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Abstract: Chronic wounds are caused by bacterial infections and create major healthcare discomforts;
to overcome this issue, wound dressings with antibacterial properties are to be utilized. The require-
ments of antibacterial wound dressings cannot be fulfilled by traditional wound dressing materials.
Hence, to improve and accelerate the process of wound healing, an antibacterial wound dressing is to
be designed. Electrospun nanofibers offer a promising solution to the management of wound healing,
and numerous options are available to load antibacterial compounds onto the nanofiber webs. This
review gives us an overview of some recent advances of electrospun antibacterial nanomaterials used
in wound dressings. First, we provide a brief overview of the electrospinning process of nanofibers
in wound healing and later discuss electrospun fibers that have incorporated various antimicrobial
agents to be used in wound dressings. In addition, we highlight the latest research and patents
related to electrospun nanofibers in wound dressing. This review also aims to concentrate on the
importance of nanofibers for wound dressing applications and discuss functionalized antibacterial
nanofibers in wound dressing.

Keywords: nanofiber; nanomaterial; wound dressing; antibacterial; tissue engineering; biomedi-
cal; electrospinning

1. Introduction

The skin is the body’s largest organ, covering the entire external surface, which shields
the internal organs from germs and thus aids in the prevention of infections. However,
cuts, burns, surgical incisions, and illnesses such as diabetes can affect the structure and
function of this organ.

Skin is divided into two layers, the epidermis and dermis. The epidermis is responsible
for the healing process of the skin. A major part of the epidermal barrier is the stratum
corneum, which plays an important role in this process. Several factors influence the health
of the epidermal barrier, including the individual and the environment. The pH of the skin,
the epidermal hydration, trans-epidermal water loss, and sebum excretion are the most
important biophysical parameters that characterize the status of this barrier. In addition,
the thickness of the epidermis’s outer layer, the size of corneocytes, and the composition
of superficial lipids all impact the regenerative properties of the skin, which contributes
to the various courses of dermatological diseases during the healing process [1–3]. The
understanding of biophysical skin processes could be useful in the development of wound
dressing materials to restore barrier functionality.

Wound dressings serve three functions: (a) Absorption of wound secretions, (b) pro-
tection of the wound from injury, and (c) protection of the wound from bacterial contami-
nation [4]. There are high rates of morbidity and mortality associated with skin and soft
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tissue infections (SSTIs). Although some SSTIs can be successfully treated with medication,
those that affect the subcutaneous tissue, fascia, or muscle can delay the healing process
and lead to life-threatening conditions resulting from the delayed healing process. This
necessitates the use of more effective treatments [5].

Over the last few decades, a wide range of wound barrier materials have been studied,
such as films, hydrogel, emulsions, composites, nano/microfibers, and so on [6–12]. Among
them, nano/microfibers, in particular, have shown a promising future in wound dressing
applications in recent years, making them very appealing to researchers. Figure 1 shows
the growing number of publications in electrospinning for wound healing applications
from the Web of Science database.

Figure 1. Recent publications related to electrospinning for wound dressing (September 2021).

Nano-sized materials have a high surface area/volume ratio, facilitating efficient drug
encapsulation and controlled release kinetics. Furthermore, the physicochemical properties
of nanomaterials, such as hydrophobicity, surface charge, or particle size, can easily be
modified and can be specifically designed to mimic the extracellular matrix (ECM) or other
cellular components while avoiding natural clearance mechanisms such as the immune
system [13–15]. The ECM is crucial in controlling cell behavior and regulates the cells and
sends environmental signals to them for site-specific cellular regulation and distinguishes
one tissue area from another [16]. In the early 1960s, researchers speculated that nanometer-
sized features influence cell behavior [17]. According to recent studies, cells attach better to
fibers that are smaller in diameter than the diameters of the cells [18,19]. Hence, it is critical
to replicate the natural ECM size to create an ideal dressing that functions as a synthetic
ECM to guide the wound healing process. The application of nanometer-sized fibers in
wound dressings has been demonstrated over and over again of for its value in medical
healing treatments.

It is critical to figure out how to create an in-vivo-like architecture that supports cell
growth and re-creation as closely as possible. Due to the various parameters that can be
controlled, the process of electrospinning is of paramount importance in the production of
nanofibers. Using the process of electrospinning, nanofibrous wound dressing materials
can be produced that have diameters ranging from a few nanometers to hundreds of
nanometers, along with specified pore size, porosity, and patterns and alignments to meet
various requirements.

Basic wound dressing properties include absorbency, bacterial barrier, oxygen per-
meability (gas transfer), non-adhesion to healing tissue, and bioactivity, all provided by
electrospun nanofiber structures [20,21]. Abrigo et al. [22] gave an evolution of electrospun
wound dressings. This classification is based on the previous commercial dressing classifi-
cations: Passive, interactive, advanced, and bioactive. Passive meshes in wound dressings
provide physical (i.e., water and gas permeability) and morphological (i.e., adequate poros-
ity and nanometer-scale) properties. Interactive electrospun meshes combine the necessary
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morphological and physical requirements for wound healing with the value-added capa-
bility to address optimal cell responses and limit bacterial proliferation in the wound bed.
The primary strategy used to develop interactive systems is a combination of synthetic
polymers and biopolymers with antibacterial properties and an affinity towards ECM
components. Multicomponent systems are more similar to the ECM. Many researchers are
currently developing drug-loaded nanofibrous meshes to manufacture interactive dress-
ings capable of treating bacterial infection. The goal of bioactive electrospun meshes is to
be a multifunctional system that combines various properties that are capable of treating
all aspects of the wound. Adequate mechanical and physicochemical properties protect the
wound, stimulate the healing process, and control the bacterial load in the wound bed [23].

Researchers are currently experimenting with various strategies to create electrospun
meshes that can support wound healing while preventing infection. Table S1 in the
supplementary information lists the most recent patents for wound dressing materials
using electrospinning methods.

In this review, the main process associated with electrospinning are described, wound
dressings which are currently available are presented; the advances in the fabrication of
electrospun meshes as wound dressings are highlighted, focusing on the current strategies
for developing effective antibacterial nanofibrous wound dressing. Compared to previous
papers, this review highlighted the most recent, up to date literature about functional
nanofibers and their application in the wound healing process. Furthermore, the recent
achievements, developments and current challenges in antibacterial nanofiber webs for the
purpose of wound dressings are discussed.

2. Electrospinning Process (Parameters and Biomedical Applications)

Electrospinning is a voltage-driven technique in which a liquid droplet is electrified
to create a jet, which is then stretched and elongated to create fibers. The main setup
for electrospinning, shown in Figure 2, includes a spinneret (syringe needle) connected
to a high-voltage (5 to 50 kV) supplier, a syringe pump, and a grounded or oppositely
charged collector.

Figure 2. Electrospinning setup.

The liquid is extruded from the spinneret during electrospinning, producing a pendant
droplet due to surface tension. When a droplet is electrified, electrostatic repulsion between
surface charges with the same sign deforms it into a conical shape known as the Taylor
cone, from which a charged jet is released. As soon as the electric field reaches a critical
value (where the repulsive electric forces overcome the surface tension forces), a charged
solution jet is ejected from the tip of the Taylor cone. Because of bending instabilities, the
jet initially extends in a straight line and subsequently undergoes severe whipping motions.
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An electric field can control the route of the jet as the jet is charged. As the jet flies in the air,
the solvent evaporates, leaving behind a charged polymer fiber [23–26].

Certain factors have an impact on the electrospinning process. These factors are
divided into three groups, as shown in Table 1. Researchers studied the effect of the control-
ling parameters, voltage, solution flow rate, concentration, molecular weight, distance, and
solvent grade on the polymer jet’s electric current and charge density during electrospin-
ning. The viscosity of the solution has been found to influence the fiber diameter linked
to the polymer concentration and molecular weight. Increasing the solution viscosity has
been linked to the formation of larger-diameter fibers [24,25]. Solution conductivity is also
linked to the voltage and effect on fiber diameter; the high solution conductivity results
from thin fibers [26,27]. The molecular weight is linked to viscosity, surface tension, and
conductivity, which affects fiber diameter; if it is low, bead structures form [28,29]. The
applied voltage is linked to the tip-to-collector distance, conductivity, and feed rate. Higher
voltage results in thinner fibers, but jet instabilities occur if the voltage is too high, resulting
in thicker fibers [30]. Temperature is linked to viscosity, and an increase in temperature
results in a decrease in fiber diameter thanks to a decrease in viscosity [31].

Table 1. Effecting parameters of electrospinning.

Parameters Effect on Fibers References

Solution Parameters

Viscosity
A higher viscosity results in a large fiber diameter. If the viscosity is
very low, there will be no continuous fiber formation; if the viscosity

is too high, the jet will be difficult to eject from the needle tip.
[24,32,33]

Solution Concentration
A minimum solution concentration is required for fiber formation in

the electrospinning process. Increased concentration leads to
larger diameters.

[34]

Molecular weight
Low molecular weight solutions tend to form beads rather than

fibers, whereas high molecular weight nanofiber solutions produce
fibers with a larger average diameter.

[25]

Solution electrical conductivity

When the electrical conductivity of the solution increases, the
diameter of the electrospun nanofibers decreases significantly. Beads
may also be observed due to the solution’s low conductivity, which
results in insufficient elongation of a jet by electrical force to produce

uniform fiber.

[27,35]

Surface tension
The surface tension of the solution can drive droplets, beads, and
fibers and the solution’s low surface tension ensures that spinning

occurs with a lower electric field requirement.
[36–38]

Process Parameters

Applied voltage
It has been discovered that increasing the electrostatic potential leads
to thinner fibers. However, if too much voltage is applied, the jet may

become unstable, and the fiber diameters may increase.
[39]

Distance from needle to the collector The traveling time of the polymeric jet is affected. Traveling time
should be long enough for complete evaporation of the solvent. [40,41]

Volume feed rate Increasing the feed rate resulted in an increase in fiber diameter and
the formation of a bead structure. [36,37]

Environmental Parameters

Humidity High humidity can cause pores on the surface of the fiber. [33,42]

Temperature Temperature increases cause a decrease in fiber diameter due to a
decrease in viscosity. [42]
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Electrospun nanofibers are widely used in biomedical applications such as tissue-
engineered scaffolds (vascular implants) [43], drug-delivery systems [44–46], and medical
treatments in healthcare to improve wound healing [8,12,47]. Figure 3 shows the medical
applications of electrospinning. Wound dressings are one of the most well-known of these
applications. Thanks to the electrospinning technique, the fibers can be patterned or aligned
to increase the contact efficiency of the cells. Furthermore, nanofibrous scaffolds have been
shown to improve cell adhesion, protein adsorption, and cell growth and differentiation.

Figure 3. Medical applications of electrospinning.

Antibacterial nanofibers have received special attention. With the incorporation of
antimicrobial agents, the design goal of wound dressing materials has been to avoid or
reduce infection, which is the cause of bacteria. Antimicrobial nanofibrous wound dressings
have recently emerged as a viable technique to decrease infection and wound bacterial
colonization to improve the healing process (Table S2 shows recent studies for antibacterial
electrospun wound dressings).

3. Antibacterial Nanofibers for Wound Dressing

One of the major causes of chronic infections can be linked to bacterial infections [48–51],
which fester at a very high rate in existing wounds; thus, the need to use antibacterial
materials is of paramount importance. With a large surface area, antibacterial nanofibers
allow for the efficient integration of antibacterial agents [52]. In recent years, nanotechnol-
ogy has advanced at a blistering pace. The areas of research under nanotechnology are
also expanding at an exponential rate. One of the research areas under this revolution is
nanomedicine, and over recent decades, this field has shown great potential of becoming
a major field of research. Research in this field has led to drastic improvement of human
health [53]. Several techniques have been utilized to produce nanofibers, such as melt spin-
ning, chemical vapor deposition, sinter technology, solution spinning, and electrospinning.
Among these techniques, the electrospinning technique has been determined as the most
cost-effective method in producing continuous nanofibers from numerous polymers or
compounds [54–58]. The nanofibers produced via electrospinning have a large specific
area, a high porosity, and huge interest in applications in tissue engineering, regenerative
medicine, and wound dressing.
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The foremost function of the skin is to protect the internal organs, muscles, and bones,
which can be affected by burns, cuts, or illnesses. The process of healing a wound starts
instantly when the skin is affected. The presence of bacteria will reduce the efficacy of
healing the wound and increase the chances for an infection to occur and fester. The absence
of Gram-positive organisms such as staphylococcus aureus and streptococcus pyogenes
would exponentially increase the wound’s healing rate. Thus, these microorganisms
must be eliminated quickly. After surgery or an injury, the exposed tissues may be in
danger of contracting an infection, which may lead to diseases, and in severe cases, it may
even lead to death [48]. Thus, the dressing of the wounds would help prevent infections
and maintain an environment conducive to healing wounds [59]. For wound healing,
electrospun nanofibers have the following features that are imperative for their usage:

• Mimicry of the composition.
• Mimicry of the structure.
• Incorporation of bioactive materials.
• Mechanical mimicry.
• Regulation of the skin cell response [48].

3.1. Mimicry of the Composition

Various materials have been used in the field of wound healing, such as hydrogels,
gas-foaming formed scaffolds, or decellularized porcine dermal matrices [60–62]. However,
these materials cannot reproduce the skin’s extracellular matrix (ECM) [63]. Electrospin-
ning has found traction in recent years for wound healing, as it can be used to produce
biomimetic nanofibers with the required features from numerous synthetic and natural
polymers [64]. Collagens, laminins, elastins, proteoglycans, and polysaccharides are some
of the proteins present in the ECM of skin [65]. Due to electrospinning’s multifaceted
nature, nanofibers of type I and III, which make up a major portion of the dermal matrix,
can be produced [66]. By direct electrospinning, surface immobilization, or blending,
electrospun nanofibers can be produced that have a high degree of similarities with the
ECM of the skin. Table 2 shows the various electrospun nanofibers that can be utilized to
recreate the ECM of the skin.

Table 2. Electrospun nanofibers mimicking the ECM of the skin.

Composition Approximate Diameter Reference

Collagen 460 nm [66,67]

Collagen/chitosan (134 ± 42) nm [68]

Collagen/PCL (170 ± 0.075) nm [69]

Collagen/Zein (423–910) nm [70]

Collagen/elastin/PEO (220–600) nm [71]

Laminin I (90–300) nm [72]

PCL/gelatin (470 ± 120) nm;
(409 ± 88) nm [73,74]

Gelatin (570 ± 10) nm [75]

Polyurethane/gelatin (0.4–2.1) µm [76,77]

HA/PEO (70–110) nm [78]

Silk fibroin/chitosan (185.5–249.7) nm [48]

Silk fibroin/PEO (414 ± 73) nm; 1 µm [79,80]

Chitin 163 nm [81]

Carboxyethyl chitosan/PVA (131–456) nm [82]

Chitosan/gelatin (120–220) nm [83]
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Table 2. Cont.

Composition Approximate Diameter Reference

PLGA (150–225) nm [84]

PLGA/collagen (170–650) nm [85]

Chitosan/PEO (130–150) nm [86]

Hyperbranched polyglycerol (58–80) nm [87]

3.2. Mimicry of the Structure

Upon observation under an electron microscope [88], human skin was found to have
three zones (papillary, mid, and deep zones), which are composed of a fine layer of fibers
near the epidermis with a thick layer of fiber bundles and a loosely arranged fiber bundle
layer. The fiber bundles consist of parallelly aligned fibrils. It was later found that the
collagen present in the skin has a basket-weave structure [89–91]. To achieve this structure,
numerous attempts were made to produce electrospun nanofibers similar to it [92–94];
using the weaving techniques present in the industry, forays have been made to produce
nanofiber yarns with a basket-weave [95,96]. Using a process called ‘noobing’, 3D nanofiber
scaffolds with a basket-weave structure were produced [97].

3.3. Incorporation of Bioactive Materials

With the introduction of therapeutic agents, the process of wound healing can be accel-
erated at the site of a wound. The local delivery of therapeutic agents such as antioxidants,
anesthetics, enzymes, growth factors, and antimicrobial agents can be comprehensively
achieved with the help of electrospun nanofibers [98]. The advantage of using electrospun
nanofibers to deliver these agents over the commonly used drug delivery system is that
the nanofibers have a fast response rate with greater control over the release rate [99,100].
The therapeutic agents can be introduced into the electrospun nanofibers via co-axial elec-
trospinning or emulsion electrospinning [101,102]. The process of CO2 impregnation or
infusion or surface immobilization can be utilized to introduce the therapeutic agents into
the electrospun nanofibers [103,104]. Table S3 in Supplementary Materials lists therapeutic
agents that can be incorporated with electrospun nanofibers.

3.4. Mechanical Mimicry

The parameters of the scaffold can influence the process of tissue regeneration, and
cellular behavior used [105]. Thus, the mechanical properties of late have come into the
limelight [106]. Due to a low degree of orientation and extension of polymer chains, elec-
trospun nanofibers have low tensile strength and Young’s modulus [107]. Thus, it is of
preponderant importance to select the appropriate raw material that can encompass the de-
sired properties [108]. Surface coating, mechanical treatments, and thermal treatments can
be utilized to introduce the required properties into the electrospun nanofibers [109–111].
In Table 3, a collection of nanofibers that come close to the mechanical properties of the
human skin and a comparison with the mechanical properties is presented.

Table 3. Nanofibers mimic the mechanical properties of the human skin with a comparison.

Human Skin PCL/Collagen HA/PLGA PLGA/Collagen

Tensile modulus
(MPa) 15–150 21.42 ± 0.04 28.0 40.43 ± 3.53

Ultimate tensile stress
(MPa) 1–32 8.63 ± 1.44 1.52 1.22 ± 0.12

Ultimate tensile strain
(%) 35–115 24.0 ± 7.16 60.07 96 ± 13

Reference [112] [113] [114] [112]
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3.5. Regulation of the Skin Cell Response

For a wound to heal ECM deposition, skin cell proliferation and migration must take
place. It was found that a spreading morphology was shown by cells when electrospun
nanofibers with type I collagen, laminin, and integrin ligands were used for wound
dressings [67]. In a study conducted by Yoo et al., it was found that the mRNA levels for
loricin and keratin 1 were higher when the PCL nanofibers were cultured with keratinocytes
and chemically conjugated human epidermal growth factors were utilized [115]. To increase
re-epithelialization when scaffolds are used, aligned PVA nanofibers can be used, as they
would assist the keratinocytes in the wound healing process [116].

4. Biopolymeric Nanofibrous Antibacterial Wound Dressings

The ecofriendly nature and biocompatibility of biopolymers are some of the character-
istics due to which biopolymers are extensively studied to create wound dressings with the
desired characteristics. Since the biopolymers show a high degree of similarity to the ECM
structure, high bioactivity, and are biodegradable, polysaccharide biopolymers, among the
many biopolymers utilized, are comprehensively studied. The following are the various
biopolymers used in the study of wound healing:

• Collagen.
• Alginate.
• Chitosan.
• Gelatin [117].
• Fibronectin and fibrin [118].

Collagen is used in wound dressing due to the following reasons:

- Low antigenicity and inherent biocompatibility.
- Increase in fibroblast production and permeation.
- Helps to preserve leukocytes, macrophages, fibroblasts, and epithelial cells.
- Attracts fibroblasts and encourages the deposition of new collagen to the wound bed.

Collagen nanofiber webs are similar to native tissue architecture and are easily remod-
eled due to their simple structure, easy preparation, availability, and relative uniformity.
Collagen nanofiber helps the healing process but does not show anti-bacterial proper-
ties. An antibacterial additive or treatment is needed. On the other hand, chitosan not
only shows biocompatibility and biofunctionality but also antibacterial, analgesic, antioxi-
dant, and neuroprotective properties. Electrospun chitosan nanofiber webs are promising
candidates for wound healing.

Gelatin nanofibers are interesting for use in the wound healing process due to their
biodegradable, easy to spin, controllable thickness, and physical stability properties.
Gelatin nanofiber does not show antibacterial properties. However, mixing with antibacte-
rial materials such as chitosan, curcumin, or nanoparticles can improve the antibacterial
property of gelatin nanofibers [119–121].

To treat burn injuries, a cellulose nanofibril wood-based wound dressing has been de-
veloped. Cellulose is a very commonly available polysaccharide that helps speed up wound
healing by providing assistance in the processes of epithelialization, granulation, and tissue
regeneration [122]. Cellulose can be obtained from bacteria (Acetobacter xylinum) and
plants. The cellulose obtained from the bacteria is called bacterial cellulose; this cellulose
has great mechanical characteristics, biocompatibility, biodegradability, and physicochem-
ical properties required to produce a wound dressing material [123]. Bacterial cellulose
can be used to regenerate blood vessels, reconstruct the damaged tissues, and wound
healing since it can mimic the structure of the ECM with great ease and similarities [124].
The cellulose-based wound dressing properties can be elevated by introducing antimi-
crobial drugs, hormones, antioxidants, and enzymes [125]. Gallic acid can be used to
functionalize cellulose acetate nanofibers, as it is a polyphenol compound with antioxidant,
anti-inflammatory, and antibacterial characteristics [126]. The ECM of vertebrates contains
Hyaluronic acid (HA), a naturally occurring nonimmunogenic linear polysaccharide [127].
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For wound healing, numerous hydrogels based on HA were examined. The HA was
functionalized with thiol [128], glycidyl methacrylate [129], and DNA [130], to help with
networking. The HA used in wound dressing materials mostly supports cellular migration,
proliferation, and absorbing exudates, hence, leading to the regeneration of tissues and
healing of the wound [131]. Shell fibers of HA core-poly (lactic-co-glycolic acid, PLGA)
with epigallocatechin-3-0-gallate (EGCG) were produced and developed by Shin et al. [100]
and used as a wound dressing on diabetic rats, and it was found that the HA/PLGA-E
fibers used helped to increase the rate of the wound healing process. A blend of HA/poly
(vinyl alcohol) (PVA) nanofibers was also developed for wound dressing [132]; here, the
HA is carried by the PVA polymer along with the addition of hydroxypropyl-βcyclodextrin
(HP βCD), which is used a stabilizing agent in electrospinning, to allow a water-based
fabrication process. Due to a high degree of biocompatibility and biodegradability, chitosan
(CS) and chitin are good options in developing wound dressing materials, with chitin being
one of the most available natural amino polysaccharides whose production is equal to that
of cellulose and can be found in fungi cell walls as well as the exoskeletons of crustaceans,
insects, and invertebrates. For the purpose of wound dressing, PVA/CS/tetracycline hy-
drochloride (TCH) [133], honey/PVA/CS [134], and bacterial cellulose/CS/polyethylene
oxide (PEO) CS-based antibacterial nanofibers have been suggested. With very low toxicity
levels, good biocompatibility, and inexpensive cost, alginate, an anionic polymer derived
naturally [132], can be utilized to produce wound dressings made from collagen alginate,
gelatin alginate calcium alginate, and calcium sodium alginate [125]. When used for wound
healing, alginate maintains appropriate levels of moisture and greatly reduces bacterial
activity at the wound site and accelerates the wound’s healing process [135]. It is blended
with various synthetic polymers to produce an electrospun nanofibrous wound dressing
based on alginate [136]. Collagen nanofibers were used to produce wound dressing materi-
als by Zhou et al. [137], which were used to vitalize epidermal differentiation and human
keratinocytes and increase the rate of healing of the wound. The collagen fibrils were
paired with synthetic and natural polymers, which would help maintain the moisture and
help absorb the exudate from the wound and accelerate the process of wound healing [138].
Yao et al. [139] developed a gelatin/keratin blended nanofiber wound dressing material,
which enhanced the migration, adhesion, and cell proliferation leading to vascularization
and healing of the wound, which was observed in the animal test model.

Natural biopolymers such as silk fibroin (SF) obtained from the mulberry silkworm,
Bombyx mori, are utilized in biomedical applications due to their inexpensiveness, biocom-
patibility, biodegradability, green processing, and very low inflammatory response [140].
Along with these properties, SF has great exudate absorption capacity, pliability, and ad-
herence. This can be used as a stand-alone or combined with alginate, multiwalled carbon
nanotubes, chitosan, etc. [125]. The skin’s environment can be mimicked to a high degree
by the SF, leading to an accelerated wound healing process and minimized scarring [141].
Thus, wound dressing materials based on SF are being researched and developed [142].
Antioxidant Fenugreek/SF nanofiber wound dressing material was fabricated by Selvaraj
and Fathima [143], which, along with wound healing characteristics, also helps with colla-
gen deposition and complete re-epithelialization. The potential for wound healing using
biopolymeric nanofibers is excellent, but the properties offered are seldom enough to
fulfill both disinfection and wound healing. Functional agents that help in accelerating the
wound healing rates must be used, hence hybridizing the biopolymeric nanofibers [118].

5. Nanoparticle Containing Nanocomposite Antibacterial Nanofibers

The wound healing process is continually put on the line and tested with the presence
of bacteria. When bacteria are present, they may lead to inflammation of the wound and
delay the process of healing. Bioactive wound dressings are a new field of wound dressing
and show great potential in displacing the conventional wound dressing methods [118].
Wound dressing materials can be modified with surface-functionalized agents, bio blends,
and antibacterial nanocomposites or nanoparticles to have antibacterial action. In recent
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years, silver nanoparticles were used in polymeric nanofibers due to their ability to resist
bacterial activity [144]. The wound dressing material physically shields the wound from
bacterial activities and helps with the differentiation of fibroblasts and their migration
at the wound site. According to the mode of loading and the type of antibacterial agent
utilized, various types of wound dressings are present such as hydrogels, films, foams,
or sponges [118].

An open wound is open for bacterial attacks, increasing inflammation and leading
to long periods of wound healing. As a result, it would lead to impeding the production
of new granulation tissues and damage the ECM’s constituents. When an antimicrobial
dressing is applied at the site of the wound, pathogens cannot enter the wound as their
pathway is blocked, and those that entered prior to applying the wound dressing will be
eliminated efficiently. Moreover, the immune system is induced to promote the migration
of keratinocytes/fibroblasts, leading to faster wound healing [145].

Nanoparticles such as zinc oxide, silver, iron oxide, and gold are used for biodetection,
medical devices, drug delivery, and wound healing [146]. Because of their ability to fight
human pathogens, they can be used to design wound dressings. For this reason, metallic
nanoparticles have recently attracted much interest from researchers. Silver nanoparticles
are of particular interest. They have strong toxicity and a large surface area, increasing
contact with pathogens [147]. Silver nanoparticles and silver complexes have already found
wide use in producing antimicrobial materials and wound healing [6]. The incorporation of
metal nanoparticles and metal oxide into the polymeric membrane structure is considered
one of the better solutions for developing dressings with antimicrobial properties. Materi-
als such as hydrogels, nanocomposites, and nanofibers have high porosity, excellent gas
permeability, and a high surface-area-to-volume ratio. These are required in wound healing
as they ensure proper cellular respiration, hemostasis, exudate removal, improved skin
regeneration, and hydration [148]. In the design of wound healing materials, it is believed
that the best strategy is to combine various non-conventional antimicrobial formulations in
order to harness their synergistic effects to overcome microbial resistance [146]. Combining
hydrogels, nanocomposites, or nanofibers with nanoparticles seems to be the optimal
solution for creating wound healing materials. The introduction of Ag nanoparticles into
the polymer structure can be carried out by different methods such as electrospinning,
chemical modification, or hydrogel formation [149,150]. Hongli et al. managed to obtain
porous silver nanoparticle/chitosan composites with wound healing activity by in situ
reductions of silver nanoparticles with gelatin [6]. Kumar et al. created a chitin hydro-
gel/nano ZnO composite bandage [148], while Jatoi et al. obtained poly(vinyl alcohol)
composite nanofibers embedded with silver-anchored silica nanoparticles [150]. Table 4
summarizes various research studies using nanocomposites, nanofibers, hydrogels, and
nanoparticles to produce materials suitable for wound healing.

Table 4. An overview of recent wound dressing materials constructed from nanoparticles and nanomaterials.

Material Nanoparticles Bacterial Species Ref.

Carboxymethyl Chitosan/Polyethylene
Oxide Nanofibers (CMCTS–PEO) Ag (12–18 nm) S. aureus, P. aeruginosa, E. coli,

fungus Candida albicans [149]

Alginate/Nicotinamide Nanocomposites Ag (20–80 nm) S. aureus and E. coli [150]

Nanofibrous Poly vinyl alcohol, chitosan Ag S. aureus and E. coli. [151]

Nanofibrous mats from cellulose acetate Ag S. aureus and E. coli. [152]

Nanofibrous membrane from Gum Arabic,
polycaprolactone, polyvinyl alcohol Ag S. aureus, E. coli, P. aeruginosa

and C. albicans [153]

PVA-co-PE nanofibrous membrane Ag S. aureus and E. coli. [154]

Electrospun peppermint oil on polyethylene
oxide/Graphene oxide CeO2 S. aureus and E. coli. [155]
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Table 4. Cont.

Material Nanoparticles Bacterial Species Ref.

Hyaluronic acid ZnO S. aureus, B. subtilis, E. coli,
P. aeruginosa, and V. cholerae [156]

Chitosan/cellulose acetate CeO2 S. aureus and E. coli. [157]

Chitosan/poly(N-vinylpyrrolidone) TiO2
E. coli, S. aureus, B. subtilis

and P. aeruginosa [158]

Chitosan/pectin TiO2
E. coli, S. aereus, A. niger,
B. subtilis, P. aeruginosa [159]

Electrospun Chitosan/Gelatin Fe3O4 S. aureus and E. coli. [160]

B-Chitin Hydrogel Ag (4–8 nm) S. aureus and E. coli. [161]

Chitosan/Polyvinyl Alcohol
Hydrogel, Collagen Ag (4–19 nm) P. aeruginosa and S. aureus [162]

Linseed hydrogel Ag (10–35 nm)

E. coli, S. mutans, A. niger,
S. epidermidis, P. aeruginosa,

S. aureus, acillus subtilis,
Actinomyces odontolyticus

[163]

6. Biofunctionalized Antibacterial Nanofibers

Biofunctionalized antibacterial nanofibers are a type of wound dressing material where
the biopolymeric nanofibers are surface functionalized with amino acids and antimicrobial
peptides [118]. The two most important biopolymers are chitosan and silk fibroin when
dealing with biofunctionalized nanomaterials, since they allow various antimicrobial agents
to be attached via the numerous functional groups present. The antimicrobial peptides
(AMPs) bound to the surface of the nanofibers are studied widely [164–166]. Due to the
biocompatibility offered by the AMPs, they have now become one of the most utilized
antimicrobial additives for wound dressings. This wound dressing system produced is
a hybrid system, and the type of AMP tailors the antimicrobial activity of these hybrid
systems utilized [118]. For the AMP to be immobilized on the surface of the nanofiber,
numerous approaches are utilized. Co-spinning and covalent binding are approaches
implemented in producing the nanofibers with AMP immobilized onto the surface [166].
The process of covalent immobilization provides the best process, as this leads to negligible
leaching of the AMP and long-term stability and nontoxicity [167]. Various antibacterial
biohybrid nanofibrous wound dressings are produced based on the surface functionality of
silk fibroin (SF). On the SF nanofibers, various functional groups such as carboxyl, hydroxyl,
phenol, and amines are loaded [168]. It has been observed that SF biohybrid nanofibers
do not allow the growth of bacteria [118]. If the immobilized factor amount is higher, the
antibacterial activity is higher. Over a period of three weeks, the effect of biofunctionalized
nanofibers remains constant, disregarding the temperature of storage. It has been found
that the bacteria S. Aureus can reduce the efficiency of AMPs by lowering the negative
surface charge, changing the fluidity of their membrane, or using their pumps to keep the
AMPs away [169].

Another biopolymer that is biocompatible and biodegradable is chitosan, and this
has excellent antimicrobial properties against various microorganisms such as fungi, al-
gae, viruses, and bacteria [170–174]. The electrostatic interactions of the amine groups
present in chitosan undergo electrostatic interactions on the cell wall [172]; due to this, the
permeability of the cell wall is altered. Hence, the osmotic balance is disrupted, which
leads to the restriction of the growth of the microorganism. In addition, the leakage of
intracellular electrolytes occurs due to the hydrolysis of peptidoglycans [175]. Due to this,
several blends of functionalized chitosan nanofibers have been suggested [118]. The posi-
tive charge of the amino acids is the key factor in the protection against microorganisms; to
this end, L-asparagine [176], L-arginine [177], and L-lysine [118] have been grafted onto the
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nanofibers of chitosan to increase the density of positive charge present. A wound dressing
made from deacetylated/arginine functionalized chitosan has been developed [178]. The
bio functional component helps with the higher deposition ability of collagen; this, in turn,
helps with the healing of the wound at a greater rate [118]. Table 5 below shows examples
of biofunctionalized antibacterial materials.

Table 5. Biofuntionalized antibacterial materials with proteins.

Protein Co-Polymer Antimicrobial Agent Bacterial Species Ref.

Zein PU Ag NPs E. coli, S. aureus [151]

Zein PU/CA Streptomycin V. vulnificus, S. aureus,
B. subtilis [177]

Keratin PVA, PEO Ag NPs E. coli, S. aureus [178]

Collagen CS ZnO S. aureus, E. coli [179]

α-lactoglobulin PEO Ampicillin E. coli, P. aeruginosa,
B. thailandensis [180]

Silk fibroin PEO TiO2 NPs E. coli [181]

Silk fibroin - Ag NP coating S. aureus, P. aeruginosa [182]

Silk fibroin PEO Cu2O NPs S. aureus, E. coli [47]

Lactoferrin Gelatin - E. coli, S. aureus [183]

Gelatin Alginatedialdehyde Ciprofloxacin,
gentamicin

P. aeruginosa,
S. epidermidis [184]

Proteins can be combined with polymer structures using electrospinning. However,
this is a very challenging process due to their molecular weight, the ionic, hydrogen, and
disulfide bonds present, and the complexity of their structure. During the electrospinning
of proteins, the most important factor is the proper choice of solvent. One must consider
their solubility in a given solvent and the degree of unfolding and entanglement of the
protein chain. In addition, the solvent affects the fiber size, crystallinity, morphology,
and mechanical properties of the protein. Therefore, adding a synthetic polymer during
electrospinning is necessary for this to occur continuously and without interference. The
production of wound healing dressings during electrospinning uses animal or plant-based
proteins [185–188]. The activity, degradation, and stability of the material are determined
by the proteins’ size, chemical structure, purification process, and protein isolation. The
purity and composition of the obtained raw material affect the reproducibility of the
electrospinning process and the properties of the final product [47,188].

Silver-based compounds have been used since the early 1970s for wound care ap-
plications [189] and hence the combination of silver with sulphadiazine was established,
which led to the usage of silver in wound dressings [190]. The active antimicrobial entity
in wound dressings that makes use of silver is the silver ion, and these ions react with the
thiol (-SH) groups, leading to the generation of reactive oxygen species (ROS), and this is
the major contributor to the antibacterial efficacy of the wound dressing used. Silver ions,
when released, have the potential to cross various biological partitions [189].

Due to the history of the usage of silver in therapeutic agents, the potential toxicity
of silver is a well-documented fact. The ingestion or dermal exposure or inhalation of
salts of silver in sufficient amounts lead to Argyria and Argyrosis, which is blue–grey
discoloration of the skin and eyes. This occurs mainly due to the deposition of the silver
precipitates. Although argyria is not toxic in nature, it leads to disfigurement and, hence,
this is considered an undesirable effect [191,192]. Historical studies have shown that high
dosages of silver nitrate lead to gastrointestinal damage and rarely lead to fatalities [191].
There has been little to no evidence to support the fact that silver in any form might be
toxic in nature to the cardiovascular or immune, reproductive, or nervous systems in
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humans [193,194]. A threshold limit value of 0.01 mg/m3 for metallic silver in soluble
form and 0.1 mg/m3 for metallic silver has been set by the American Conference of
Governmental Industrial Hygienists (ACGIH). These values have been set based on the
limit values for protection against Argyria [195].

Liu et al. [196] conducted a cytotoxicity study of the nanofibrous membranes produced
from PEU and CA for 3 days in in vitro conditions with rat skin fibroblast cells according to
DS/EN ISO10993-5 [197]. The results of these tests showed that the pure PEU and co-spun
PEU/CA nanofibers containing PHMB had no toxicity towards the fibroblast cells of the
rats, as the cells showed adhesion to the nanofibrous membranes and showed growth.
Thus, this led to the conclusion that the polymers used were biocompatible and safe to use
as wound dressing materials.

To determine the biocompatibility of nanofiber-based wound dressing materials, clinical
trials have to be undertaken to gain extensive knowledge, but the number of studies being
undertaken at the clinical phase is very limited [198]. The number of clinical trials to
determine the effects of electrospun nanofibers can be found on the clinical trial website [199].

7. Conclusions

The interest in electrospun nanofiber mats has risen drastically due to their unique
properties such as high specific surface area, highly porous structure, tight pore size and
pore size distribution, interconnected pores, and good chemical and biological activity.

Herein, we have briefly reviewed the role of the nanofiber web in wound dressing
applications. For an ideal wound dressing, a future perspective, the requirements are:

• Nontoxic to mammal cells.
• Nonantigenic.
• Good mechanical resistance.
• Elastic and flexible.
• Antibacterial.
• Permeable for gas exchange.
• Inexpensive.
• Long shelf-life.

Incorporating functional nanoparticles or bioactive agents into nanofibers improves
the antibacterial property of wound dressing materials. There is no doubt that the nanofiber
web has provided a promising wound dressing material in biomedical applications for
its unique properties. In recent years, the limitation of low production behind the elec-
trospinning process has been due to industrial production devices. On the other hand,
bringing nanofiber webs into the clinical field still needs to be improved. With more clinical
research and improved functional nanofiber web, the electrospun nanomaterials can offer
an unprecedented breakthrough in biomedical applications.
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