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Abstract: Cross-flow membrane ultrafiltration (UF) is used for the enrichment and purification of
small colloidal particles and proteins. We explore the influence of different membrane geometries
on the particle transport in, and the efficiency of, inside-out cross-flow UF. For this purpose, we
generalize the accurate and numerically efficient modified boundary layer approximation (mBLA)
method, developed in recent work by us for a hollow cylindrical membrane, to parallel flat sheet
geometries with one or two solvent-permeable membrane sheets. Considering a reference dispersion
of Brownian hard spheres where accurate expressions for its transport properties are available,
the generalized mBLA method is used to analyze how particle transport and global UF process
indicators are affected by varying operating parameters and the membrane geometry. We show
that global process indicators including the mean permeate flux, the solvent recovery indicator,
and the concentration factor are strongly dependent on the membrane geometry. A key finding is
that irrespective of the many input parameters characterizing an UF experiment and its membrane
geometry, the process indicators are determined by three independent dimensionless variables only.
This finding can be very useful in the design, optimization, and scale-up of UF processes.

Keywords: ultrafiltration; cross-flow filtration; concentration-polarization; membrane geometry;
hollow fiber; tubular membrane; flat sheet membrane; plate-and-frame

1. Introduction

Membrane ultrafiltration (UF) is used in daily life, e.g., in water purification, blood
treatment by (artificial) kidneys, and protein enrichment [1–3]. It is the pressure-driven
membrane filtration of smaller, sub-micron sized particles dispersed in a low-molecular
solvent (mostly water) under conditions of larger trans-membrane pressure (TMP) values.
Owing to strong Brownian motion of the particles, the dispersion remains practically in
thermodynamic equilibrium during UF, and there is a significant osmotic pressure buildup
along the membrane surface. This distinguishes UF from microfiltration of larger, typically
micron-sized particles where Brownian motion and (equilibrium) osmotic pressure effects
are negligible. Instead, non-equilibrium micro-hydrodynamic effects including shear-
induced collective diffusion are of importance in microfiltration.

UF is often performed using a cross-flow setup, where a feed dispersion is steadily
pumped through a parallel bundle of membrane modules having inlet and outlet ports.
The particles-enriched dispersion is collected at the outlet ports. Driven by the TMP,
there is a non-homogeneous, particles-enriched diffuse layer formed near the surface of
a membrane retaining the particles. This concentration-polarization (CP) layer becomes,
in general, more pronounced with increasing distance from the inlet port. The CP layer is
determined by the balance of gradient (collective) diffusion of particles away and by the
flow advection towards the membrane surface. The enlarged dispersion viscosity inside
the CP layer further enhances polarization. The osmotic pressure buildup caused by the
CP layer counteracts the applied TMP, which in turn lowers the filtration efficiency.
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In addition to CP layer formation, there are unwarranted membrane fouling effects,
which lower the filtration efficiency. Fouling is caused by specific physico-chemical inter-
actions between particles and membranes, implying, e.g., stagnant cake layer formation,
particle adsorption at the membrane wall, or clogging of the membrane pores [3–7]. The
present work focuses on the influence of different membrane geometries on particle trans-
port and generic CP layer formation in UF. We are not dealing here with specific fouling
effects. The considered UF operating conditions are such that reversible cake layer forma-
tion due to crystallization or jamming is avoided.

Among the different membrane geometries encountered in UF setups, there are two
common ones depicted in Figure 1, which are discussed in the present work. The first one
is the standard cylindrical shape of a hollow fiber or tubular membrane having circular
cross-section, characterized by an inner membrane radius R and axial length L with R� L.
This is referred to in what follows as a cylindrical membrane (CM). The second one is a flat
sheets geometry with a rectangular cross-section of height 2R and width W, where R�W
and R � L. Here, L denotes again the axial length of the membrane. Regarding the flat
sheets geometry, we differentiate between two types of membranes. The first type consists
of two parallel flat membrane sheets of area W · L each, referred to as the FMM membrane.
The second one has a top membrane sheet and a non-permeable bottom sheet referred to as
the substrate sheet (c.f. Figure 1). We refer to this asymmetric flat sheets membrane system
as an FMS membrane system.

Cylindrical membrane (hollow fiber / tubular membrane)
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Figure 1. Considered membrane geometries: (a) cylindrical membrane of inner radius R (left), and flat sheets membranes
of height 2R and width W � R (right). (b) Cross-sectional structure of a cylindrical membrane (left, CM), a membrane
consisting of an upper and lower flat sheet part at vertical distance 2R (middle, FMM), and a flat membrane–flat substrate
combination where the bottom substrate sheet is impermeable to particles and solvent (right, FMS). The membrane thickness
is h, and L with L� R is the axial length of the membrane.

The CM membrane is distinguished from the FMM membrane by a larger cross-
sectional circumference-to-area ratio of 2/R, while this ratio was equal to 1/R in the FMM
case. For otherwise equal membrane properties, i.e., equal hydraulic permeability Lp, R,
L, and for equal TMP and mean inlet velocity, this difference in the ratio implies a larger
solvent recovery for the CM membrane. In spite of being less fouling-resistant than CM
membranes, FMM and FMS membrane systems are often used as plate-and-frame setups in
industrial applications, owing to their compact design and being less expensive. Moreover,
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flat sheet membranes can be operated at larger TMP, since they are commonly supported
mechanically by plates or rigid porous spacers on the permeate side [8–10]. The FMS
module with a transparent substrate sheet is also useful for monitoring flow behavior and
fouling [11–14].

In this work, we analyze differences and similarities in particle transport and flow
efficiency of CM, FMM, and FMS membrane systems under UF conditions. For simplicity,
we assume that the membranes are ideally particle retentive and that the particles are
mono-disperse colloidal hard spheres. For fluid-like hard-sphere dispersions, accurate
analytic expressions are available for the equilibrium gradient-diffusion coefficient and vis-
cosity, and for the osmotic pressure. To calculate steady-state flow properties and particle
concentration profiles, we use a versatile, semi-analytic modified boundary-layer approxi-
mation (mBLA) method, developed in earlier work by us for CM membranes [15], and we
generalize it to FMM and FMS geometries. It was shown in [15] that this method provides
concentration and flow profiles in excellent agreement with the according results obtained
from elaborate finite-element calculations. In the mBLA method, the flow outside the CP
boundary layer is determined basically by the, in general, hyperbolic axial pressure profile
caused by the permeate flux through the membrane, as described in [16–18]. The inner
flow solution is obtained in a similar way as in classical film theory [4,5,19,20], however
with the concentration-dependence of the dispersion properties accounted for. The mBLA
method is computationally fast, and different from computational fluid dynamics methods,
it offers analytic insight into the functional behavior of concentration and flow properties.
In this context, we note that approximate solutions for pure solvent flow in a FMM channel
are discussed in [21,22] and for dispersion flow in [23–25].

For varied operating conditions, we investigate how the CM, FMM, and FMS ge-
ometries affect the concentration, dispersion flux profiles, and global process indicators,
including the mean permeate flux and the solvent recovery indicator. The mBLA results
recover, in particular, the experimentally observed dependence of the mean permeate
flux on the logarithm of the feed concentrations [9]. A major finding of this study is the
dependence of the solvent-recovery indicator on a minimal set of only three input variables,
which applies to all considered membrane geometries.

The article is organized as follows. In Section 2, we summarize analytic expressions for
the suspension transport properties and osmotic pressure, used as input to the generalized
mBLA method. The employed cross-flow UF model and its underlying transport equations
are discussed in Section 3. Furthermore, the respective boundary conditions for the CM,
FMM, and FMS geometries are explained. Section 4 gives the essentials of the mBLA
method generalized to the FMM and FMS geometries, and it includes a discussion of its
pros and cons. Our results are presented in Section 5. Results for the CP layer profile and
particle transport for fixed TMP are discussed in Section 5.1. Global-process indicators
are analyzed in Section 5.2 for varying TMP. The minimal set of the three variables fully
characterizing the global process indicators is presented in Section 5.3 and discussed in
conjunction with Appendix A. Our conclusions are contained in Section 6.

2. Dispersion of Brownian Hard Spheres

The scope of this study is to analyze the influence of three different membrane geome-
tries on generic CP layer effects and the UF efficiency. Since we were not concerned here
with effects on UF arising from specific particle interactions, as a reference dispersion, we
employ the model of mono-disperse Brownian hard spheres whose thermodynamic and
transport properties are characterized by two parameters only, namely, the volume fraction
φ = (4π/3)na3 and the hard-core radius a. Here, n is the number density of spheres.

The flow conditions considered in this work are such that the single-particle Pèclet
number, Pea, obeys [26,27]

Pea ≡
γ̇∗a2

D0
� 1 , (1)
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where γ̇∗ is a characteristic shear rate, taken as the shear rate of the velocity field at the inner
membrane wall right at the inlet. Furthermore, D0 = kBT/(6πηsa) is the single-particle
Stokes–Einstein diffusion coefficient for stick hydrodynamic boundary conditions [26], and
ηs is the viscosity of the Newtonian solvent. For small Pea, the dispersion is only slightly
perturbed away from equilibrium (see Figure 2a), with the Brownian forces acting on the
particles dominating the viscous ones. This characterizes the UF region, marked by the
shaded area in Figure 2a. To model UF, one is allowed to use the equilibrium forms of the
transport coefficients and osmotic pressure for a quiescent dispersion, for which accurate
analytic expressions are available.
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Figure 2. (a) Single-particle shear-Pèclet number, Pea ∝ a3, as a function of particle radius a and for a shear rate γ̇∗ = 270/s
typical of UF. (b) Carnahan–Starling-based osmotic pressure at freezing, Π(φ f , a), and thermal pressure, kBT/Va, as
functions of particle radius a. Open circles indicate the radii a = 3.13 nm and a = 10 nm used in this work.

The equilibrium osmotic pressure, Π, of Brownian hard spheres can be described by
the Carnahan–Starling expression [28,29]

Π(φ, a) =
kBT
Va

φ
1 + φ + φ2 − φ3

(1− φ)3 , (2)

where Va = (4π/3)a3 is the particle volume, and φ is the particle volume fraction. This
expression holds to high accuracy up to the freezing transition volume fraction φ f ≈ 0.494.
In Figure 2b, the maximal fluid-state osmotic pressure reached at freezing, Π(φ f , a), is
plotted as a function of the particle radius a in conjunction with the thermal pressure
kBT/Va, where kB is the Boltzmann constant, and T is the dispersion temperature. Notice
that the 1/a3 dependence of both quantities implies that the osmotic pressure is strongly
reduced with increasing particle size.

To illustrate that the Carnahan–Starling expression for neutral hard spheres is a decent
description also for aqueous solutions of globular proteins near the isoelectric point; in
Figure 3, we depict osmotic pressure data by Vilker et al. [30] as a function of φ, for bovine
serum albumin solutions at three different pH values. As noted in [30], the isoelectric
pH value is about 4.72 in a 0.15 M saline solution. We determined the volume fractions
φ in Figure 3 from the protein concentration values and the equivalent spherical radius
value a = 3.13 nm given in [30]. The pressure data at pH ≈ 4.5 are located below the
Carnahan–Starling curve, suggesting that there is an attractive interaction contribution.
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Figure 3. Reduced osmotic pressure, Π/(nkBT), as a function of particle volume fraction φ. The
solid line is the Carnahan–Starling prediction for hard spheres, compared to experimental data (open
symbols) for bovine serum albumin solutions at different pH values as indicated. Experimental data
are reproduced from [30]. Dashed lines are empirical fits to the data.

The gradient diffusion coefficient, D, i.e., the long-time collective diffusion coefficient,
is only slightly smaller than the associated short-time collective diffusion coefficient. Hence,
we can approximate D to good accuracy by its short-time form equal to the right-hand-side
of [27,29,31]

D(φ) ≈ D0
Ksed(φ)

S(φ)
, (3)

where Ksed is the short-time sedimentation coefficient, D0 is the single-particle diffusion
coefficient, and S(φ) is the osmotic compressibility factor. For the sedimentation coefficient
of Brownian hard spheres, we use the analytic expression [31]

Ksed(φ) = 1− 6.5464 φ
[
1− 3.348φ + 7.426φ2 − 10.034φ3 + 5.882φ4

]
. (4)

As shown in Figure 4a, this expression is in excellent agreement with according dynamic
simulation data where many-particles hydrodynamic interactions are accounted for. For
the inverse of the osmotic compressibility factor,S(φ), the accurate Carnahan–Starling-type
expression 1/S(φ) =

[
(1 + 2φ)2 + φ3(φ− 4)

]
/(1− φ)4 is used [29]. Figure 4b displays

the according (short-time) gradient diffusion coefficient, which grows monotonically with
increasing particle volume fraction. The gradient diffusion coefficient, D(φ), should not be
confused with the self-diffusion coefficient, DS(φ). In fact, the latter coefficient decreases
with increasing concentration below its infinite dilution value, D0, both for attractive and
repulsive interactions.
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Figure 4. (a) Concentration dependence of the short-time sedimentation coefficient Ksed(φ). Solid line is the prediction by
Equation (4), and open symbols are dynamic simulation data by three groups as indicated [32–34]. (b) Short-time collective
diffusion coefficient, D(φ), according to Equation (3) (solid line), given in units of D0. (c) Dispersion shear viscosity, η(φ),
in units of the solvent viscosity ηs. Solid line is the prediction by Equations (5)–(7). Open symbols are dynamic simulation
and filled symbols experimental viscosity data reproduced from Refs. [35,36] and Refs. [33,37], respectively.

The dispersion shear viscosity, η, with [27]

η(φ) = η∞(φ) + ∆η(φ) , (5)

is the sum of a high-frequency (short-time) viscosity part, η∞, and a shear relaxation
viscosity part, ∆η. The latter viscosity contribution accounts for the non-instantaneous,
visco-elastic response of the dispersion microstructure to the locally generated shear flow.
For Brownian hard spheres at low Pea, the two viscosity contributions are approximated,
to good accuracy up to the freezing volume fraction, by [31]

η∞(φ)/ηs = 1 +
5
2

φ
1 + Ŝ(φ)

1− φ(1 + Ŝ(φ))
(6)

∆η(φ)/ηs =
D0

Ds(φ)

12φ2(1− 7.085φ + 20.182φ2)

5(1− φ/0.64)
, (7)

with the Saito-type function Ŝ(φ) = φ
(
1 + 0.95φ− 2.15φ2). Here, Ds(φ)/D0 = 1 −

1.8315φ
(
1 + 0.12φ− 0.70φ2) is a good analytic approximation for the short-time self-

diffusion coefficient of Brownian hard spheres. Up to a factor of six, Ds(φ) quantifies the ini-
tial slope of the mean squared displacement of hydrodynamically interacting particles. In
Figure 4c, the concentration-dependent viscosity expression according to Equations (5)–(7)
is depicted with simulation and experimental data. There is good agreement in the fluid-
phase regime of the dispersion.

For cross-flow operating conditions compatible with the considered channel geome-
tries, there is dispersion flow without swirling. The dispersion-averaged velocity field, V,
is accordingly of the form

V(y, z) = v(y, z) ŷ + u(y, z) ẑ , (8)

where ẑ is the unit vector in axial direction. For the CM channel, ŷ is the radial unit
vector pointing from the inner axis to the cylindrical membrane wall, whereas for the FMM
and FMS channels, ŷ is the unit vector in the transversal direction, perpendicular to the
parallel sheets (c.f. Figure 1). Furthermore, v(y, z) is the transversal, and u(y, z) is the axial
velocity component.

The membrane is assumed to be fully particle retentive to the Brownian spheres.
Tangential stick fluid boundary conditions are used at the inner membrane wall(s), since, in
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UF, the axial (i.e., z direction) solvent flow velocity inside a membrane is distinctly smaller
than the axial dispersion flow velocity inside the lumen.

3. Modeling Concentration-Polarization in Ultrafiltration

Consider a dispersion of mono-disperse Brownian spheres steadily pumped through
a CM, FMM, or FMS conduit as illustrated in Figure 1. We describe the dispersion flow on
a coarse-grained level where the particle size and the porous structure of the membrane
remain unresolved. The mass and momentum transport in UF are then described by
macroscopic continuum mechanics equations governing the spatio-temporal evolution of
the dispersion-averaged volume concentration field φ(r, t) of particles at position r and
time t, and the dispersion-averaged velocity field V(r, t).

For conditions met in UF where the single-particle Reynolds number is small com-
pared to one, the dispersion-averaged incompressible laminar flow is described by the
quasi-stationary effective Stokes equation [26,27],

∇P = η(φ)∆V +
dη

dφ
∇φ ·

[
∇V + (∇V)T

]
(9)

∇ ·V = 0 , (10)

in conjunction with the incompressibility constraint, ∇ ·V = 0, for the dispersion velocity
field V. The dispersion-averaged pressure field, P(r) = Π(r) + p f (r), is the sum of the
equilibrium particle osmotic pressure, Π, and a fluid-phase pressure contribution, p f ,
adjusting itself such that incompressibility is fulfilled. There is a contribution to the Stokes
equation proportional to dη/dφ, operative in the inhomogeneous CP layer region.

The dispersion-averaged, stationary local particle flux, J(r), with

J = φV− D(φ)∇φ (11)

has an advection contribution, φ(r)V(r), and a diffusion contribution, −D(φ(r))∇φ(r),
respectively, with the latter quantified by the gradient diffusion coefficient D(φ) introduced
in Equation (3). Substituting this flux into the macroscopic continuity equation expressing
mass conservation leads to the steady-state advection–diffusion equation,

V · ∇φ = ∇ · (D(φ)∇φ) , (12)

where ∂φ/∂t = 0. Since we assume fully particle-retentive membranes, it holds that
J · ŷ = 0 at the lumen side of the membranes.

As it is discussed in [15], in the membrane interior, the pressure gradient in the axial
direction is much smaller than in the transversal direction. This allows for a transversal
integration of the local Darcy equation, describing the pore-size-averaged flow inside
the membrane, across the membrane thickness h. The result of this integration is the
Darcy–Starling (boundary condition) relation [2]

vw(z) = Lp

[
∆T P(z)−Π(φw(z))

]
, (13)

for the transversal flow velocity (permeate flux), vw(z), at the inner membrane wall(s).
The permeate flux is here defined with a positive sign. In FMS geometry, vw is obviously
zero at the impermeable lower substrate wall. Here, ∆T P(z) = Pw(z) − Pperm is the
local transmembrane pressure at axial distance z from the inlet, and Pw(z) and φw(z)
are the lumen-side pressure and particle volume concentration at the membrane wall(s),
respectively. The pressure at the permeate side, Pperm, is taken as constant.
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The hydraulic permeability, Lp, of a clean membrane is given by [38,39]

Lp =





κ/
(

ηsR ln(1 + h/R)
)

(CM)

κ/
(

ηsh
)

(FMM/FMS)
, (14)

where κ is the mean Darcy permeability of the membrane [40–42], averaged over its
thickness h. Notice the logarithmic curvature correction for a cylindrical membrane (CM),
which matters since R and h are of comparable magnitude in UF [8].

The boundary conditions at the inlet and outlet ports are, for |y| ≤ R,

φ(y, z = 0) = φb

P(y, z = L) = PL (15)

and

u(y, z = 0) = u0
(

1− y2

R2

)
. (16)

Here, φb is the feed concentration of particles at the inlet, and PL is the pressure given at the
outlet. The velocity field at the inlet port (where z = 0) is taken here as a fully developed
parabolic flow in axial direction, so that v(y, z = 0) = 0. Furthermore, u0 = u(y = 0, z = 0)
is the axial velocity at the inlet center.

The present UF model is specified by the input (operating) parameters {φb, u0, PL,
Pperm}. The pressure at the outlet is fixed to PL = 1 atm, i.e., it is taken as the atmo-
spheric pressure. In the results presented in Section 5, the values of these parameters are
selected such that there is no unwarranted axial flow exhaustion or permeate flow reversal.
Conditions for the absence of these phenomena are discussed in [15].

For the given values of φb, u0, and PL = 1 atm, and instead of specifying the permeate
pressure, we use alternatively as a fourth input parameter the channel-length-averaged
linearized transmembrane presssure, 〈∆(l)

T P〉, referred to as linearized TMP for short. The
linearized TMP is the length-average of the linear axial pressure profile minus the constant
permeate pressure, i.e.,

∆(l)
T P(z) = P(l)(z)− Pperm = P(l)(0)−

[
P(l)(0)− PL

] z
L
− Pperm , (17)

associated with a Hagen–Poiseuille-type quadratic velocity field inside the CM, FMM, and
FMS channels occurring for Lp = 0 and φb = 0. The brackets denote the channel-length
average,

〈(· · · )〉 = 1
L

∫ L

0
(· · · )dz . (18)

The linearized TMP and the actual TMP, 〈∆T P〉, are thus expressed as

〈∆(l)
T P〉 = 1

2

[
P(l)(0) + PL

]
− Pperm (19)

〈∆T P〉 =
〈

P(z)− Pperm
〉

, (20)

respectively. Here, P(z) is the, in general, non-linear dispersion pressure profile in UF.
Moreover, it is P(l)(0) = u0λ1ηsL/R2

H + PL, with the hydraulic radius RH = {R/2, R, R}
and the dimensionless geometry coefficient λ1 = {1, 2, 2} for {CM, FMM, FMS}, respec-
tively (see Table 1). The reason for using the linearized TMP as input parameter is that
for values of Lp commonly encountered in UF, the actual TMP is practically equal to the
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linearized one (see [15]). The length-averaged permeate flux is related to the TMP by
〈vw〉 = Lp[〈∆T P〉 − 〈Π〉].

Table 1. Summary of geometry-dependent quantities characterizing the outer solution. Notice that λ2 = RH M/(LAUout
).

The effective permeability parameter, K, is given in units of K∗ =
√

ηsLpL2/R3 so that K/K∗ =
√

λ1λ2(R/RH)3.

Membrane Geometry Transversal Velocity
Boundary Condition λ1 λ2 RH Uout M

A
K

K∗ H V out(y)

CM v(R, z) = vw(z) 1 2 R
2

1
2

2L
R 4 R ln

(
1 + h

R

)
2 y

R −
( y

R
)3

FMM
v(R, z) = vw(z)

v(−R, z) = −vw(z)
2 3

2 R 2
3

L
R

√
3 h 1

2

[
3 y

R −
( y

R
)3
]

FMS
v(R, z) = vw(z)

v(−R, z) = 0
2 3

4 R 2
3

L
2R

√
3
2 h 1

4

[
3 y

R −
( y

R
)3

+ 2
]

A useful process indicator characterizing the filtration efficiency is the solvent recovery
indicator, β, given by [2,43]

β =
Qperm

Q0 =
M〈vw〉
A u 0 . (21)

Here, u 0 is the cross-sectional average of the inlet velocity u(y, z = 0). The overline
indicates the cross-sectional average,

(· · · ) = 1
A

∫

A
(· · · )dS , (22)

with the constant cross-sectional area equal to A = πR2 for CM, and A = RW both for
FMM and FMS. Furthermore, Q0 = A u 0 is the dispersion volume flow rate through the
inlet cross-section, and Qperm = M 〈vw〉 is the permeate volume flow rate through the
inner membrane area M. This area is equal to {2πRL, 2WL, WL} for {CM, FMM, FMS},
respectively. A larger value for β reflects a larger concentration of particles at the outlet
port. Notice that volume conservation implies that Q0 = QL + Qperm, where QL is the
dispersion volume flow rate through the outlet cross section.

4. Boundary Layer Analysis

In this section, we generalize the modified boundary layer analysis (mBLA) method,
introduced in [15] for the CM geometry, to the flat sheets systems FMM and FMS. Since
the mBLA method is explained in [15], we only summarize the essentials of the method,
with our focus set on the differences between the considered flat-sheet and cylindrical
membrane systems.

For standard UF operating conditions, the CP layer is a thin boundary layer of charac-
teristic thickness δCP � R, across which φ is steeply decreasing, from its maximal value,
φw(z), attained at the wall towards its minimal bulk value φb. On introducing the smallness
parameter εδ = δCP/R with εδ ≥ R/L � 1, and for appropriately selected base units,
the advection–diffusion equation is seen to be singularly perturbed. From a dominant
balance analysis of this equation, the smallness parameter is identified as the inverse of the
transversal Pèclet number, PeR, i.e., [15,25,44]

εδ =
1

PeR
=

D0

R
(

Lp∆(l)
T P

) . (23)

The transversal Pèclet number is the ratio of the diffusion time of particles, R2/D0, and
the transversal flow advection time, R/

(
Lp∆(l)

T P
)

, across the transversal distance R. It
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is hereby assumed that the feed concentration at the inlet is small, i.e., φb � 1. For a
significantly developed CP layer, PeR is of the order O

[
102]. We describe in the following

how the flow and concentration fields outside and inside the boundary layer are obtained
and asymptotically matched.

4.1. Outer Solution

The partial differential equations determining the outer flow and concentration solu-
tions are obtained from expanding the effective Stokes, continuity, and advection–diffusion
Equations (9), (10) and (12), respectively, up to zeroth order in εδ. The result is [15]

∂v
∂y

+
∂u
∂z

= −v
y

(24)

∂P
∂y

= 0 (25)

∂P
∂z
− ∂

∂y

(
η(φ)

∂u
∂y

)
=

η(φ)

y
∂u
∂y

(26)

v
∂φ

∂y
+ u

∂φ

∂z
= 0 . (27)

The curvature-related contributions on the right-hand side are non-zero for the CM geome-
try only. Using the associated boundary conditions specified in Section 3 up to the zeroth
order in εδ, and the Darcy–Starling expression, the above set of linear differential equations
is solved by separation of variables and variation of constants. Depending on the channel
geometry, the outer concentration and flow solutions are φ(y, z) = const. = φb and

u(y, z) = Uout(y)u0(z) (28)

v(y, z) = Vout(y)vw(z) (29)

with longitudinal velocity factor

Uout(y) = 1−
( y

R

)2
(CM/FMM/FMS) , (30)

and transversal velocity factor

Vout(y) =





2 y
R −

( y
R
)3 (CM)

1
2

[
3 y

R −
( y

R
)3
]

(FMM)
1
4

[
3 y

R −
( y

R
)3

+ 2
]

(FMS)

. (31)

To zeroth order in εδ, the outer velocity field is factorized in y and z. The permeate
flux, vw(z), depends on the pressure field, P(z), through the Darcy–Starling expression,
while the axial velocity at the center-line, u0(z) = u(0, z), is determined by the pressure
according to u0(z) = −

(
λ1R2

H/ηs
)
dP/dz.

The pressure, in turn, is obtained as

P(z, [φw])− Pperm

∆(l)
L P

=
(

B+[φw] + g−(z, [φw])
)

eK z/L +
(

B−[φw] + g+(z, [φw])
)

e−K z/L (32)
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where ∆(l)
L P = P(l)(0)− PL and

g±(z, [φw]) = ±
K

2L ∆(l)
L P

∫ L

0
e±K z′/LΠ(φw(z′))dz′, (33)

B±[φw] =
1

2 cosh(K)

[
PL − Pperm

∆(l)
L P

∓ 1
K

e∓K − g+(L, [φw])e−K − g−(L, [φw])eK

]
. (34)

We have introduced here the dimensionless effective permeability parameter, K, given by

K2 ≡ λ1λ2
ηsLpL2

R3
H

=
λ1 M L

Uout A RH
· κ

H RH
. (35)

It quantifies the overall solvent permeability of the membrane and the, in general, non-
linear longitudinal pressure drop along the length of the membrane (c.f. [15]). The perme-
ability parameter depends on the system geometry through the dimensionless coefficients
λ1 and λ2, with λ2 = {2, 3/2, 3/4} for {CM, FMM, FMS}, on the (curvature-corrected)
membrane thickness given by H = R ln(1 + h/R) for CM, and H = h for FMM and
FMS, respectively, and on the cross-sectional average, Uout, of Uout(y) equal to 1/2 for
CM and 2/3 for FMM and FMS. Table 1 summarizes the geometry-dependent quantities
determining the outer solution.

For the pressure P and transversal velocity v, no distinction is required between inner
and outer solutions, since to the first order in εδ, these quantities do not change steeply
across the CP layer. Moreover, to the first order in εδ, the pressure is independent of y.

4.2. Inner Solution

We present next the essential steps leading to the inner boundary layer solution. As
noted before, by a dominant balance analysis of the advection–diffusion equation, the
smallness parameter is identified as εδ = 1/PeR. The leading-order continuity, effective
Stokes, and advection–diffusion equations determining the inner solutions are obtained
as [15]

0 =
∂v
∂y

(36)

0 =
∂

∂y

(
η(φ)

∂u
∂y

)
(37)

v
∂φ

∂y
=

∂

∂y

(
D(φ)

∂φ

∂y

)
, (38)

respectively. The first (continuity) and second (Stokes) equation state that the transversal
velocity, v, and the shear stress, τ = η ∂u/∂y, are independent of y inside the CP layer, to
leading order in εδ. Thus, τ = τw(z) = η(φw(z)) (∂u/∂y)|w(z) is the shear stress at the
membrane or substrate wall. Equation (38) describes the balance of transversal advection
and diffusion currents. In conjunction with the boundary conditions at the membrane and
substrate walls, the inner solutions for the concentration and velocity fields are obtained as

φ(y, z, [φw]) = φw(z)e−PeR Y(y,z,[φw ]) (39)

u(y, z, [φw]) = −τw(z, [φw])
∫ R

y

1
η(φ(y′, z, [φw]))

dy′ (40)

v(z, [φw]) = vw(z, [φw]) , (41)
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where the functional dependence on the (up to this point) unknown concentration profile,
φw(z), is indicated. We have introduced the dimensionless function

Y(y, z, [φw]) =
vw(z, [φw])

Lp∆(l)
T P

1
R

∫ R

y

D0

D(φ(y′, z, [φw]))
dy′ , (42)

appearing in the inner solutions for φ and u. The transversal variable y is restricted to the
interval [−R, R] for the FMS geometry, which lacks reflection symmetric with respect to
the plane y = 0. For CM and FMM, y is further restricted to [0, R], since, for FMM, it holds
that φ(−y) = φ(y) as noticed in Figure 1.

4.3. Asymptotic Matching and Particle Conservation

Up to now, we determined the inner- and outer-flow solutions except for the wall
concentration profile φw on which they are functionally dependent. Next, the outer limit of
the inner solution is asymptotically matched to the inner limit of the outer solution, using
additive and multiplicative mixing rules [45] as detailed for the CM geometry in [15]. This
leads to the matched asymptotic solutions

φ(y, z, [φw]) = (φw(z)− φb)e−PeR Y(y,z,[φw ]) + φb

(
1− PeR Y(y, z, [φw]) e−PeR Y(y,z,[φw ])

)
(43)

u(y, z, [φw]) = u0(z)U(y, z, [φw]) (44)

v(y, z, [φw]) = vw(z)Vout(y) . (45)

The fields P(z, [φw]) and Vout(y) require no asymptotic matching and are given in Section 4.1.
The longitudinal velocity factor appearing in Equation (44) for the longitudinal velocity
u reads

U(y, z, [φw]) =
(

1 +
y
R

)∫ R
y η−1(φ(y′, z, [φw]))dy′
∫ R

0 η−1(φ(y′, z, [φw]))dy′
, (46)

with U(y = 0, z, [φw]) = 1. For constant viscosity, it reduces to U(y, z, [φw]) = Uout(y),
where Uout(y) is the parabolic profile in Equation (30).

The remaining task is to determine the particle concentration profile, φw(z), at the
membrane wall. To this end, we employ, as a global condition, the cross-sectional particle-
flux conservation law,

Jz(z, [φw]) = Jz(z = 0) ≡ Jz
0 , (47)

where Jz = J · ẑ is the longitudinal component of the particle flux in Equation (11). The
overline denotes the cross-sectional average introduced in Equation (22). The above
conservation law is a consequence of ∇ · J = 0 and of assuming a fully particle retentive
membrane. We ignore here a small longitudinal diffusion flux contribution of O [ε2

δ ], with

the implication that Jz ≈ φ u. Notice that Jz
0 is determined, according to the inlet boundary

conditions, by φb and u0 = u(y = 0, z = 0). We deviate here from our earlier mBLA work
in [15] where the inlet pressure was prescribed as an inlet boundary value instead of u0.

Using particle-flux conservation combined with a fixed-point iteration method adapted
to the flat sheets FMM and FMS geometries, φw(z) is numerically determined. The con-
centration and flow fields follow then from substituting φw(z) into the respective matched
asymptotic solutions. This constitutes our mBLA method, generalized to the FMM and
FMS membrane geometries.

To analyze general features of the mBLA solution, one often introduces simplifications.
Consider, for example, the longitudinal velocity factor, U(y, z, [φw]) in Equation (46), enter-
ing into the matched asymptotic expression for the axial velocity u. In the bulk region away
from the membrane wall(s), this factor practically equals the parabolic profile 1− y2/R2.
Differences from the parabolic profile are visible in the CP boundary layer region, provided
they are enhanced by dividing U(y, z, [φw]) through εδ. Figure 5a shows a simplified
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mBLA result for U(y, z, [φw]), obtained by neglecting for simplicity the z-dependence of the
matched solutions in Equations (43)–(46), and using constant φw(z) = 0.4, εδ = 1.28× 10−2,
a = 10 nm, φb = 0.001, and R = 0.5 mm. For the suspension transport properties D(φ)
and η(φ) of Brownian hard spheres, we use the accurate expressions in Equations (3)
and (5). In Figure 5a, the curves of U for the symmetric geometries CM and FMM are
identical and practically equal to 1− y2/R2 except for the boundary layer region y ≈ (±)R
magnified in the inset. In the inset, U(y, z, [φw])/εδ is plotted as a function of the stretched
distance, (y + R)/δCP = (y/R + 1)/εδ, from the bottom wall (in case of FMM and FMS).
Regarding the FMS geometry, a slight deviation from symmetry with respect to the y = 0
plane is noticeable in the bulk region adjacent to the lower impermeable substrate wall.
The inset reveals for the FMS geometry that its stretched longitudinal velocity factor near
the substrate wall is larger than that for FMM, due to the absence of a CP layer at the
impermeable substrate wall.

−1 0 1
y/R

0

1

U
(y
,z
,[
φ
w

])

[a]

(y +R)/δCP

CM/FMM

FMS

0 1 2
0

2

4

U
(y
,z
,[
φ
w

])
/ε
δ

−1 0 1
y/R

−1

0

1
V

(y
)

[b]

CM

FMM

FMS

Figure 5. (a) mBLA prediction for the longitudinal velocity factor U(y, z, [φw]), using φw = 0.4, a = 10 nm, εδ ≈ 1.28× 10−2,
and vw = 3.35× 10−6 m/s. The inset shows the stretched U/εδ as a function of the stretched distance from the bottom wall,
(y + R)/δCP. While the bottom wall is a permeable membrane for FMM, it is impermeable for FMS. (b) Transversal velocity
factor V(y) = Vout(y) in Equation (31) for CM, FMM, and FMS, respectively.

For comparison, in Figure 5b, the velocity factor V(y) = Vout(y) = Vin(y) according
to Equation (31) is shown for the three geometries. Note that no distinction is required
between inner and outer forms of this velocity factor. Different from flat sheet geometries
and owing to curvature, V(y) for CM has its peak value attained away from the membrane
wall at radial distance y =

√
2/3R from the center-line. While V(y = 0) = 0 in CM and

FMM due to symmetry, the curve of V(y) in FMS is strongly asymmetric with V(y =
−R) = 0, which reflects the impermeability of the substrate wall.

This completes our presentation of the mBLA method for cylindrical and flat sheets
membrane geometries. Table 2 summarizes the conditions for the validity of this method.
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Table 2. Summary of conditions for the validity of the mBLA method. The Reynolds number
associated with the channel flow was Re = 4 RH u0ρ/η, where ρ is the dispersion mass density, η

the effective dispersion viscosity, u0 the cross-section averaged inlet velocity, and RH the hydraulic
channel radius. The solvent recovery indicator, β, is defined in Equation (21).

Conditions Remarks

Pea ≤ 0.1 Strong Brownian motion

R/L� 1 Small aspect ratio. Note that εδ ≥ R/L

Re . 2000 Condition for laminar (non-turbulent) flow

Re R/L� 1 No inertial flow effects on length scale L

β ≥ O [εδ] Condition for significant permeability effects

φb � 1 Small feed concentration (i.e., φbPeR < 1)

4.4. Remarks on the Generalized mBLA Method

Having established the generalization of the mBLA method to flat sheets geometries,
a few remarks are in order here about the pros and cons of the method, its relation to other
works on UF, and possible extensions to more complex dispersions.

The mBLA method for the CM geometry was shown (in [15]) to be in excellent accord
with elaborate finite element calculations. While no FEM calculations are presented for the
flat sheet geometries, it can be expected that the accuracy of the mBLA remains comparably
good. For the CM geometry, the C++ implementation of the mBLA method is typically a
thousand times faster than the according FEM calculations and it is numerically stable [15].
By using the generalized mBLA method, spatially resolved UF concentration and flux
profiles are determined in addition to their spatial averages, based on theoretically precise
and experimentally well-tested expressions for the dispersion properties. In case one is
interested in spatial averages only, e.g., in order to compare with experimental data for
the length-averaged permeate flux and TMP, a number of more simple methods are given
in the literature as summarized in [2,46]. The mBLA method in its present form deals
with generic CP layer effects only. Specific fouling mechanisms are not considered so far,
but work on the inclusion of reversible cake layer effects is in progress. Moreover, we are
currently extending the mBLA method to structured membranes as discussed in [47–49].

Since only the osmotic pressure and the transport properties D(φ) and η(φ) are required
as input characterizing the filtered dispersion, the generalized mBLA method is readily
applicable to more complex dispersions of practical relevance. These include dispersions of
soft and solvent-permeable colloidal particles such as micro- and nanogels [15,31,43,50,51],
and charged rigid colloidal particles, ionic microgels, and proteins [52–55]. For charged
particle dispersions at lower ionic strength, the concentration dependencies of D, η, and Π
are distinctly different from those of electrically neutral particles, with accordingly strong
differences in the UF performance (see [50,51,54]).

In closing this section, we note that a key ingredient of the generalized mBLA method
is a transversal advection–diffusion equation for the CP layer region. This equation is
obtained from a dominant balance analysis explained in great detail in [15]. Such a
dominant balance analysis was invoked also in earlier work by Denisov [25], but only
for constant values of the gradient diffusion coefficient and dispersion viscosity and in
conjunction with the highly approximate linear Van’t Hoff expression for the osmotic
pressure. A dominant balance analysis of the advection–diffusion balance in the CP
layer different from the one used in this work leads to another similarity solution for the
CP layer profiles. The similarity solution was used in previous boundary layer theory
studies of UF [56–59]. For the operating conditions employed in [15] and the present
work, the similarity solution results, however, are in distinctly less good agreement with
finite-element benchmark calculations (c.f. Figure 6 in [15]).
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5. Results and Discussions

We quote first the employed input (operating) parameters, namely, the feed volume
concentration, φb, axial velocity at the inlet center, u0, and linearized TMP, 〈∆(l)

T P〉. The pres-
sure at the outlet is fixed to PL = 1 atm. These parameters are complemented by the selected
membrane and dispersion parameters including R and L, membrane hydraulic permeabil-
ity, Lp, solvent viscosity, ηs, of water at room temperature, and particle radius a. While these
parameters are partially varied in the presented results, as a reference set of values, we use
φb = 0.001, R = 0.5 mm, L = 0.5 m, and Lp = 6.7× 10−10 m/(Pa s). The selected value for
Lp is in the range of typical UF permeabilities [2], and a = 3.13 nm. Reference values for
u0 depend on the membrane geometry and are selected as {6.80, 5.09, 5.09} × 10−2 m/s
for {CM, FMM, FMS}, respectively. In all three geometries, the same value, u0 = 3.40×
10−2 m/s, is obtained for the cross-section averaged inlet velocity, where u0

CM = 4/3×
u0

FMM/FMS and u0 = u(0, 0). The linearized TMP is varied from 1 kPa up to 20 kPa. The
filtrated dispersion consists of mono-disperse Brownian hard spheres, suspended in water
at room temperature. The particle transport properties, D(φ) and η(φ), and the osmotic
pressure, Π(φ), are accounted for in the mBLA method using accurate analytic expressions
given in Section 2.

Using the reference values for {R, L, Lp, ηs}, the geometry-dependent reference val-
ues for the effective permeability parameter K defined in Equation (35) are obtained as
{0.146, 0.0634, 0.0448} for {CM, FMM, FMS}, respectively. Since K2 � 1, the actual TMP,
〈∆T P〉, is practically equal to the linearized TMP = 〈∆(l)

T P〉. For this reason, we do not
distinguish any more in the following between actual and linearized TMP.

In Section 5.1, we discuss mBLA results for the wall concentration profile, φw(z), and
for the longitudinal particle flux Jz(y, z). For the latter quantity, both its bulk and excess
parts are discussed. The TMP is not varied here, but two different particle radii a = 3.13
and 10 nm are considered. In Section 5.2, the TMP, feed concentration, and cross-section
averaged inlet velocity dependence of the length-averaged permeate flux, 〈vw〉, and of the
solvent recovery indicator β defined in Equation (21) are studied. Triggered by the results
in Section 5.2, in Section 5.3, three independent parameter combinations out of the vast
number of operating, membrane, and dispersion parameters are identified, which solely
determine the solvent recovery indicator β.

5.1. CP-Layer and Longitudinal Particle Transport for Reference Conditions

For the UF geometries in Figure 6, we compare the concentration profile, φw(z), at
the membrane wall for particle radii (a) a = 3.13 nm and (b) a = 10 nm, respectively, for
fixed transversal Pèclet number PeR = 78, and for the reference values of Lp, R, and L.
Consider first Figure 6a for the concentration profile, where the reference value for the
average inlet velocity, u0 = 3.40× 10−2 m/s, is used in all three geometries, in addition
to a common TMP value of 16 kPa. The shape of the concentration profile is quite similar
in the three cases, with the maximal concentration values at the outlet being distinctly
smaller than the freezing transition volume concentration φ f = 0.494 of colloidal hard
spheres. The concentration profiles for FMM and FMS are nearly the same along the full
channel length. Slight differences between these profiles, and the crossover of the CM with
the other two profiles at axial distance z/L > 0.6, can be qualitatively understood from
inspecting (in the inset) the axial velocity, u(y = 0, z), at the axial center-line y = 0. Note
that for the CM geometry u0 is larger than for FMM and FMS, by a factor of 4/3. At axial
distances similar to those for the φw(z) profile, crossovers are observed between the three
curves for u(0, z). Since du(0, z)/dz = −(λ2/RH)vw(z), a stronger decay of u(0, z) reflects
a larger transmembrane flux, vw(z), and thus an enhanced transport of particles towards
the membrane wall.
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Figure 6. CM, FMM, and FMS concentration profiles at the membrane wall, φw(z), for a dispersion of Brownian hard
spheres of radius a = 3.13 nm (a) and a = 10 nm (b), respectively. The insets show the according axial velocity profiles,
u(y = 0, z), at the channel center-line y = 0, in units of the CM inlet velocity u0

CM = u(0, 0). Black curves are for the same
mean inlet velocity u0. Dashed (red) curves represent a second FMM system (referred to as FMM2), having a flow shear rate
at the membrane inlet equal to that for the CM geometry.

The usage of the same value for u0 in the three geometries implies that the shear
rate at the inlet of the membrane wall, γ̇∗ = (du(y, z = 0)/dy)(y → 0) = 2 u0/R (c.f.
Equation (1)), is larger for CM than for FMM and FMS. This explains the initially smaller
increase in φw(z) for CM. The dashed (red) curve in Figure 6a holds when for FMM the
same value for the wall shear rate γ̇∗ is used as for CM (FMM2 curve). While the initial
slope of φw(z) at the inlet is the same for CM and FMM2, the φw(z) values for FMM2
sufficiently distant from the inlet are distinctly smaller than in the CM case. This is reflected
in the axial velocity profile u(0, z) depicted in red in the inset.

A similar analysis as for Figure 6a applies to Figure 6b, for a dispersion of larger
particles of radius a = 10 nm, smaller TMP = 5 kPa, and cross-section averaged inlet
velocity u0 = 1.11× 10−2 m/s equal to that of CM, FMM, and FMS. The value for γ̇∗ in
FMM2 is equal to the one in CM. While the same general trends are encountered as in
Figure 6a, there are now distinctly larger wall concentrations observed, with φw(L) > 0.32
at the channel outlet.

The ratio, 〈Π〉/TMP, of length-averaged transmembrane osmotic pressure and TMP
equals 0.34 and 0.18 in Figure 6a,b, respectively. It reflects the strong influence of the CP
layer on the permeate flux 〈vw〉, exerted through the (length-averaged) Darcy–Starling law
in Equation (13). Notice further that for extreme parameter values not considered here
where the longitudinal pressure drop across the channel length is comparable to the TMP,
the according profiles for φw(z) can be non-monotonic in z, with maximum concentration
attained for z < L. As discussed in [15], in the context of the CM geometry, a criterion for a
strictly monotonic increase in φw(z) is that TMP > 3

(
P(0)− PL).

We proceed by discussing the axial particle flux, Jz(y, z), which according to

Jz(y, z) = (φ(y, z)− φb) u(y, z) + φb u(y, z) ≡ J ex
z (y, z) + Jb

z (y, z) , (48)

consists of an excess flux contribution, J ex
z (y, z), that vanishes in the bulk region and a bulk

flux contribution, Jb
z (y, z). Right at the membrane wall, J ex

z (R, z) = 0 due to the employed
stick boundary condition. Without a significant CP layer, J ex

z is practically zero. The results
by the mBLA method for the excess and bulk parts of Jz(y, z) are depicted in Figure 7
for CM and FMM, respectively, using a = 3.13 nm and input parameters as in Figure 6a.
The fluxes are plotted semi-logarithmically as functions of the (relative) distance, 1− y/R,
from the (upper, in case of FMM) membrane wall. The FMS fluxes are not shown here
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since near the upper membrane, they are practically equal to those of the FMM. The excess
flux is zero at the impermeable substrate wall of the FMS channel. The displayed flux
profiles are given in units of the cross-sectional flux average, Jz

0
= φb u0, at the inlet, which

according to Equation (47), is z-independent. The excess axial flux (solid curves in Figure 7)
increases from zero at the membrane (y = R) towards its maximal value at y ∼ δCP. The
characteristic CP layer thickness, δCP = R/PeR, is marked by the vertical dotted lines. Due
to a trade-off between φ and u, where the former decreases and the latter increases with
increasing distance from the membrane, the maximum of Jex

z is located at a distance from
the wall larger than δCP, in the transition region between CP layer and bulk. The flux
maximum grows with increasing distance from the inlet, and its location shifts away from
the membrane wall. There is an according decrease, with increasing z, of the maximum
values of Jb

z at the channel center-line y = 0.

10−3 10−2 10−1 100

1− y/R
0

1

2

3

CM Jexz /Jz
0

J bz/Jz
0

10−3 10−2 10−1 100

1− y/R
0

1

2

3

FMM Jexz /Jz
0

J bz/Jz
0

Figure 7. Excess and bulk axial flux parts, Jex
z (y, z) (solid lines) and Jb

z (y, z) (dashed lines), plotted as
functions of the reduced distance, 1− y/R, from the membrane wall, for systems CM (left) and FMM
(right) using a = 3.13 nm. The fluxes are given in units of Jz

0
= φb u0. The arrows mark increasing

values of z, with z/L = 0.2, 0.4, 0.6, 0.8, 1.0. The dotted vertical lines mark the distance from the
membrane wall equal to δCP. System parameters as in Figure 6a.

According to Figure 7, the excess fluxes in CM are similar to those in FMM, which can
be attributed to the fact that curvature effects in the thin CP layer of the CM geometry are
negligible. In contrast, there are pronounced differences observed for the maximal bulk
fluxes of Jb

z (y = 0, z) = φb u(0, z), reflected in the likewise different behavior of u(0, z) for
CM and FMM, seen in the inset of Figure 6a.

To elucidate differences in the axial particles transport between CM and the flat sheets
FMM and FMS geometries, in Figure 8, the cross-section averaged axial excess flux, Jz

ex
(z),

is shown for a = 3.13 nm and a = 10 nm, respectively. Like φw(z), the average flux
increases monotonically from 0 at the inlet towards its maximal value at the outlet where
the CP layer becomes most pronounced. In both panels of Figure 8, where the same value
for u0 is used, the excess flux for CM is twice as large as the one for FMM. To understand
this, notice that the cross-section averaged axial bulk flux follows, from the sum rule
expressing particle flux conservation and our matched asymptotic solution, as

Jz
b
(z)/Jz

0
= 1− Jz

ex
(z)/Jz

0
=

M
A u0

1
L

∫ z

0
dz′ vw

(
z′, [φw]

)
+O [εδ] . (49)
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Recall next from Table 1 that the ratio, M/A, of membrane area M and cross-section area A
is twice as large for CM as for FMM. One further observes in Figure 8 that Jz

ex
(z)
∣∣∣
FMM

≈
2× Jz

ex
(z)
∣∣∣
FMS

, which arises since the value for M/A in FMS is half that of FMM, while

vw(z) is practically the same in both cases. In comparing Figure 8a,b, one notices, for
operating conditions as those in Figure 6a,b, that the normalized excess flux curves in (b)
are larger than the according ones in (a). In general, there is an intermingled influence of
D, η, and Π on the UF behavior when the particle size is varied.

0.0 0.2 0.4 0.6 0.8 1.0
z/L

0.0

0.2

0.4

0.6

J
z
ex
/J

z
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[a] a = 3.13 nm
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FMS

0.0 0.2 0.4 0.6 0.8 1.0
z/L

0.0
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0.4

0.6

J
z
ex
/J

z
0

[b] a = 10 nm

Figure 8. Cross-section averaged axial excess particle-flux, Jz
ex
(z), in units of Jz

0, as function of
reduced axial distance, z/L, from the inlet. Two dispersions with particle radius a = 3.13 nm (a) and
a = 10 nm (b) are considered for input parameters as in Figure 6a,b, respectively.

5.2. TMP, Feed Concentration, and Velocity Effects on Global Indicators

Having discussed the local profiles φw(z) and Jz(y, z), we assess next the influence of
varying TMP and feed concentration on properties that globally indicate the UF perfor-
mance. Two global indicators of particular importance are the length-averaged permeate
flux, 〈vw〉 = Lp(TMP− 〈Π〉), and the solvent recovery indicator β ≤ 1 introduced in
Equation (21). The latter indicator gives the fraction of initial dispersion volume, recov-
ered as pure solvent in the permeate compartment. It is related to another indicator,
α = φ

L/φb ≥ 1, defined as the ratio of cross-section averaged concentration at the out-
let and the (cross-section averaged) feed concentration φb. Owing to particle flux and
dispersion volume conservation valid for an ideally particle retentive membrane, the
concentration factor α is related to β simply by [43]

α =
1

1− β
. (50)

One generally observes that 〈vw〉 increases monotonically with increasing TMP. Consider-
ing Equations (21) and (50), this implies that both β and α are monotonically increasing
with increasing TMP.

Our central aim is to identify dimensionless combinations of input parameters charac-
terizing uniquely the global process indicators, independent of the considered geometries.
As a prerequisite, in Figure 9, we analyze the process indicators 〈vw〉, α, and β as functions
of TMP, for input parameters selected otherwise as in Figure 6a,b. The symbols are pre-
dictions by the mBLA method. Regarding the average permeate flux depicted in panels
(a-1) and (b-1), the mBLA results for 〈vw〉 are nearly coincidental, even for the largest TMP
considered. The straight solid lines depict the pure-solvent form 〈v0

w〉 = Lp TMP, for the
same hydraulic permeability Lp used in both figure panels. The influence of the CP layer
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(osmotic pressure) buildup on the permeate flux is noticeable at larger TMP where 〈vw〉
increased sub-linearly. For particle radius 10 nm, a smaller TMP interval is depicted in the
figure since cake formation by freezing is observed already for TMP & 7 kPa.
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Figure 9. (a-1,b-1): TMP dependence of average permeate flux 〈vw〉, solvent recovery indicator β, and concentration factor
α for particle radius a = 3.13 nm (panels a-1–a-3) and a = 10 nm (panels b-1–b-3), respectively. Symbols are mBLA results,
and solid lines are pure solvent predictions. Input parameters except for TMP are as in Figure 6.

The straight lines in panels (a-2) and (b-2) of Figure 9 are the pure-solvent prediction,
β0, equal to β at zero feed concentration φb = 0. Explicitly,

β0 =

(
M
A

Lp

u0

)
TMP , (51)

where M is the lumen-side membrane surface area, and A is the area of the inner cross-
section. As noticed from Equation (51), β0 has a geometry-dependent factor, M/A, of
values listed in Table 1, and it includes the cross-section averaged inlet velocity u0, which
has different values in panels (a) and (b), respectively. At small TMP, the mBLA curves for
β overlap with the pure-solvent lines of β0, since the osmotic pressure contribution is here
negligible. For comparison, panels (a-3) and (b-3) show the associated concentration factor
α. Solid lines represent α0 = 1/(1− β0), which quantifies the initial increase in α with
increasing TMP. Notice that, according to Equation (51), both β0 and α0 are solely dependent
on given input parameters. According to Table 1, it holds that β0

CM : β0
FMM : β0

FMS = 4:2:1
for equal TMP.
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The effect of a varying radius a on the length-averaged reduced permeate flux and
on α is analyzed in Figure 10 (left) and (right), respectively. The permeate flux is rendered
non-dimensional by multiplication with R/D0, and it is plotted versus φb multiplied by
PeR ≈ 78, i.e., the selected value for the transversal Pèclet number. The multiplication of
φb by PeR is used here to highlight that φb PeR < 1, an inequality required for the validity
of the mBLA method (c.f. Table 2). Except for φb, all input parameters are as in Figure 6a,b,
respectively. Regarding Figure 10 (left), one notices that 〈vw〉(R/D0) → PeR for φb → 0.
According to the inset, the initial plateau value of the reduced flux, equal to PeR, is mirrored
by the plateau value 〈Π〉/TMP ≈ 0. With further increasing φb, the accordingly increasing
Π causes a decline in the reduced permeate flux linear in the logarithm of φb, which was
also observed in typical UF experiments [9]. For fixed a, the reduced flux is nearly the same
for the considered geometries, except when φbPeR is close to one. The mBLA results for α
as a function of φb are displayed in Figure 10 (right). The concentration factor decreases
with increasing φb, and it is distinctly larger for the CM geometry. One notices further in
Figure 9(a-1,b-1) that different channel geometries have little influence on the permeate
flux. Figure 10 (right) is useful for re-circulation setups where the concentrated dispersion,
collected at the outlet port, is fed back at the inlet port.
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Figure 10. Reduced average permeate flux, 〈vw〉(R/D0), (left) and concentration factor, α, (right) versus feed concentration,
φb, for fixed PeR ≈ 78. Input parameters are as in Figure 6, except for φb, which is varied. Open symbols are for a = 3.13
nm and filled symbols for a = 10 nm. The inset in the left panel shows the pressure ratio 〈Π〉/TMP. The plateau values, α0,
of α are marked in the right panel by the horizontal dashed line segments.

The dependence of β on the cross-section averaged axial inlet velocity, u0, is shown
in Figure 11, for the three geometries and for two particle sizes. The velocity is made
non-dimensional by multiplication with the axial velocity unit LD0/R2. With increasingly
large inlet velocity, the mBLA data for β (symbols) converge towards the pure solvent
prediction β0 (lines). This convergence arises since the influence of the CP layer ceases with
increasing axial flow velocity.



Membranes 2021, 11, 960 21 of 28

200 400 600 800 1000 1200
u0 ×R2/(LD0)

0.0

0.1

0.2

0.3

0.4

0.5

β

β0

CM

FMM

FMS

a = 3.13 nm

CM

FMM

FMS

a = 10 nm

CM

FMM

FMS

a = 10 nm

CM

FMM

FMS

Figure 11. Solvent recovery indicator, β, as function of the cross-section averaged inlet velocity u0

in units of LD0/R2. Here, u0 is varied for a fixed TMP = 16 kPa for a = 3.13 nm, and 5 kPa for
a = 10 nm. The feed concentration is φb = 0.001. Remaining input parameters as in Figure 6a,b.
Open (filled) symbols are mBLA results for a = 3.13 nm (a = 10 nm). Solid, dashed, and dotted lines
represent the pure solvent values, β0, for the respective geometries as indicated.

5.3. Universal Behavior of Global UF Indicators

In Section 5.2, we analyzed the global UF indicators α, β, and 〈vw〉(R/D0), as functions
of TMP, φb, a, and u0, respectively, with the other input parameters kept constant. It was
shown that the indicators are significantly affected by changes in these parameters and in
the membrane. The indicators depend in addition on R, L, and Lp, which characterize the
membrane geometry and hydraulic permeability, respectively.

Since the UF process depends on a vast number of input and membrane geometry
parameters, it is important to identify a minimal set of dimensionless combinations of input
parameters fully characterizing the UF indicators. By extensive parameter variation studies
based on the mBLA method combining numerical efficiency with high accuracy, and by
using a simplified mBLA solution described in Appendix A, we succeeded in identifying
three independent dimensionless combinations of input parameters, termed variables in
the following, on which β is solely dependent. The first of these independent variables is
the transversal Pèclet number, PeR, introduced in Equation (23) as the ratio of diffusion
and flow advection times for the particle transported across the transversal distance R. The
remaining two variables are identified as

β0

PeR
=

MD0

A R u0 (52)

γ0

PeR
=

(
9 c
2

φbLpηsR
a2

)
β0

PeR
. (53)

Here, β0 is the pure solvent recovery indicator introduced in Equation (51) where its linear
dependence on TMP was emphasized. While β0 is independent of dispersion properties,
these are accounted for by γ0 and PeR. The third variable, γ0, includes a geometry-
dependent factor c = {1/8, 1/3, 2/3} for {CM, FMM, FMS}, respectively. Moreover, it
depends on the feed concentration φb, particle radius a, hydraulic membrane permeability
Lp, solvent viscosity ηs, and the inner channel half-height R. The appearance and the
form of γ0 are motivated by a simplified mBLA calculation of 〈vw〉 R/D0 presented in
Appendix A.
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On expressing β in terms of the three variables, we find that

β ≈ F
(

PeR,
β0

PeR
,

γ0

PeR

)
(54)

is valid to good accuracy in the assessed parameter space region. Here, F is a function
depending on the three variables only.

The universal behavior of β in terms of the three variables is exemplified in Figure 12,
where it is plotted as a function of PeR, for values of the duplet

(
β0/PeR, γ0/PeR

)
given

by the two sets G1 =
(
8.08× 10−3, 1.55× 10−4) (open symbols) and G2 = (8.08× 10−3,

3.10× 10−4) (filled symbols), respectively. Within each set, the mBLA data for β coincide
practically for all PeR and for the three geometries CM, FMM, and FMS. The two curves
F(PeR; G1) and F(PeR; G2) traced out by the mBLA data for β merge at small PeR with
the straight dotted line for β0 determined by Equation (52). The two sets G1 and G2 for(

β0/PeR, γ0/PeR
)

share the same value 8.08× 10−3 for β0/PeR. The input parameters for
the curves G1 and G2 in Figure 12 are listed in the rows G1 and G2 of Table 3. Notice
from Figure 12 that, for given (non-small) PeR and β0, a larger value of γ0 causes a smaller
values of β due to the lowered permeate flux. According to Equation (53), γ0 increases for
increasing φb and Lp, and for decreasing particle radius a.

Table 3. Input parameters used for the mBLA results for the solvent recovery indicator β depicted in Figures 12 and 13,
respectively, as indicated. Fixed parameters are particle radius a = 3.13 nm and mean Darcy permeability κ = 1.36× 1016 m2.
The employed values for the reference system cross-section averaged inlet velocity and hydraulic permeability are
u0

REF = 3.40× 10−2 and Lp,REF = 6.7× 10−10 m/(Pa s), respectively.

Data
(Figure 12) R (mm) L (m) h/R

Lp/Lp,REF
CM, FMM/FMS

φb/10−3

CM, FMM, FMS
u0/u0

REF
CM, FMM, FMS

(β0/PeR)/10−3 (γ0/PeR)/10−4

G1 0.5 0.5 - 1.00, 1.00 1.00, 0.375, 0.186 1.00, 0.50, 0.25 8.08 1.55

G2 0.5 0.5 - 1.00, 1.00 2.00, 0.750, 0.375 1.00, 0.50, 0.25 8.08 3.10

(Figure 13) R (mm) L (m) h/R Lp/Lp,REF φb/10−3 u0/u0
REF (β0/PeR)/10−3 (γ0/PeR)/10−4

CM-1 0.5 0.5 - 1.00 1.00 1.00 8.08 1.55
CM-2 0.5 0.5 0.5 1.00 1.00 1.00 8.08 1.55
CM-3 0.5 0.5 1 0.59 1.69 1.00 8.08 1.55
CM-4 0.25 0.5 0.5 2.00 1.00 4.00 8.08 1.55

FMM-1 0.5 0.5 - 1.00 1.00 1.00 4.04 2.07
FMM-2 0.5 0.5 0.5 0.81 1.24 1.00 4.04 2.08
FMM-3 0.5 0.5 1 0.41 2.44 1.00 4.04 2.07
FMM-4 0.25 0.5 0.5 1.62 1.23 4.00 4.04 2.07

FMS-1 0.5 0.5 - 1.00 1.00 1.00 2.02 2.07
FMS-2 0.5 0.5 0.5 0.81 1.24 1.00 2.02 2.08
FMS-3 0.5 0.5 1 0.41 2.44 1.00 2.02 2.07
FMS-4 0.25 0.5 0.5 1.62 1.23 4.00 2.02 2.07

In rows G1 and G2 of Table 3, the membrane parameters R, L, and Lp are kept
constant. To illustrate that changes in these parameters are likewise compatible with
Equation (54), in Figure 13, β is shown as a function of PeR, for three sets of the du-
plet

(
β0/PeR, γ0/PeR

)
given by S-CM =

(
8.08× 10−3, 1.55× 10−4) (circles), S-FMM =(

4.04× 10−3, 2.07× 10−4) (squares), and S-FMS =
(
2.02× 10−3, 2.07× 10−4) (triangles).

These three sets are not taken out of the blue but are precisely the values for β0/PeR and
γ0/PeR of the reference system introduced in Section 5 for CM, FMM, and FMS, respec-
tively. For each geometry with its according set for

(
β0/PeR, γ0/PeR

)
, four different lists

of input parameters are given in Table 3, e.g., rows CM 1-4 for the CM geometry. Rows
CM 1, FMM 1, and FMS 1 include the reference system input data for CM, FMM, and
FMS, respectively. Different values for the membrane properties are used for the three
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geometries. In lists CM 2-4, e.g., the thickness h of the membrane is specified instead of
Lp, by assuming the same mean Darcy permeability, κ, as for the reference system with
CM geometry. The hydraulic permeability follows then from Equation (14). According to
Figure 13, β traces out three master curves for S-CM (top), S-FMM (middle), and S-FMS
(bottom), respectively, where the according duplet values for (β0/PeR, γ0/PeR) are noted
in the figure. The solid curves for β are obtained using reference system data listed in
rows CM 1, FMM 1, and FMS 1 of Table 3. The dashed straight lines are the pure solvent
predictions β0 for β. It holds that β0

S-CM > β0
S-FMM > β0

S-FMS (see also Figure 9(a-2)). The
mBLA data for β in Figure 13 nicely reconfirm the validity of Equation (54).
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Figure 12. Solvent recovery indicator, β, as a function of PeR, for (β0/PeR)G1, G2 ≈ 8.08× 10−3, and
(γ0/PeR)G1 ≈ 1.55× 10−4 (list G1 in Table 3: open symbols) and (γ0/PeR)G2 ≈ 3.10× 10−4 (list G2:
filled symbols), respectively. Identical membrane properties are used for CM, FMM, and FMS. The
employed operating parameters are listed in rows G1 and G2 of Table 3.
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Figure 13. Solvent recovery indicator, β, as a function of PeR for three different variable sets
(β0/PeR, γ0/PeR) given in the figure for the respective CM, FMM, and FMS geometries. Symbols
are mBLA results for β based on the according input parameter lists in Table 3. See text for details.
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The universal dependence of β on the three variables PeR, β0/PeR, and γ0/PeR in
Equation (54) is inherited by the concentration factor, α, and by the reduced permeate flux,
〈vw〉(R/D0), since these are related to α by

β =
1

1− α
=

(
〈vw〉

R
D0

)
β0

PeR
. (55)

The independent variables on which β, α, and the reduced permeate flux are solely
dependent are identified using a simplified mBLA calculation where the gradient diffusion
coefficient and viscosity are approximated by their infinite dilution values, and the osmotic
pressure is approximated by the linear van’t Hoff expression. Details of this calculation are
given in Appendix A. The result of the Appendix is the simplified mBLA expression

〈vw〉
R

D0
≈
(

β0

PeR
+

γ0

PeR
g
)−1

. (56)

Here, g is a complicated function given in Equation (A6) of the Appendix A, which depends
on PeR and other input parameters, and implicitly also on the reduced permeate flux.
Thus, a fixed-point iteration solver is required also for the simplified mBLA expression in
Equation (56). Note that Equation (56) holds for larger values of PeR only, and different
from the full mBLA solution, it violates to some extent the sole dependence on β on the
three variables in Equation (54). The virtue of Equation (56) is that it suggests that PeR,
β0/PeR, and γ0/PeR are the reduced set of independent variables and that it provides, in
addition, the expression for γ0 in Equation (53).

6. Conclusions

We generalized the mBLA method for predicting local UF concentration and flow
profiles, and global process indicators, from the cylindrical membrane geometry to flat
sheets geometries with two and one membrane sheet, respectively. The semi-analytic
form of the method makes it well suited for identifying general trends and unifying
features, which are tasks that require extensive variations of different input parameters.
Importantly, the semi-analytic mBLA method gives physical insight into the functional
form of concentration and flow profiles and of global process indicators.

For simplicity, we considered dispersions of mono-disperse Brownian hard spheres,
using accurate analytic expressions for the transport properties and osmotic pressure, as
input to the generalized mBLA method. We elaborated on the effects of the three geometries
on local concentration and particle flux profiles, by revealing significant differences in the
average particle fluxes. For varying operating conditions, we analyzed the influence of the
different geometries on global UF efficiency indicators including β, concentration factor
α, and length-averaged permeate flux 〈vw〉. We showed that the influence of different
geometries is particularly pronounced for these indicators.

Our key result is that the intricate and intermingled dependencies of the UF indicators
on a vast number of input parameters and the membrane geometry can be grouped together
into only three independent variables: PeR, β0/PeR, and γ0/PeR. The semi-analytic form
and numerical efficiency of the mBLA method allowed us to identify these dimensionless
variables and to show that β is uniquely determined by them. The simple three-variables
dependency carries over to related global indicators, and it can be of help in the design,
optimization, and scale-up of UF setups.

We expect that a description of β along the lines of Equation (54) holds also for more
complex dispersions such as solvent-permeable hard spheres and non-ionic nanogels,
based on our experience gained for these systems [15,31,43]. It is likely that additional
independent variables (parameter groups) come into play for these systems on which β
is depending on. The generalized mBLA method can be used to identify these additional
variables. In dealing with UF and particle size polydispersity, partially retentive membranes
and fouling mechanisms are also of importance. These features were not accounted for in
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the present work focusing on generic CP layer and geometry effects. Work on extensions
of the mBLA method to account for cake-layer effects and polydispersity is in progress.
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Abbreviations

CP concentration-polarization
CM cylindrical membrane
FMM flat sheet membranes (top and bottom)
FMS flat sheet membrane (top)/substrate (bottom)
mBLA modified boundary layer analysis (method)
TMP transmembrane pressure
UF ultrafiltration

List of Symbols (SI Units)

Pea single-particle shear-Pèclet number
PeR transversal Pèclet number
α concentration factor
β solvent-recovery indicator
α0, β0 the infinite dilution value of α, β

γ0 third dimensionless variable characterizing β

εδ = 1/PeR perturbation parameter
δCP characteristic thickness of CP layer (m)
R, L, W half-height, axial length, width of channel (m)
RH hydraulic radius (m)
h, H membrane thickness, curvature-corrected thickness (m)
A, M channel cross-section, membrane surface area (m2)
y, z transversal, longitudinal coordinate (m)
V dispersion-averaged velocity (m/s)
v, u transversal, longitudinal velocity (m/s)
u0 axial velocity at center of inlet (m/s)
Uout longitudinal velocity factor of outer solution
U asymptotically matched longitudinal velocity factor
vw permeate flux (m/s)
Vout transversal velocity factor
γ̇∗ shear rate at inlet of membrane wall (1/s)
τw shear stress at membrane wall (Pa)
P dispersion-averaged pressure (Pa)
Pperm, PL pressure at permeate side, at outlet port (Pa)
〈∆T P〉 length-averaged transmembrane pressure (Pa)
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〈∆(l)
T P〉 length-averaged, linearized transmembrane pressure (Pa)

Π particles osmotic pressure (Pa)
ρ dispersion mass density (kg/m3)
n particle number density (1/m3)
a radius of hard spheres (m)
Va particle volume (m3)
φ particle volume fraction
φb, φw particle volume fraction at inlet (feed), at membrane wall
η, ηs suspension-, solvent viscosity (Pa s)
D gradient diffusion coefficient (m2/s)
D0 Stokes–Einstein diffusion coefficient (m2/s)
κ mean Darcy permeability (m2)
Lp hydraulic permeability of clean membrane (m/(Pa s))
K dimensionless effective permeability parameter
Q0, Qperm, QL volume flow rate through inlet, membrane, outlet (m3/s)
Jz, Jex

z , Jb
z longitudinal particle-flux, excess part, bulk part (m/s)

〈(· · · )〉 length-average of (· · · ) (c.f. Equation (18))

(· · · ) cross-section average of (· · · ) (c.f. Equation (22))

Appendix A. Simplified mBLA Method

We present here the derivation of the simplified mBLA expression for the reduced
length-averaged permeate flux, 〈vw〉R/D0, given in Equation (56) of Section 5.3.

On approximating the gradient diffusion coefficient, D(φ), and the dispersion viscos-
ity, η(φ), by their infinite dilution values D0 and ηs, respectively, the mBLA expression for
the concentration profile at the inner membrane wall, φw(z), is reduced to

φw(z)− φb ≈ c φb Pe2
R β0 (vw(z, [φw])/v∗)2

u0(z, [φw])/u0
1
L

∫ z

0

(
vw(z′, [φw])/v∗

)
dz′ . (A1)

Here, v∗ = LP〈∆T P〉, and c is a geometry-dependent factor equal to {1/8, 1/3, 2/3} for
the CM, FMM, and FMS geometries, respectively. The functional dependence of vw(z) and
u0(z) = u0(y = 0, z) on the wall concentration profile is indicated by the bracket [φw].

Setting z = L and assuming φw � φb, it follows in conjunction with the matched asymp-
totic solution relation u0(L)/u0 = 1− β0〈vw〉/v∗ inferred from Equations (44) and (45) that

〈vw〉
R

D0
≈ PeR

β0

[
1 + c φb

Pe2
R (vw(L)/v∗)2

φw(L)

]−1

≡ PeR

β0 + γ
. (A2)

The function γ introduced on the right-hand-side of the second equality is defined in terms
of the left-hand-side. In an ensuing step, we invoke the linear van’t Hoff osmotic pressure
expression, Π = (kBT/Va)φ, for the wall concentration φw(L) at the outlet. This leads to

φw(L)
PeR

≈ 2
9

a2

LP R η

Π(φw(L))
〈∆T P〉 . (A3)

Substitution of the above expression for φw(L)/PeR into Equation (A2), and solving
for γ, results into

γ ≈ β0 9
2

cφbLpηs R
a2 × PeR

(
vw(L)

v∗

)2 〈∆T P〉
Π(φw(L))

= γ0 g , (A4)

where γ0 and the function g are identified as

γ0 = β0 9
2

c φbLp ηs R
a2 (A5)

g = PeR

(
vw(L)

v∗

)2

× 〈∆T P〉
Π(φw(L))

. (A6)
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In combination with Equation (A2), this leads to Equation (56), with the function g given
in Equation (A6).
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