)T =

1
n

ZYYTZ (2)

MaxVar(Y) = Max
((

1
n

)
ZYYTZ

)
(3)

Since 1
n YYT is the same as the covariance matrix of Y(cov(Y)), Var(Y) can be expressed,

as follows:
Var (Y) = ZTcov (Y) Z (4)

The Lagrangian function can be defined by performing the Lagrange multiplier
method, as follows:

L = ZTcov(Y)Z − δ
(

ZTZ − 1
)

(5)

The term “ZTZ−1” is considered to be 0 in Equation (5), since the weighting vector
is a unit vector. Hence, the maximum value of var(Y) can be calculated by equating the
derivative of the Lagrangian function (L) with respect to Z, as follows:

dL
dZ

= 0 (6)

cov(Y)Z − δZ = (cov(Y)− δI)Z = 0 (7)

where “Z” is the eigenvector of “cov(Y)” and δ is the eigenvalue of “cov(Y)”. The percent of
the variance explained can be yielded using the eigenvalue ratio of the ith PC in respect
to the overall dataset; this proportion indicates the extent to which the PC(s) cover of the
total variance of the investigated dataset. Reduction in the dimensions of the variables is
achieved through PCA by identifying the number of PCs less than p, which represents the
dataset through the explained variance.

The data of each of the investigated variables has a different weight. In order to
calibrate the variables’ influence on the dataset, a standardization technique is required,
and “Yst“ is identified as follows:

Yst =
(Value − Mean)

Standard Deviation

After data standardization, PCA results were obtained using XLSTAT 2014 software,
following the strategy adopted by Younes et al. [31–34]. Some data in Tables S1 and S2 were
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not discussed. In these cases, the missing data were estimated using a built-in function that
replaces the missing value with the mean of each factor investigated.

3. Results and Discussion

Figure 2 shows the PCA bi-plot for the published results on single polymer/layer
ENMs for desalination and ion removal, shown in Table S1. Hence, the variables taken
into account can be sub-divided into two main parts: membrane fabrication conditions
and membrane characteristics and properties (Table S1). PCA accounted for 46.59% of the
total variance. For the factors, V, Qd, T-to-C, dp, and δ exhibited the highest contribution
along PC1, accounting for 87% of its weight. As for PC2, LEP exhibited the highest
contribution, accounting for 17% of its weight. Pore size (dp; µm) and thickness (δ; µm)
exhibited a positive influence on PC1 and a slightly negative influence, following PC2.
The tip-to-collector distance (T-to-C), dope injection rate (Qd), needle (spinneret) diameter
(N), and water contact angle (WCA) showed a negative influence on both PCs. Liquid
entry pressure (LEP) and high voltage (V) presented a high positive and a slight negative
influence, following PC2 and PC1, respectively. Interestingly, the variables related to
membrane fabrication were not separated from membrane characterization variables. This
reveals a high indication that the membrane characteristic does not only depend on the
membrane chemical composition, but also on the fabrication conditions. The latter therefore
requires attention, for the sake of enhancing membrane efficiency.

Figure 2. PCA for the results of single layer/polymer ENMs (by Sanaeepur et al. [22]; see Table S1). Grey bullets represent
the 23 investigated membranes; Red bullets represent the involved variables (V: high voltage (kV), LEP: liquid entry pressure
(kPa), WCA: water contact angle (o), ε: porosity (%), dp: pore diameter (µm), δ: thickness (µm), N: needle (spinneret; mm),
T-to-C: tip-to-collector distance (cm), Qd: dope injection rate (mL·h−1)).

For the variables, four different clusters can be distinguished with respect to the
disparity that variables hold, following their fabrication methods and characteristics. Vari-
ables of cluster 1 exhibited a high positive correlation with dp and δ. This indicates that
the major factors influencing membranes composing cluster 1 are the size and textural
conditions. In other words, the physical and textural properties of these membranes should
be taken into consideration carefully for the sake of seeking their highest efficiency. In-
terestingly, the common features that can be noticed between the membranes of cluster 1
are the PVDF-based P-layer and acetone added to the S-layer. For cluster 2, its variables
exhibited a high positive correlation with V and LEP. It is noteworthy that membranes of
this cluster do not share any doping feature, either from the S- or P-layers. This probably
highlights some influence of the voltage implemented in the membrane’s fabrication on
the membrane’s permeability. The latter is counted as the main factor influencing LEP. For
cluster 3, its variables showed a high correlation with T-to-C, N, WCA, and Q. Nonetheless,
no explanation can be given in regard to the proximity noticed for membranes composing
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cluster 3 (membranes 1, 2, and 3). The only common feature is DMF being a part of or
exclusively forming the S-layer. Nonetheless, this feature is shared with other membranes
that are not part of cluster 3. Cluster 4 compiles the largest number of membranes, and
it is well correlated with the porosity ε. It is worth mentioning that cluster 4 membranes
are more likely positioned around the node between PC1 and PC2. This indicates a minor
influence of these membranes on the multi-dimensional analysis adopted. For that purpose,
it is valid to exclude membranes of cluster 4 in order to seek better intercorrelation between
different factors, and therefore enhance discrepancy and similarity sight of the investigated
membranes (other than cluster 4 membranes).

Figure 3 shows the PCA bi-plot for the dataset shown in Table S1, after discarding
membranes that are mostly influenced by porosity (most of the membranes of cluster 4,
in Figure 2). PCA accounted for a slightly higher variance, showing 49.91% (Figure 3)
rather than 46.58% (Figure 2). This ensures a 3% higher reliability of the dataset treated in
PCA of Figure 2. For the factors Qd, T-to-C, dp, and N exhibited the highest contribution
along PC1, accounting for nearly 80% of its weight. As for PC2, LEP, and V exhibited
the highest contribution, accounting for 70% of its weight. Even though factors revealed
similar intercorrelations as the ones yielded in Figure 2, different behavior was observed
along the first two PCs. Accordingly, LEP and V exhibited no influence on PC1, along its
major positive influence, along PC2, and as highlighted in the first findings. For the other
factors, their PCs’ influence was nearly inverted, as dp and δ showed a negative influence
along both PCs. Qd, N, and T-to-C exhibited a positive influence on PC1, with a negative
influence on PC2. Interestingly, WCA was discarded from the latter factor group and
showed proximity to ε. For the variables, and similar to the first PCA findings (Figure 2),
four different clusters have been implemented. Even though both PCAs showed the same
clustering capacity, the distribution along clusters has been drastically modified. Both
PCAs of the dataset, shown in Table S1, exhibited approximately the same variance along
the first two PCs. The major contributors were Qd and T-to-C. Therefore, for the inves-
tigated membranes, special care should be taken for these two factors when developing
a membrane and choosing the proper doping strategy. Once the membranes of cluster 4
(Figure 3) were discarded, it can be noticed that membranes were even more influenced by
the electrospinning process parameters.

Figure 3. PCA for the results of single layer/polymer ENMs, after discarding membranes that are mostly influenced by
porosity (by Sanaeepur et al. [22]; see Table S1). Grey bullets represent the 23 investigated membranes; Red bullets represent
the involved variables (V: high voltage (kV), LEP: liquid entry pressure (kPa), WCA: water contact angle (o), ε: porosity
(%), dp: pore diameter (µm), δ: thickness (µm), N: needle (spinneret; mm), T-to-C: tip-to-collector distance (cm), Qd: dope
injection rate (mL·h−1)).

Figure 4 shows the PCA bi-plot for the published results on dual- and triple-layer
ENMs for desalination and ion removal, shown in Table S2. The variables taken into
account can be sub-divided into three main parts: membrane fabrication conditions, mem-
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brane characteristics, and performance. PCA accounted for 47.21% of the total variance. For
the factors, Qd, T-to-C, and Fd exhibited the highest contribution along PC1, accounting
for nearly 65% of its weight. As for PC2, LEP, dp, WCA, and V exhibited the highest contri-
bution, accounting for 67% of its weight. WCA, dp, ε, HV, and N showed a high positive
influence along PC2 and a relatively negative influence along PC1. This indicates that a
membrane’s fabrication condition, V and N, are most likely influenced by the correlated
membrane characteristics previously mentioned. LEP, δ, T-to-C, and Qd exhibited a high
positive influence along PC1, with a minor fluctuating positive/negative influence, along
PC2. Interestingly, Fd showed a low correlation with other factors and was negatively
influenced by both PCs.

Figure 4. PCA for the results of dual and triple layer/polymer ENMs (by Sanaeepur et al. [22]; see Table S2). Grey bullets
represent the 23 investigated membranes; Red bullets represent the involved variables (V: high voltage (kV), LEP: liquid
entry pressure (kPa), WCA: water contact angle (o), ε: porosity (%), dp: pore diameter (µm), δ: thickness (µm), N: needle
(spinneret; mm), T-to-C: tip-to-collector distance (cm), Qd: dope injection rate (mL·h−1), Fd: fiber diameter (nm)).

For the variables, three different clusters can be distinguished, in respect to the dis-
crepancy that membranes hold, following their fabrication methods, characteristics, and
performance. Variables of cluster 1 exhibited a high positive correlation with Dp, V, WCA,
N, and ε. Interestingly, all of the membranes of this cluster (3, 5, 6, 7, 9, 12) have PVDF
moieties in their composed layers, either on the top, middle, and/or the support. The
variables of cluster 2 showed a high positive correlation with LEP, δ, T-to-C, and Qd. In-
terestingly, membranes 2 and 4 share the fact that HIPS moieties are present in the top
layer (22–25 wt%; Table), and DMF was exclusively found in the membranes of cluster 2
(membranes 1, 2, and 4; Table). This probably reflects a certain relevance of employing HIPS
and DMF on the positively correlated factors of cluster 2. Variables of cluster 3 showed a
relatively lower positive correlation with Fd, compared to the correlation of populations
of clusters 1 and 2, in respect to their allocated variables. This can be noticed by a higher
distance between Fd and cluster 3 membranes than the distance noticed between cluster 1
and 3 variables, from one side, and their respective factors, from another side. Similarly, to
single-layered membranes, the dual and multiple membranes exhibited more influence on
the process parameters, rather than the influence of the intrinsic properties of the solution.

4. Conclusions

In this study, we have attempted to investigate the influence of membrane fabrication
conditions, characteristics, and process conditions in order to seek the relevance of the
application of different electrospun nanofibrous membranes (ENMs). Membranes were
majorly classified into single polymers/layers, from one side, and dual multiple layer
ENMs, from another side. For both classes, variables related to membrane fabrication
conditions were not separated from membrane characterization variables. This reveals that
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membranes’ characteristics not only depend on the chemical composition, but also on the
fabrication conditions.

For single-layered ENMs, PCA findings have shown a relationship between P-layer-
based PVDFY and acetone added to the S-layer on the textural properties of membranes.
Other trends showed a high correlation of some membranes, which are totally indepen-
dent, on the chemical composition scale. This probably showed the high influence of
the fabrication conditions on the membrane’s physical properties (case of the correlation
between V and LEP). Quite a few membranes exhibited a near position around the node
between PC1 and PC2. Once discarded, PCA findings (Figure 3) showed almost nearly
inverted results, with a slightly higher variance (3%). This indicates that, even though PCA
is an unsupervised machine learning tool, one should be attentive regarding the quality of
data to be employed. Additionally, PCA findings and data trends strongly depend on the
quality of the input data.

For the dual- and triple-layered ENMs, PCA findings have shown that PVDF moieties
probably present an effect on Dp, WCA, and ε, from the physical properties side, in addition
to N and V, from the membrane’s fabrication side. It also showed a certain relevance of
employing HIPS and DMF on LEP, and δ, from the physical properties side, in addition to
T-to-C and Qd, from the membrane fabrication strategy side.

In brief, PCA of single-layered ENMs showed high similarities between membranes
that present membranes that presented lesser similarities at the chemical composition. This
indicates that membrane fabrication conditions have an extensive effect on membrane
performance. Although dual- and multiple-layered ENMs showed similar trends to single-
layered ENMs, more effects of the matrix chemical composition on their physical properties
have been noticed. For both types of membranes, the ENM fabrication showed an extensive
effect on performance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/membranes11120979/s1, Table S1: Published results on single polymer/layer ENMs for de-
salination and ion removal (from Sanaeepur et al. [22]), Table S2: Published results on dual and triple
layer ENMs for desalination and ion removal (membrane characterization; from Sanaeepur et al. [22]),
Table S3: Published results on dual and triple layer ENMs for desalination and ion removal (mem-
brane fabrication; from Sanaeepur et al. [22]), Table S4: Published results on dual and triple layer
ENMs for desalination and ion removal (membrane performance; from Sanaeepur et al. [22])

Author Contributions: Project administration, conceptualization, data curation, methodology,
writing—original draft, K.Y. Writing—review and editing, O.M., H.C., A.M., E.O., R.R. and N.M. All
authors have read and agreed to the published version of the manuscript. Please turn to the CRediT
taxonomy for the term explanation.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kurihara, M. Sustainable Seawater Reverse Osmosis Desalination as Green Desalination in the 21st Century. J. Membr. Sci. Res.

2020, 6, 20–29.
2. Rahmah, W.; Wardani, A.K.; Lugito, G.; Wenten, I. Membrane Technology in Deep Seawater Exploration: A Mini Review.

J. Membr. Sci. Res. 2019, 6, 280–294.
3. Amin, M.A.M.; Goh, P.S.; Ismail, A.F. Effect of Organoclay on the Performance of Reverse Osmosis Membrane. J. Membr. Sci. Res.

2020, 6, 13–19.
4. Cui, J.; Li, F.; Wang, Y.; Zhang, Q.; Ma, W.; Huang, C. Electrospun nanofiber membranes for wastewater treatment applications.

Sep. Purif. Technol. 2020, 250, 117116. [CrossRef]
5. Pendergast, M.M.; Hoek, E.M. A Review of Water Treatment Membrane Nanotechnologies. Energy Environ. Sci. 2011, 4,

1946–1971. [CrossRef]
6. Drioli, E.; Albeirutty, M.; Bamaga, O.A.; Figoli, A. Desalination Research and Development in Saudi Arabia: Experience of the

Center of Excellence in Desalination Technology at King Abdulaziz University. J. Membr. Sci. Res. 2019, 5, 76–82.

https://www.mdpi.com/article/10.3390/membranes11120979/s1
https://www.mdpi.com/article/10.3390/membranes11120979/s1
http://doi.org/10.1016/j.seppur.2020.117116
http://doi.org/10.1039/c0ee00541j


Membranes 2021, 11, 979 9 of 9

7. Guillen, G.R.; Pan, Y.; Li, M.; Hoek, E.M.V. Preparation and Characterization of Membranes Formed by Nonsolvent Induced
Phase Separation: A Review. Ind. Eng. Chem. Res. 2011, 50, 3798–3817. [CrossRef]

8. Lu, X.; Elimelech, M. Fabrication of desalination membranes by interfacial polymerization: History, current efforts, and future
directions. Chem. Soc. Rev. 2021, 50, 6290–6307. [CrossRef]

9. Seah, M.Q.; Lau, W.J.; Goh, P.S.; Tseng, H.-H.; Wahab, R.A.; Ismail, A.F. Progress of Interfacial Polymerization Techniques for
Polyamide Thin Film (Nano)Composite Membrane Fabrication: A Comprehensive Review. Polymers 2020, 12, 2817. [CrossRef]

10. Ramakrishna, S.; Shirazi, M.M.A. Electrospun Membranes: Next Generation Membranes for Desalination and Water/Wastewater
Treatment. J. Membr. Sci. Res. 2015, 1, 46–47.

11. Tabe, S. A Review of Electrospun Nanofber Membranes. J. Membr. Sci. Res. 2017, 3, 228–239.
12. Liao, Y.; Loh, C.-H.; Tian, M.; Wang, R.; Fane, A.G. Progress in electrospun polymeric nanofibrous membranes for water treatment:

Fabrication, modification and applications. Prog. Polym. Sci. 2018, 77, 69–94. [CrossRef]
13. Chen, H.; Huang, M.; Liu, Y.; Meng, L.; Ma, M. Functionalized electrospun nanofiber membranes for water treatment: A review.

Sci. Total Environ. 2020, 739, 139944. [CrossRef] [PubMed]
14. Abdelrasoul, A. Advances in Membrane Technologies; University of Saskatchewan: Saskatoon, SK, Canada, 2020.
15. Subrahmanya, T.M.; Bin Arshad, A.; Lin, P.T.; Widakdo, J.; Makari, H.K.; Austria, H.F.M.; Hu, C.-C.; Lai, J.-Y.; Hung, W.-S. A

review of recent progress in polymeric electrospun nanofiber membranes in addressing safe water global issues. RSC Adv. 2021,
11, 9638–9663. [CrossRef]

16. Ismail, A.F.; Hilal, N.; Jaafar, J.; Wright, C. Nanofiber Membranes for Medical, Environmental, and Energy Applications; CRC Press:
Boca Raton, FL, USA, 2019.

17. Persano, L.; Camposeo, A.; Tekmen, C.; Pisignano, D. Industrial Upscaling of Electrospinning and Applications of Polymer
Nanofibers: A Review. Macromol. Mater. Eng. 2013, 298, 504–520. [CrossRef]

18. Vass, P.; Szabó, E.; Domokos, A.; Hirsch, E.; Galata, D.; Farkas, B.; Démuth, B.; Andersen, S.K.; Vigh, T.; Verreck, G.; et al. Scale-up
of electrospinning technology: Applications in the pharmaceutical industry. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020,
12, e1611. [CrossRef] [PubMed]

19. Tijing, L.D.; Choi, J.S.; Lee, S.; Kim, S.H.; Shon, H.K. Recent progress of membrane distillation using electrospun nanofibrous
membrane. J. Membr. Sci. 2014, 453, 435–462. [CrossRef]

20. Nasir, A.M.; Awang, N.; Jaafar, J.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A.; Aziz, F.; Yajid, M.A.M. Recent progress on
fabrication and application of electrospun nanofibrous photocatalytic membranes for wastewater treatment: A review. J. Water
Process. Eng. 2021, 40, 101878. [CrossRef]

21. Madalosso, H.B.; Machado, R.; Hotza, D.; Marangoni, C. Membrane Surface Modification by Electrospinning, Coating, and
Plasma for Membrane Distillation Applications: A State-of-the-Art Review. Adv. Eng. Mater. 2021, 71, 290. [CrossRef]

22. Sanaeepur, H.; Amooghin, A.E.; Shirazi, M.M.A.; Pishnamazi, M.; Shirazian, S. Water desalination and ion removal using mixed
matrix electrospun nanofibrous membranes: A critical review. Desalination 2021, 521, 115350. [CrossRef]

23. Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev.
2019, 119, 5298–5415. [CrossRef]

24. Kim, M.-K.; Chang, J.W.; Park, K.; Yang, D.R. Comprehensive assessment of the effects of operating conditions on membrane intrin-
sic parameters of forward osmosis (FO) based on principal component analysis (PCA). J. Membr. Sci. 2022, 641, 119909. [CrossRef]

25. Ringnér, M. What Is Principal Component Analysis? Nat. Biotechnol. 2008, 26, 303–304. [CrossRef]
26. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng.

Sci. 2016, 374, 20150202. [CrossRef] [PubMed]
27. Lever, J.; Krzywinski, M.; Altman, N. Points of Significance: Principal Component Analysis. Nat. Methods 2017, 14,

641–643. [CrossRef]
28. Joliffe, I.T.; Morgan, B. Principal component analysis and exploratory factor analysis. Stat. Methods Med Res. 1992, 1,

69–95. [CrossRef]
29. Jolliffe, I.T. Principal Component Analysis; Springer Series in Statistics; Springer: New York, NY, USA, 2002; p. 29.
30. Alver, A.; Kazan, Z. Prediction of full-scale filtration plant performance using artificial neural networks based on principal

component analysis. Sep. Purif. Technol. 2020, 230, 115868. [CrossRef]
31. Younes, K.; Grasset, L. The application of DFRC method for the analysis of carbohydrates in a peat bog: Validation and comparison

with conventional chemical and thermochemical degradation techniques. Chem. Geol. 2020, 545, 119644. [CrossRef]
32. Younes, K.; Grasset, L. Comparison of thermochemolysis and classical chemical degradation and extraction methods for the

analysis of carbohydrates, lignin and lipids in a peat bog. J. Anal. Appl. Pyrolysis 2018, 134, 61–72. [CrossRef]
33. Younes, K.; Grasset, L. Analysis of molecular proxies of a peat core by thermally assisted hydrolysis and methylation-gas

chromatography combined with multivariate analysis. J. Anal. Appl. Pyrolysis 2017, 124, 726–732. [CrossRef]
34. Korichi, W.; Ibrahimi, M.; Loqman, S.; Ouhdouch, Y.; Younes, K.; Lemée, L. Assessment of actinobacteria use in the elimination of

multidrug-resistant bacteria of Ibn Tofail hospital wastewater (Marrakesh, Morocco): A chemometric data analysis approach.
Environ. Sci. Pollut. Res. 2021, 28, 26840–26848. [CrossRef] [PubMed]

http://doi.org/10.1021/ie101928r
http://doi.org/10.1039/D0CS00502A
http://doi.org/10.3390/polym12122817
http://doi.org/10.1016/j.progpolymsci.2017.10.003
http://doi.org/10.1016/j.scitotenv.2020.139944
http://www.ncbi.nlm.nih.gov/pubmed/32535464
http://doi.org/10.1039/d1ra00060h
http://doi.org/10.1002/mame.201200290
http://doi.org/10.1002/wnan.1611
http://www.ncbi.nlm.nih.gov/pubmed/31863572
http://doi.org/10.1016/j.memsci.2013.11.022
http://doi.org/10.1016/j.jwpe.2020.101878
http://doi.org/10.1002/adem.202001456
http://doi.org/10.1016/j.desal.2021.115350
http://doi.org/10.1021/acs.chemrev.8b00593
http://doi.org/10.1016/j.memsci.2021.119909
http://doi.org/10.1038/nbt0308-303
http://doi.org/10.1098/rsta.2015.0202
http://www.ncbi.nlm.nih.gov/pubmed/26953178
http://doi.org/10.1038/nmeth.4346
http://doi.org/10.1177/096228029200100105
http://doi.org/10.1016/j.seppur.2019.115868
http://doi.org/10.1016/j.chemgeo.2020.119644
http://doi.org/10.1016/j.jaap.2018.05.011
http://doi.org/10.1016/j.jaap.2016.11.014
http://doi.org/10.1007/s11356-021-12445-4
http://www.ncbi.nlm.nih.gov/pubmed/33501577

	Introduction 
	Principal Component Analysis 
	Results and Discussion 
	Conclusions 
	References

