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Abstract: Ion channels are membrane proteins that play important roles in a wide range of funda-
mental cellular processes. Studying membrane proteins at a molecular level becomes challenging in
complex cellular environments. Instead, many studies focus on the isolation and reconstitution of the
membrane proteins into model lipid membranes. Such simpler, in vitro, systems offer the advantage
of control over the membrane and protein composition and the lipid environment. Rhodopsin and
rhodopsin-like ion channels are widely studied due to their light-interacting properties and are a
natural candidate for investigation with fluorescence methods. Here we review techniques for synthe-
sizing liposomes and for reconstituting membrane proteins into lipid bilayers. We then summarize
fluorescence assays which can be used to verify the functionality of reconstituted membrane proteins
in synthetic liposomes.

Keywords: ion channel; liposome; synthetic bilayer; membrane protein; rhodopsins; reconstitution;
fluorescence assay; pH-sensitive dyes

1. Introduction

Ion channels provide a pathway for the movement of ions into and out of cells and
organelles in all living organisms [1]. They are involved in many important cellular
processes including membrane shaping and stabilization, immune response, and muscle
contraction [1–3]. They are also critical to all cellular communication in nerves, muscles, and
synapses [4–6]. Understanding the functioning of ion channels is of the utmost importance
not only due to their role in essential cellular processes [1–6], but also for their importance
as molecular targets for drug development [7–9].

Detailed study of the ion channels is frequently challenging due to the complexity
of the membrane in which they are embedded [10–12]. In recent years, in vitro studies
have been used to disclose various features of reconstituted ion channels in synthetic lipid
bilayers [13,14]. Moreover, in vitro assays offer control over the entire composition of the
system, which is difficult within in vivo assays. To investigate how membrane-protein ion
channels are affected by the surrounding lipid environment, isolation and reconstitution
of these proteins into model lipid membranes is required [15,16]. Different systems for
reconstitution allow for various biochemical and biophysical techniques for characterizing
the ion channels [17].

Of particular interest are techniques that leverage fluorescence microscopy to measure
spatiotemporal phenomena in high throughput at high resolution [18]. The flow of the ions
through the lipid membranes of vesicles can be quantified by fluorescence simultaneously
while fluorescent dyes are used as indicators to examine the activity of the reconstituted
proteins [19,20].

Here we give an overview of the types of techniques for synthesizing liposomes.
We also summarize recent approaches for membrane protein reconstitution into lipid
bilayers and the limitations of each method. Finally, we discuss fluorescence assays which
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can be used to verify the functionality of the reconstituted membrane proteins and the
corresponding strengths and weaknesses of such assays.

2. Lipid and Membrane Bilayers

Membrane bilayers form the basis of compartmentalisation within biological cells and
systems [21]. Of particular interest are the cellular membranes of living organisms, which
are composed of a combination of lipids and membrane proteins. Lipids are a diverse
range of molecules that are generally hydrophobic or amphipathic in nature [22]. Lipid
structure can be divided into polar hydrophilic ‘head’ groups which are composed of
phosphates (phospholipids) or carbohydrates (glycolipids), and hydrophobic ‘tail’ groups
which are made up of acyl chains that are either saturated or unsaturated [23]. Within
aqueous environments, lipids have the ability to form spherical bilayers, with their head
group facing outwards and their tails facing inwards. This results in the formation of a
hydrophobic environment encased withing the lipid membrane leaflet. Bilayer formation
varies based on the types of lipids used, along with how the lipid compositions interact
with each other. For example, positively charged amphiphilic lipids are poorly soluble
in water, so they often need to be dissolved in other solvents such as chloroform and
driven into forming membrane structures [24]. One membrane bilayer structure that is
of particular interest is liposomes. Liposomes are vesicles formed by an aqueous interior
and a surrounding membrane bilayer, usually formed of amphiphilic phospholipids and
cholesterol (Figure 1B) [25]. Important areas in liposome research include methods for
producing liposomes of varying sizes and structures, applications of liposomes such as
encapsulation of molecules within the aqueous interior, protection and targeted delivery of
therapeutics [26,27], and lastly the use of liposomes as synthetic models for studying the
interactions of cellular membranes and membrane proteins.
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vesicles (LUVs) (100–500 nm), and giant unilamellar vesicles (GUVs) (~1 µm). (B) Membrane bilayer with the hydrophilic
lipid head groups (dark blue) facing the internal and external aqueous environment (light blue). The inwardly facing
hydrophobic tail groups (black) create a hydrophobic environment (white) within the membrane bilayer. (C) Structure of an
MLV (multi-lamellar vesicle) including concentric internal bilayers. (D) structure of an MVL (multi-vesicular liposome)
including non-concentric internal bilayers.

2.1. Liposomes

Liposomes encompass a broad range of bilayer structures that can be formed from
natural and synthetic lipids, with their classification varying based on size and structure.
The most widely used are unilamellar liposomes, which are composed of a single membrane
bilayer, and can be further classified based upon their size. Classifications include small
unilamellar vesicles (SUVs, <100 nm), large unilamellar vesicles (LUVs, 100–500 nm), or
giant unilamellar vesicles (GUVs, ≥1 µm) (Figure 1A) [23]. Other types of liposomes
outside of unilamellar include multilamellar vesicles (MLVs) which are formed of multiple
concentric bilayers, and multivesicular liposomes (MVLs) which are formed of multiple
non-concentric bilayers or interconnected monolayers within a larger membrane vesicle
(Figure 1C,D) [28].

2.2. Synthesis of Liposomes

There are various methods for producing each type of liposome. MLVs can be formed
by dissolving lipids in an organic solvent such as chloroform, and using a nitrogen stream
to subsequently create a lipid film [29]. They can also be formed through evaporating
solvent emulsion droplets containing lipids from an agitated aqueous mix [30], or from the
addition of proliposomes (liposomes encapsulated in a salt or sugar granule) to aqueous
solution [31]. Both SUVs and LUVs can be formed using multiple methods such as extrusion
of a lipid mixture through a polycarbonate filter, detergent dialysis (detergent-stabilized
lipids form liposomes as detergent is removed), sonication of MLVs into smaller liposomes,
ethanol injection (ethanol is rapidly injected into lipid-buffer solution), and freeze-thawing
to form LUVs [25]. GUVs can be formed using electroformation, where lipids form GUVs
on an electrode surface by inducing an electro-osmotic effect from a voltage current [32].
They can also be produced by swelling hydrogel lipid films [33], gentle hydration of dried
lipid films [34], and emulsion-based methods [35].

2.3. Microscopy

The method of microscopy used for visualisation of liposomes is dependent on the
liposome size and type. Both traditional light microscopy and phase-contrast microscopy
can be used to visualize GUVs and larger liposomes [36], but these methods are unable to
provide details beyond broad morphology and heterogeneity [37]. Electron microscopy
has been used for imaging all sizes of liposomes, allowing for characterization of bilayer
structures in liposomes as small as SUVs [37]. This powerful visualisation of bilayers
does have its drawbacks, however. Negative-staining transmission electron microscopy
(TEM) involves particles being adsorbed to a carbon film grid, surrounded by a heavy
metal salt, and quickly air-dried during which the heavy metal salt forms an amorphous
film embedding the particles of interest in the process [38]. This process is susceptible to
causing changes to the original vesicular structure and the stains themselves can lead to
the formation of dark and light fringe artifacts which could be misinterpreted as lamellar
structures [39]. Cryo-electron microscopy is an alternative that does not require staining
staining, instead using a thin film of liposome suspension (usually < 500 nm) that is plunge-
frozen to allow for fast freezing, creating a thin layer for imaging [38]. During this process
rearrangement and flattening of larger liposomes is possible [38], with typically fewer
liposomes able to be imaged than via TEM [40].

Fluorescence microscopy provides a means for characterizing liposomes of all sizes
and morphologies. SUVs, LUVs, and GUVs have the capacity to be fluorescently labelled
in various ways to visualize liposomes with minimal disruption to membrane stability [41].



Membranes 2021, 11, 857 4 of 18

The use of fluorescent dyes, such as lipophilic carbocyanine dyes, allows for the interca-
lation of fluorescent labels directly into the membrane bilayer [42]. The head-groups of
lipids can also be directly labelled with fluorescent probes, which can then be incorporated
as part of the membrane bilayer [43]. These modes of fluorescent labelling are suited for
high-throughput and single-molecule super-resolution microscopy methods, such as pho-
toactivation localisation microscopy (PALM) [44] and total internal reflection fluorescence
(TIRF) microscopy [45]. For GUVs, encapsulated fluorescent proteins like GFP can be used
as a means of visualising the internal liposome environment [46]. Their larger size also
makes them suitable for confocal microscopy as a means of eliminating background noise,
controlling the focal plane, and observing 3D z-stack images to better characterize labelled
membrane structures [47]. Fluorescence microscopy also has the advantage of being able
to observe multiple fluorescently labelled liposomes at once, provided they are sufficiently
separated in emission spectra [48]. Furthermore, the implementation of environment-
sensitive and self-quenching fluorophores is useful for creating responsive liposome assays
that can characterize changing internal and external environments such as the flow of ions
across liposome membranes [48–52]. There are some inherent drawbacks of fluorescent
labelling such as the requirement for sample modification and potential photobleaching
over time [53,54]. However, with the use of appropriate labels, fluorescence microscopy
provides a unique opportunity to visualize and characterize dynamically changing bilayers
and internally encapsulated environments of a range of liposomes in real time.

3. Ion Channels

Ion channels are naturally occuring membrane proteins that allow ions to pass through
a channel pore. Ion channels are responsible for the regulation of major physiological func-
tions and can transport hundreds of ions in a second without the help of any metabolic
energy. Ion channels are distinct from simple aqueous pores due to their two important
properties—they are gated and they show ion selectivity, permitting some ions to pass but
not others. Based on ion selectivity, ion channels allow the flow of specific inorganic ions,
mainly Na+, K+, Ca2+, or Cl− and are named after these ions [55]. Gating indicates that
they have ability to open and close in response to a specific stimulus [56]. Ion channels can
be further classified depending on the primary stimulus for opening, e.g., voltage-gated
channels, ligand-gated channels, or mechanically gated channels (schematically illustrated
in Figure 2). The voltage-gated channels are ion-selective channels that respond to perturba-
tions in cell membrane potential [57] (Figure 2A). Depending on the position of the ligands,
the ligand-gated channels are called extracellular ligand-gated or intracellular ligand-gated
channels, which are sensitive to specific ligands [58] (Figure 2B). As a result, ligand-gated
channels are targets for many drugs including anesthetics [59], antipsychotics, and an-
tidepressants [60]. On the other hand, the mechanically gated channels sense the forces
on the cell membrane and transduce the external mechanical forces into electrical and/or
chemical intracellular signals [61] (Figure 2C). Mechanosensing is an important target not
only for diagnosis but also for therapeutics in cancer progression and arthritis [62,63].

Rhodopsins are widely studied membrane proteins as ion channels because the ac-
tivity of the rhodopsin-based ion channels can be controlled precisely by light [64,65].
They are seven-transmembrane helix proteins that have an integral membrane protein,
opsin, and a chromophore, 11-cis-retinal [66–68]. Major types of rhodopsins studied
as ion channels include bacteriorhodopsin (bR) [69,70], proteorhodopsin (pR) [71], xan-
thorhodopsin (xR) [72,73], archaerhodopsin (AR) [74], bovine rhodopsin [75], channel-
rhodopsin (ChR) [76,77], halorhodopsin (hR) [78], and phototaxis receptor sensory rhodopsin [79].
The bR, pR, xR, and bovine rhodopsins all function as proton pumps, while ChR pumps
protons along with other non-specific cations such as Na+, K+, and Ca2+ [80]. hR is a chlo-
ride pump, and sensory rhodopsins use a transducer, mostly another membrane protein,
or soluble protein to send signal inside the cell [78,79].
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sense forces and transduce the forces into electrical and/or chemical intracellular signals through the cell membrane
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4. Study of Ion Channels in Synthetic Liposomes

Due to the complicated cellular environment, the study of membrane proteins is ham-
pered even in the simplest cells. In vitro study is an alternative to reconstitute individual
proteins in a defined synthetic liposome [13]. The isolated membrane proteins are typically
stabilized in solution by amphiphilic detergents and then reconstituted into a model lipid
membrane. Many model membranes such as monolayers, bilayers, liposomes, and nan-
odiscs have been developed, which closely resemble their biomimetic environments [81].
In the following, we will discuss some commonly used methods of protein reconstitution
in model membranes.

4.1. Integrating Membrane Proteins into Liposomes
4.1.1. Direct Reconstitution

In the direct reconstitution method, the isolated membrane protein solubilized by de-
tergents is added to preformed liposomes. The detergent facilitates the insertion of proteins
in the lipid bilayers by a modest destabilization of the lipid vesicles [82,83] (Figure 3A,
method 1). Next, the detergent is removed using insoluble hydrophobic resins, e.g.,
Sephadex G50 or Bio-Beads [84], resulting in the formation of stable bilayer vesicles with
incorporated membrane proteins. This reconstitution method is a fast and frequently used
strategy for proteoliposome preparation. However, due to incompatible detergent selection,
it can sometimes destabilize membrane protein and result in a loss of function.
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methods for proteoliposome preparation: (1) Direct reconstitution method: Preformed liposome and detergent solubilized
proteins are mixed. Detergent facilitates the insertion of proteins in the lipid bilayers by a modest destabilization of the lipid
vesicles. Finally, the detergent is removed by dilution, dialysis, or filtration, resulting in the formation of stable liposome
formation with incorporated membrane proteins. (2) Dehydration–rehydration: Dehydrated lipid and protein solution are
rehydrated either by spontaneous swelling or by an electric field. (3) Induced fusion: Two liposomes, usually one with
already-reconstituted protein, are fused by peptide. (4) Microfluidic jetting: Two aqueous droplets are separated by an
acrylic spacer in a chamber. A planar lipid bilayer with reconstituted protein is formed by merging the aqueous droplets
when the spacer is removed. Proteoliposomes are generated from the lipid bilayer using the nozzle of an ink-jet printer.
(B) Membrane protein reconstitution in nanodisc: Protein is reconstituted in a small patch of lipid bilayer surrounded by
membrane scaffold protein.
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4.1.2. Dehydration–Rehydration

This procedure is based on the deposition of a solution of membrane protein and
lipids on a solid surface being dehydrated followed by a controlled rehydration (Figure 3A,
method 2). Upon rehydration, the formation of the vesicles can be facilitated by sponta-
neous swelling [85] or applying an electric field (electroformation) [32]. In this method, the
proteins reconstituted in the giant liposomes are from one small liposome with already-
reconstituted proteins [86]. In the electroformation process, the lipid mixture is generally
deposited on glass slides coated with indium tin oxide or platinum wires. This method
of the preparation of giant liposomes and also proteoliposomes is simple and can be per-
formed under physiochemical conditions. The dehydration step should be controlled
otherwise the protein can be denatured.

4.1.3. Induced Fusion

In this method two liposomes, usually one with already-reconstituted protein, are
fused by different inducing factors. A peptide is commonly anchored on the liposomal
membrane to induce the fusion [87] (Figure 3A, method 3). The fusion can also happen
spontaneously, but requires specific conditions (Figure 3A, method 4). More recently,
complementary lipidated DNA has been employed for DNA-programmable controlled
fusion of liposomes. Induced fusion is very fast and can be controlled precisely. However,
conditions should be optimized, otherwise the peptide or fusing agent can be embedded in
the lipid bilayer, which interrupts the study of the transport across ion channels.

4.1.4. Microfluidic Jetting

In this technique, the vesicles with reconstituted membrane proteins are formed in
three stages: (I) initial membrane protrusion in a chamber where two planar monolayers
are formed separated by a spacer, (II) membrane collapse by removing the spacer and
encapsulation, and (III) separation of the vesicles from the membrane using a microflu-
idic jet [88,89] (Figure 3A, method 4). This is a technique used to produce liposomes
with controlled size and membrane composition, membrane protein incorporation, and
encapsulation. The use of this method is due to the requirement for costly, specialized
equipment.

4.2. Integrating Membrane Proteins into Nanodiscs

Nanodiscs are another frequently used model system for the reconstitution of mem-
brane proteins. They are formed spontaneously upon detergent removal from a mixture
of membrane scaffold proteins that are derived from apolipoprotein A1 and detergent-
solubilized lipids [90,91]. Detergent removal is a critical step to initiate the formation
of nanodiscs and this can be accomplished using detergent-absorbing columns or beads
or dialysis [84]. In the nanodiscs, the small patch of lipid bilayer is surrounded by two
copies of membrane scaffold protein. Membrane proteins are included in the mixture
for reconstitution into the nanodiscs (Figure 3B). This method of protein reconstitution is
advantageous as the proteins are accessible from both sides which can help when studying
ligand-binding interactions or binding of signaling molecules. One limitation of nanodiscs
is their small size. The sizes of a nanodisc can be controlled by modifying the lengths
of the membrane scaffold proteins in a range of 10 to 20 nm [92], however this is some-
times too small for large membrane proteins or protein–protein complexes. Recently, to
overcome the size limitation, peptide-based nanodiscs and polymer-based lipid nanodiscs
have been reported, where membrane scaffold proteins are replaced by the peptides or
polymers [93–95].

4.3. Integrating Membrane Proteins in Cell-Free Systems

In a cell-free system, membrane proteins are synthesized in an in vitro system that in-
cludes protein translation machinery [96,97]. Several cell-free systems based on Escherichia
coli cell-extracts with minimal components for synthesis, e.g., the “protein synthesis using
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recombinant elements (PURE)” system have been reported [98]. In this system, the mem-
brane proteins are translated in the presence of a different biomimetic model lipid system,
into which the synthesized membrane proteins are reconstituted. Translation of membrane
proteins directly in the presence of liposomes is an attractive approach used for recon-
stitution for several membrane proteins that include bacteriorhodopsin, connexin, and
stearoyl-CoA desaturase [99–101]. This method provides co-translational reconstitution
into lipid bilayers without the need for detergents.

4.4. Integrating Membrane Proteins with Detergent Alternatives

Although detergent is commonly used in the isolation and reconstitution of membrane
proteins, recently, amphipathic polymers (amphipols) have been emerged as a detergent-
free approach to stabilize and reconstitute membrane proteins [102]. Amphipols consist
of many hydrophilic and hydrophobic groups that likely form toroids around the trans-
membrane domains of membrane proteins with their nonpolar groups, while the outer
polymer surfaces comprising polar groups keep them water-soluble [103]. PMAL-B-100
and A8-35 are the most extensively studied amphipols, and have been used to solubilize
and stabilize a range of proteins including mitochondrial supercomplex and diacyl-glycerol
kinase [104,105]. A copolymer prepared from a 3:1 molar ratio of styrene to maleic acid (3:1
SMA) has also been reported to stabilize lipid particles (termed Lipodisq) and shown to
extract and reconstitute bR, hR, and PagP for their functional studies [106–109].

5. Techniques to Characterize Ion Channels in Liposomes
5.1. Fluorescence Assays for Characterizing Ion Channels

Directional ion flow through a channel across a liposome membrane is the best vali-
dation for correct insertion and function. Considering rhodoposin as a case study which
has been extensively reviewed elsewhere [110], there is a controlled sequence of events
involving alternating light and dark cycles that are used to determine if this ion channel
has been successfully and functionally inserted (Figure 4A). Upon illumination with light
of the correct wavelength (550 nm for bR), rhodopsin will become activated and will
change the retinal conformation from all-trans to 11-cis. This conformational change opens
the channel and allows protons to flow through the channel. When the light source is
withdrawn (the sample is placed in the dark), protons will diffuse across the membrane
until the external and internal pH of the liposome equilibrates. When illuminated once
again, rhodopsin activates, and proton flow recommences. The flow of the protons can be
monitored by pH-sensitive fluorescent dyes as a function of time, and we describe three
broad categories of pH-sensitive dyes: (1) hydrophobic membrane-permeable fluorescent
pH-indicators, that can be added in the bulk solution of proteoliposomes, (2) water-soluble,
membrane-impermeable pH-sensitive dyes, that can be encapsulated in proteoliposomes,
and (3) lipids with a pH-sensitive head group, that can be included in the lipid mixture
(Figure 4B). Different pH-sensitive dyes commonly used to monitor proton pumping assays
are summarised in Table 1.

5.1.1. Membrane-Permeable Dye-Based Assays

Membrane-permeable pH-sensitive dyes are typically hydrophobic. Some of these
include acridine orange and ACMA (9-amino-6-chloro-2-methoxyacridine). These dyes
are added to the bulk solution of the sample. Due to their membrane permeability, they
diffuse through the membrane of the liposomes and an equilibrium is established across
the bilayer. Upon protonation inside the liposome, their fluorescence is quenched, and they
become membrane impermeable. ACMA has been used in several studies to validate the
functionality of different rhodopsins. Hoi et al. reported an ACMA-based fluorescence
assay to verify the proton-pumping activity of the reconstituted mCitrine-tagged ChIEF,
an engineered variant of ChR, into LUVs [111] (Figure 4C). In their assay, K+ ionophore
valinomycin was added to allow leakage of K+ from the interior of the liposome, at high
concentrations, to the outside. It enabled the exchange of membrane potential (∆ψ) for
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∆pH due to H+ loading inside the liposome. Following illumination, protons were then
conducted through the open channel to balance the inside-negative membrane potential.
As a consequence of increased proton concentration in the interior, the fluorescence of
ACMA decreased inside the vesicle. Finally, the protonophore CCCP was added as a
control to allow free diffusion of protons across the membrane, resulting in a dramatic
fluorescence drop (Figure 4D). Using ACMA, a similar assay was used to study the proton
transport activity of voltage-dependent H+ (Hv1) channels, vacuolar class of (H+)-ATPases
(V-ATPases), and FOF1 ATPase [112–115]. Recently, an artificial photosynthetic cell was
reported in which ATP synthase and bR were used as an energy-generating system [116].
The proton-pump activity of the reconstituted bR was monitored by the fluorescence change
of ACMA. The functional activity of the TREK-1 and TWIK-1 (potassium ion channel)
and CLC (chloride channel) were also monitored by ACMA, where the protonophore
CCCP was added to initiate the flux of potassium [117–119]. ACMA is suitable for relative
measures of pH, but it cannot typically be used to quantify protonation as the total amount
of ACMA inside the membrane may change as new dye equilibrates across the membrane.

5.1.2. Membrane-Impermeable Dye-Based Assays

Membrane-impermeable dyes like pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid,
HPTS) or SNARF (seminaphtho-rhodafluor) are water soluble. These are typically encap-
sulated inside the proteoliposomes [120,121]. Due to their hydrophilic properties, these
dyes do not redistribute upon protonation and thus are convenient for measurement and
comparisons between protonation in the interior and exterior of a liposome [122,123]. The
experimental setup is otherwise similar to that shown in Figure 4C for ACMA. Pyranine has
been used as a pH-sensitive dye in much rhodopsin work [124]. Verchere et al. reported a
protein activity assay, where the MexAB protein transporter and bR were reconstituted into
liposomes [125,126] (Figure 4E). The MexAB was energized and activated by the proton
gradient generated by bR. Using pyranine, the internal pH change of the liposome was
measured as a function of time (Figure 4E). Pyranine was also used to confirm the activity
of bR reconstituted in LUVs, GUVs, large proteoliposomes, and ABA block copolymer
vesicles [83,86,127,128]. Pyranine has been used to monitor the proton-pumping activity
of different types of rhodopsins: sensory rhodopsin-I and II [129,130], xR [131], ChR [132],
aR [133], pR [134], and xanthorhodopsin [135,136]. Recently, Ghilarov et al. revealed the
molecular mechanism of the membrane protein SbmA [137]. The proton-pumping activity
of the protein reconstituted into liposomes was measured by pyranine fluorescence. In
another pyranine-based assay, a synthetic phospholipid LC ion channel for Rb+ has been
investigated using FCCP protonophore [138]. One issue with pyranine assays is the low
dye entrapment efficiency in detergent-based reconstitution methods. To increase the
efficiency, the dye concentration is kept high during the whole reconstitution procedure.
This then requires a further step of gel filtration or dialysis to separate the external dye
from the proteoliposomes.
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Figure 4. Fluorescence-based assays for characterizing ion channels. (A) Light–dark cycle of the photoactivity of rhodopsin—
rhodopsin pumps protons as a result of light activation. In the dark, protons equilibrate by passive diffusion inside and
outside of the liposome. Upon illumination again, rhodopsin activates, and proton flow recommences from outside of
the proteoliposome. (B) Types of pH-sensitive dyes used to monitor proton flow: (1) hydrophobic membrane-permeable
fluorescent dye, (2) water soluble membrane impermeable dyes, and (3) lipids with a pH-sensitive head group. (C) Schematic
of the ACMA-based rhodopsin photoactivity assay: (i) in the proteoliposome mixture, ACMA, high concentration KCl,
and valinomycin are added; (ii) upon illumination, rhodopsin-mediated proton pumping occurs pumping protons into
the liposome which causes protonation and quenching of ACMA; efflux of K+ compensates for the charge imbalance
arising from proton flow into the liposome; and (iii) finally, the addition of CCCP allows the free diffusion of protons across
the membrane and thus the fluorescence intensity of ACMA drops rapidly. (D) Time-lapse recording of the fluorescence
intensity relative to the initial fluorescence (FO), where “min” in the legend corresponds to the time in minutes. The
numbering (i), (ii), and (iii) corresponds to the events described in Figure 4C. Reprinted with permission from ref. [111].
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Copyright 2018 Elsevier. (E) Pyranine fluorescence assay: the MexAB protein transporter and bR were reconstituted into
liposomes and pH change was monitored as function of time inside the proteoliposomes containing no bR (orange circles);
bR (purple squares); and bR, MexB, and MexA without substrate (Hoechst 33342) (blue diamonds), and with substrate (green
triangles) in the membrane. This subfigure is adapted from reference [125]. (F) pH-dependence of pHrodo fluorescence:
(i) chemical structure of pHrodo-DOPE, (ii) fluorescence emission spectra of vesicle-embedded pHrodo-DOPE in buffer
solutions of different pH upon excitation at 532 nm, and (iii) pH-calibration curve of vesicle-embedded pHrodo-DOPE
(solid symbols) and water-soluble pHrodo (open symbols). Adapted with permission from ref. [139]. Copyright 2015 Royal
Society of Chemistry.

5.1.3. Lipid-Coupled Dye-Based Assays

Dyes that are covalently linked to individual membrane lipids can be used to mea-
sure pH locally near liposomes. In these experiments, dye-coupled lipids are mixed
with other lipids prior to liposome formation. This process requires no extra effort for
dye encapsulation and also no redistribution of dye that can complicate the measure-
ment of pH in other approaches. Fluorescein, Oregon Green 488, and pHrodo are ex-
amples of pH-sensitive dyes that have been used to measure pH. Bolli and co-workers
synthesized fluorescein-coupled phosphatidyl-ethanolamine (fluorescein-PE) and used
it to monitor the proton-pumping activity of cytochrome c oxidase [140]. Kemmer et al.
synthesized the pHrodo-DOPE from pHrodo succinimidyl ester and 1,2-dioleoyl-sn-glycero-
3-phosphoethanolamine (DOPE) [139] (Figure 4F). The pHrodo-DOPE was used to observe
the pH change of the interior of the vesicles as a result of the proton-pumping activity of
the plant H+-ATPase and P-type ATPase AHA2 [139,141]. Oregon Green 488 was also
coupled to a lipid (1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, DHPE) and is
commercially available. Using Oregon Green 488 DHPE, the proton-pumping activity of
the reconstituted F-type ATPase was observed by monitoring the interior pH changes of
the proteoliposome as a function of time (Figure 4E) [142]. Oregon Green 488 DHPE was
also used to quantify the Hv1-induced proton transport [143].

Table 1. List of pH-sensitive dyes commonly used to monitor proton pumping assays.

Dye Type λex/em, nm Used to Monitor References

ACMA
Membrane-impermeable,

hydrophobic 410/490

bR [116]
ChIEF [111]
Hv1 [112]

V-ATPases [113,114]

Pyranine Membrane-permeable,
hydrophilic 454/520

bR [83,86,125–128]
pR [134]
sR [129,130]
xR [131]

ChR [132]
aR [133]

Xanthorhodopsin [135]
SbmA [137]

Oregon Green 488-DHPE Lipid-coupled 508/534 ATPase, Hv1 [142,143]

Fluorescein-PE Lipid-coupled 498/517 Cytochrome c oxidase [140]

pHrodo-DOPE Lipid-coupled 532/585 ATPase [139,141]

Acridine orange Hydrophobic 490/520 Synaptosome, acidic vesicular organelles [144,145]

pHluorin GFP variant 470/512 Cytosol and endoplasmic reticulum [146]

5.2. Non-Fluorescent Assays for Characterizing Rhodopsins

Label-free assays overcome some inherent drawbacks of fluorescent labelling, such
as the requirement for sample modification and photobleaching. The commonly used
non-fluorescent techniques are electrochemical analysis, surface plasmon resonance (SPR),
and plasmon-waveguide resonance spectroscopy. Nekrasova et al. reported a method to
synthesize bR in large quantities using E. coli [147]. The light-dependent proton flux of the
reconstituted bR in lipid vesicle was monitored electrochemically. The change of the pH of
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the solution containing proteoliposome with bR was monitored with continuous stirring by
a glass electrode connected to a pH meter. In another approach, pR was engineered with red
(mCherry-pR) or green (GFP-pR) fluorescent proteins for the guided insertion of the pR into
liposome [148]. The photoactivity of the engineered pR was monitored electrochemically in
a temperature-controlled system where the pH was measured using a micro pH-electrode.
Rhodopsin was also reported to reconstitute into the supported lipid bilayers (SLB), with
the aim of being used as biosensors and biochips. One study showed bovine rhodopsin
being successfully reconstituted into a SLB of bis-sorbylphosphatidylcholine [149]. The
activity of rhodopsin was monitored by plasmon-waveguide resonance spectroscopy, a
powerful tool for studying membrane signalling without the need for labelling of proteins.
In an assay of surface-sensitive detection, bovine rhodopsin was immobilized into a SLB.
Also, a hydrogel-supported lipid bilayer was used to reconstitute rhodopsin. Both of
these systems were characterized by SPR. SPR allows real-time, label-free detection of
biomolecular interactions, where the functionality of the rhodopsins is characterized by
the direct binding of ligands on the immobilized reconstituted rhodopsins in the lipid
bilayer [150,151].

6. Limitation of Fluorescent Assays for Characterizing Ion Channels

Fluorescence-based assays allow high throughput screening of ion channels. Moreover,
they are easy to implement and to optimize high signal to noise ratio. However, several
limitations persist. One major limitation is the low temporal resolution. The change of fluo-
rescence of the dyes occurs upon binding to specific ions. This redistribution process can
take minutes and thus, these assays are not suitable to monitor the kinetics of ion channel
transitions that can occur on the scale of milliseconds. Fluorescence methods cannot easily
resolve opening, activation, inactivation, and sub-steps that occur during these processes.
In fluorescence assays, ion-concentration-dependent changes of fluorescence signals are
measured, but the ionic current is not directly measured. On the other hand, electrophysio-
logical methods, particularly the patch-clamp, directly measure the ion channel currents
in the range of picoamperes over microseconds [152]. Such methods are thus better for
assessing conformational changes that occur on these timescales in vivo and in vitro, al-
though these techniques are typically low throughput, require specialized instruments and
expertise, and are not suited to liposomes <1µm in diameter [153–155]. Further, due to the
low sensitivity of fluorescence methods, subtle perturbations on ion channels may not be
detectable. Examples include perturbations to the magnitude of ionic currents in K+ chan-
nels caused by the lipids SM-102 (1-octylnonyl 8-[(2-hydroxyethyl)[6-oxo-6-(undecyloxy)
hexyl]amino]-octanoate), or by the addition of photo-sensitizers such as verteporfin or Di-
8-ANEPPS (4-{2-[6-(dibutylamino)-2-naphthalenyl]-ethenyl}-1-(3-sulfopropyl)pyridinium
inner salt) [156–158].

7. Conclusions

Ion channels continue to be of interest as targets for drug development, evaluating
drug safety and diagnosis. Rhodopsin-based ion channels, in particular, are widely studied
membrane proteins due to the ability to control their activity externally using light. To
simplify the inherent complexity of the cellular environment, in vitro studies are used in
which membrane proteins are isolated and reconstituted into model lipid membranes. This
enables researchers to tune the overall composition of the lipid membranes one component
at a time, and also to understand how individual membrane proteins are affected by their
surrounding lipid environment. Measuring the passage of ions and electrical signals across
the membrane of a lipid bilayer confirms that an ion channel is functional and can be
done via both labelled and label-free assays. Ion responsive fluorescent dyes are the most
commonly used assay, indicating changes in ionic concentrations, including protons, in
real time under changing illumination conditions. Light-activated ion channels have been
integrated to make functional complex synthetic systems such as artificial photosynthetic
cells and synthetic tissues [116,159]. Further integration in the future of discoveries from
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in vitro light-controlled systems with those from in vivo studies will deliver insight into
complex cellular events and also extend the frontiers of synthetic and chemical biology.
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