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Abstract: In this work, the quasi-solid-state polymer electrolyte containing poly(vinyl alcohol)-
polypyrrole as a polymer host, potassium iodide (KI), iodine (I2), and different plasticizers (EC, PC,
GBL, and DBP) was successfully prepared via the solution casting technique. Fourier transform
infrared spectroscopy (FTIR) was used to analyze the interaction between the polymer and the
plasticizer. X-ray diffraction confirmed the reduction of crystallinity in the polymer electrolyte by
plasticizer doping. The ethylene carbonate-based polymer electrolyte showed maximum electrical
conductivity of 0.496 S cm−1. The lowest activation energy of 0.863 kJ mol−1 was obtained for the
EC-doped polymer electrolyte. The lowest charge transfer resistance Rct1 was due to a faster charge
transfer at the counter electrode/electrolyte interface. The polymer electrolyte containing the EC
plasticizer exhibited an average roughness of 23.918 nm. A photo-conversion efficiency of 4.19% was
recorded in the DSSC with the EC-doped polymer electrolyte under the illumination of 100 mWcm−2.

Keywords: plasticizer; dye-sensitized solar cells (DSSC); conducting polymer electrolyte;
crystallinity; polypyrrole

1. Introduction

Nowadays, electricity is essential in the society because of the fast-growing industrial-
ization and for domestic applications. Solar radiation is one of the most promising future
renewable energy resources for a wide range of applications due to its abundance and
easy accessibility and the fact that it does not cause pollution. The solar photovoltaic (PV)
technology contributes to generating electricity. Solar cells are applied in charging portable
devices, outdoor lightings, electronic signboards on the road, fountain pumps, electric
vehicles, agricultural machines, remote communication for the military, etc. Dye-sensitized
solar cells (DSSCs) have been developed due to their low cost, semi-transparency, various
colors, flexible nature, and simple fabrication process compared to silicon solar cells [1–3].
A DSSC comprises a photoanode, a redox electrolyte, and a counter electrode. The use
of plasticizers in polymer electrolytes enhance the performance, flexibility, and long-term
stability of various electrochemical devices such as dye-sensitized solar cells, fuel cells,
batteries, biosensors, chemical sensors, and super-capacitors [4,5].
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Plasticizers make polymer electrolytes more flexible, compatible and enhance the
mobility of polymeric chains. Plasticizers easily diffuse within polymers and cause poly-
mer deformation and coalescence into a homogeneous film. The main role of plasticizers
is to improve the electrical properties of polymers by increasing their electrical conduc-
tivity. Ethylene Carbonate (EC), Propylene Carbonate (PC), γ-Butyrolactone or gamma-
Butyrolactone (GBL), and Dibutyl Phthalate (DBP) are commonly used plasticizers due to
their low viscosity and high dielectric constant [6]. Plasticizers usually possess relatively
long alkyl chains and a reduced intermolecular friction between their molecules. It is
interesting that the degree of crystallinity of a polymer system shows a decreasing trend
when increasing the concentration of the plasticizer. Kesavan et al. reported that the
ethylene carbonate-based poly(vinyl pyrrolidone) polymer electrolyte showed maximum
ionic conductivity [7]. The ionic conductivity of an un-plasticized polymer electrolyte
decreases when a large quantity of salt leads to ion-pair formation and cross-linking, re-
ducing the segmental movement of the polymer chain [8]. A critical problem when using
un-plasticized polymer-based electrolytes in DSSCs is due to minimum ionic diffusion,
high interfacial charge transfer resistance at the electrolyte/electrode interface, and high
surface tension of the polymer electrolyte inside a porous nano-TiO2 anode [9]. Ren et al.
reported the use of a plasticized gel polymer electrolyte for DSSC with an overall power
conversion efficiency of 2.9% [10]. Nogueria et al. reported the addition of plasticizers to a
polymer electrolyte led to the highest diffusion coefficient [11]. Ito et al. reported that the
addition of γ-Butyrolactone as a plasticizer in P(EO-EPI)/LiI/I2 with different content of
MMT clay allowed achieving the highest photo-conversion efficiency of 3% [12].

In this study, different plasticizers ((EC, PC, GBL, and DBP) were added to the
PVA/PPy/KI/I2 polymer electrolyte. The plasticized polymer electrolytes were used
in DSSCs and characterized by FTIR, X-ray diffraction, electrical conductivity, EIS, AFM,
and photovoltaic measurements.

2. Experimental
2.1. Materials

Polypyrrole (PPy) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Poly(vinyl
alcohol) (PVA) was purchased from Nice chemical (Kochi, India). Ethanol, Potassium
iodide (KI), and Iodine (I2) were procured from Himedia (Mumbai, India). Dimethyl sul-
foxide (DMSO) was supplied by Spectrum chemical (New Brunswick, NJ, USA). Triton-X
100 (Iso-octylphenoxy polyethoxyethanol), Ethylene Carbonate (EC), Propylene Carbon-
ate (PC), γ-Butyrolactone or gamma-Butyrolactone (GBL), and Dibutyl phthalate (DBP)
were obtained from Loba Chemie (Mumbai, India). Titanium dioxide (TiO2) nano pow-
der (P25) was purchased from Degussa (Frankfurt, Germany). Fluorine-doped tin oxide
(FTO) glass (~7 Ω/sq) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Plat-
inum catalyst solution (Platisol) and N719 dye [cis-diisothio cyanato–bis (2,2-bipyridyl-4,4-
dicarboxylato) ruthenium (II) bis-(tetrabutylammonium)] were purchased from Solaronix
(Aubonne, Switzerland).

2.2. Preparation of the Plasticized Polymer Electrolyte

The quasi-solid-state plasticized polymer electrolyte was prepared by the dissolution
of PVA in 10 mL DMSO solvent, stirring continuously for 2 h at 60 ◦C. Then, 10 wt.% of
PPy was added to the PVA solution, which was ultrasonicated for 45 min [13]. In addition,
10 wt.% EC was added to the prepared homogeneous polymer solution. This experiment
was repeated using different plasticizers such as PC, GBL, and DBP. The mixture was
then stirred for 4 h to achieve complete dissolution and homogeneity of the electrolyte. A
redox electrolyte consisting of 0.5 M of KI and 0.05 M of I2 was added to the homogeneous
solution, which was then stirred continuously for 4 h. Finally, a DSSC was fabricated using
the plasticized polymer electrolyte sandwiched between the photoanode and the counter
electrode. The preparation of the quasi-solid-state conducting polymer electrolyte with
different plasticizers is shown in Figure 1.
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Figure 1. Preparation of the quasi-solid-state conducting polymer electrolyte with different plasticizers. (90 [85 PVA: 10PPy:
5KI:I2]:10x, where x = EC, PC, GBL, and DBP).

2.3. Characterization and Measurements

Complex formation between the polymer and the plasticizer was tested using a Perkin
Elmer Spectrum Version 10.03.09 FTIR spectrometer (Waltham, MA, USA) at wavelength
between 400 and 4000 cm−1.

The crystal structure was determined by using a PANalytical X’Pert PRO powder X-ray
Diffractometer (Malvern Panalytical, Malvern, UK) with a scanning rate of 2 deg min−1.
The degree of crystallinity of the sample was deconvoluted using the original software [6].

Xc = (IC/IT) × 100% (1)

IC, Area under the crystalline peaks and IT, total area under the diffractogram.
The electrical conductivity (σ) of the samples was calculated using a four-probe setup

(DEP-02 model),
σ = (1/ρ) Scm−1 (2)

ρ, Corrected resistivity (ρ = ρo/G7W/S); ρo, Resistivity (ρo = V/I × 2πS); G7W/S, Correction
factor; S, Probe spacing; W, Thickness of the sample; V, Voltage; I, Current.

Arrhenius plot [ln(z) versus (1/T)] allowed the determination of the activation energy
can from the slope and intercept of the best-fit line through the data [14].

The absorption spectra of the different polymer electrolytes were obtained with a Shi-
madzu Model UV-1601 scanning double beam UV–Visible spectrophotometer (Shimadzu,
Kyoto, Japan). The indirect band gap (Eg) values were determined from (αhυ)1/2 versus (hυ)
plots. The absorption coefficient of amorphous materials was related to incident photon
energy using the equation

(αhυ) = β(hυ − Eg)n for (hυ > Eg) (3)

α = (2.303A/t) and A = log(I/I0); t, Thickness of the film; I, Transmission intensity; I0,
Incident light intensity; β, Constant.
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The exponent ‘n’ takes the values of 1
2 and 2 for indirect and direct electron transition,

respectively [15].
Electrochemical impedance spectroscopy (EIS) was carried out using an electrochemi-

cal analyzer (CH Instrument, Austin, TX, USA)
J–V characteristics under illumination of 100 mW cm−2 were determined using a solar

simulator (300 W xenon lamp source, Oriel, Orlando, FL, USA) with a Keithley electrometer.
The fill factor (FF) and photovoltaic conversion efficiency η were determined using the
following equations:

Fill factor, FF = (Vmax × Jmax)/(Voc × Jsc) (4)

Photovoltaic conversion efficiency, η = (Vmax × Jmax)/(Pin) × 100% (5)

Jsc, Short circuit current density (mA cm−2); Voc, Open circuit voltage (V); Vmax, Maximum
voltage (V); Jmax, Maximum current density (mA cm−2) and Pin, Incident light power
(mW cm−2).

The surface morphology of the polymer electrolyte films was captured with an atomic
force microscope (AFM, Park XE-70 and XEI image processing software, Park Systems,
Suwon, Korea).

3. Results and Discussion
3.1. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis

The interaction between the polymer and the plasticizer in the electrolyte system was
analyzed by FTIR spectroscopy. Changes in the molecular vibration modes were due to the
interaction between the polymer and the plasticizer. The FTIR spectra of pure PVA, pure
PPy, and PVA/PPy/KI/I2 with different plasticizers (EC, PC, GBL, and DBP) are shown
in Figure 2. The wide-ranging band observed at 3600–3200 cm−1 corresponds to the –OH
group in PVA. The characteristic peak at 1731 cm−1 was ascribed to the C=O stretching of
PVA. The peak at 1629 cm−1 corresponds to the C=C stretching of the pyrrole ring. The
peaks at 1183 cm−1 [16] and 1130 cm−1 represent the C–N stretching vibration of the PPy
ring and the C–H bending of PPy. The peak at 1564 cm−1 corresponds to N–H bending
vibrations of the PPy ring [17,18]. The peaks at 1623, 1399, and 1123 cm−1 were ascribed to
pure KI salt [19]. The new peak at 1159 cm−1 corresponds to the C–O–C stretching of the
ethylene carbonate (EC) plasticizer in the polymer electrolyte [20]. The peak at 1454 cm−1

was attributed to −CH3 asymmetric bending vibrations of PC [21]. The peaks at 1767 and
1036 cm−1 correspond to the –C=O (carbonyl) stretching mode and the –C–O stretching of
pure GBL [22].

The peaks at 2946 and 2879, that at 1600, and that at 1076 cm−1 were assigned to
C–H, C=C, and C–O stretching for pure DBP, respectively. The peaks at 1159 cm−1 of EC,
1454 cm−1 of PC, 1767 and 1036 cm−1 of GBL, and 2946, 2879, 1600, and 1076 cm−1 of DBP
were found to be shifted in the FTIR spectra of their respective complexes. The vibrational
peaks of PVA and PPy were slightly shifted, and this was observed for all the polymer com-
plexes. Moreover, the position of the peak shifted to a certain extent, which confirmed that
a strong interaction occurred between the plasticizer and the PVA/PPy/KI/I2 electrolyte.
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3.2. X-ray Diffraction Analysis

Figure 3 shows that the X-ray diffraction patterns of (a) pure PVA, (b) pure PPy, and
PVA/PPy/KI/I2 electrolytes with various plasticizers (in wt.%), i.e., (c) EC, (d) PC, (e) GBL,
and (f) DBP. The diffraction peak found at 19.8◦ indicates that semi-crystalline structure of
pure PVA. A broad diffraction peak between 20◦ and 30◦ indicates the amorphous nature
of pure PPy. The degree of crystallinity of the prepared plasticized polymer electrolytes
were 9.75% for EC, 10.66 % for PC, 10.35% for GBL, and 9.99% for DBP. The obtained
results showed that the degree of crystallinity of the polymer electrolytes varied with the
addition of the plasticizers. Additionally, the EC-based polymer electrolyte had the lowest
degree of crystallinity, as shown in Table 1. It can be noticed that the incorporation of
the EC plasticizer into the PVA/PPy polymer composite matrix led to the separation of
the polymer chains, followed by a rearrangement of the structure and a reduction of the
viscosity of the polymer electrolyte [23].

Table 1. Degree of crystallinity of the PVA/PPy/KI/I2 electrolyte with different plasticizers.

Sample IT IC Crystallinity, χ (%)

PVA/PPy/EC/KI/I2 2530.14 246.68 9.75

PVA/PPy/PC/KI/I2 2353.80 251.13 10.66

PVA/PPy/GBL/KI/I2 2586.73 267.96 10.35

PVA/PPy/DBP/KI/I2 2561.90 255.84 9.99
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3.3. UV–Vis Spectra Analysis

Figure 4 shows the absorption spectra of the PVA/PPy/KI/I2 electrolyte with various
plasticizers (in wt.%), i.e., (a) EC, (b) PC, (c) GBL, and (d) DBP. The fundamental absorption
peak appearing around 250 nm for all plasticized polymer electrolytes is due to the π–π*
transition [24,25]. The intensity change of the absorption bands reflecting the variation of
the band gap energy is due to the crystallinity of the plasticized polymer electrolytes [26].
The indirect band gap values of the plasticized polymer electrolytes EC, PC, GBL, and
DBP were 1.78, 1.90, 2.19, and 2.26 eV, respectively. The EC-based polymer electrolyte
system showed the lowest band gap value compared to the other system, as summarized
in Table 2. The Eg value decreased from 2.14 eV for the un-plasticized polymer electrolyte
to 1.78 eV for the EC-based PVA/PPy/KI/I2 electrolyte. The lowest Eg value indicates the
change in the energy states of the conduction band and valence band, which led to a slight
shift of the electronic structure of the polymer matrix [27].

Table 2. Indirect band gap energy of the PVA/PPy/KI/I2 electrolyte with different plasticizers.

Sample Indirect Band Gap (eV)

PVA/PPy/EC/KI/I2 1.78

PVA/PPy/PC/KI/I2 1.90

PVA/PPy/GBL/KI/I2 2.19

PVA/PPy/DBP/KI/I2 2.26
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3.4. Electrical Conductivity Measurement

Figure 5 shows the variation of the electrical conductivity with different temperatures
of the PVA/PPy/KI/I2 electrolytes containing various plasticizers. It is clearly indicated
that the PVA/PPy/KI/I2 electrolyte containing EC exhibited the maximum electrical
conductivity of 0.496 S cm−1 at 313K, which is relatively higher compared to that of the
other plasticized polymer electrolytes (Table 3). It was noticed that, as the temperature
increased, the electric conductivity also increased for all plasticized polymer electrolytes,
which was due to a low charge transfer resistance. Thus, the electrical conductivity of the
EC-based polymer electrolyte increased due to fast oxidation and reduction processes that
took place in the polymer electrolyte. The Ea values for all plasticized polymer electrolytes
were analyzed using the Arrhenius plot (Figure 6). The plasticized polymer electrolyte
containing EC showed the lowest value of Ea as compared to the other polymer electrolytes
containing PC, GBL, and DBP. Therefore, EC-based polymer electrolytes with low activation
energy are desirable to obtain highly efficient DSSCs [28]. The calculated Ea values of all
plasticized polymer electrolytes are summarized in Table 3.
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Table 3. Electrical conductivity and activation energy of the PVA/PPy/KI/I2 electrolyte with different
plasticizers.

Sample Electrical Conductivity
(S cm−1)

Activation Energy
(kJ mol−1)

PVA/PPy/EC/KI/I2 0.496 0.863

PVA/PPy/PC/KI/I2 0.489 0.959

PVA/PPy/GBL/KI/I2 0.477 1.128

PVA/PPy/DBP/KI/I2 0.414 1.499
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3.5. Electrochemical Impedance Spectroscopy Analysis

Figure 7 present the Nyquist plot of EIS spectra and shows the DSSC filled with
the PVA/PPy/KI/I2 electrolyte with various plasticizers. Two semicircles are present in
the Nyquist plot. The intersection with the horizontal axis in the high-frequency region
indicates the series resistance (Rs). A semi-circle in the high-frequency and low-frequency
regions corresponds to the charge transfer resistance at the counter electrode/electrolyte
interface, i.e., Rct1, and at the photoanode/electrolyte interface, i.e., Rct2. The EC-based
plasticized polymer electrolyte showed a smaller charge transfer resistance Rct1 than the
other plasticized polymer electrolytes containing PC, GBL, and DBP. This result indicated a
faster charge transport at the interface between the platinum-coated counter electrode and
the plasticized polymer electrolyte [25]. Additionally, the charge transfer resistance Rct2 of
the EC-based plasticized polymer electrolyte system was 3.879 Ω cm2, which was smaller
than those of the other plasticized polymer electrolytes (Table 4). This was due to the low
charge transfer resistance between the polymer electrolytes and the photoanode. As a
result, a decreased recombination rate at the electrolyte/electrode interface [29] and a faster
electron transport mechanism were confirmed in the DSSC with the EC-based polymer
electrolyte. The lowest series resistance Rs observed in the EC-based polymer electrolyte
may contribute to an enhanced conduction due to a higher electrical conductivity [30].

Membranes 2021, 11, x FOR PEER REVIEW 9 of 13 
 

 

Table 3. Electrical conductivity and activation energy of the PVA/PPy/KI/I2 electrolyte with differ-

ent plasticizers. 

Sample 
Electrical Conductivity  

(S cm−1) 

Activation Energy  

(kJ mol−1) 

PVA/PPy/EC/KI/I2  0.496 0.863 

PVA/PPy/PC/KI/I2  0.489 0.959 

PVA/PPy/GBL/KI/I2 0.477 1.128 

PVA/PPy/DBP/KI/I2 0.414 1.499 

3.5. Electrochemical Impedance Spectroscopy Analysis 

Figure 7 present the Nyquist plot of EIS spectra and shows the DSSC filled with the 

PVA/PPy/KI/I2 electrolyte with various plasticizers. Two semicircles are present in the 

Nyquist plot. The intersection with the horizontal axis in the high-frequency region indi-

cates the series resistance (Rs). A semi-circle in the high-frequency and low-frequency re-

gions corresponds to the charge transfer resistance at the counter electrode/electrolyte in-

terface, i.e., Rct1, and at the photoanode/electrolyte interface, i.e., Rct2. The EC-based plas-

ticized polymer electrolyte showed a smaller charge transfer resistance Rct1 than the other 

plasticized polymer electrolytes containing PC, GBL, and DBP. This result indicated a 

faster charge transport at the interface between the platinum-coated counter electrode and 

the plasticized polymer electrolyte [25]. Additionally, the charge transfer resistance Rct2 of 

the EC-based plasticized polymer electrolyte system was 3.879 Ω cm2, which was smaller 

than those of the other plasticized polymer electrolytes (Table 4). This was due to the low 

charge transfer resistance between the polymer electrolytes and the photoanode. As a re-

sult, a decreased recombination rate at the electrolyte/electrode interface [29] and a faster 

electron transport mechanism were confirmed in the DSSC with the EC-based polymer 

electrolyte. The lowest series resistance Rs observed in the EC-based polymer electrolyte 

may contribute to an enhanced conduction due to a higher electrical conductivity [30].  

 
Figure 7. Nyquist plots of the PVA/PPy/KI/I2 electrolyte with various plasticizers (in wt%); (a) EC, 

(b) PC, (c) GBL, and (d) DBP. 

Figure 7. Nyquist plots of the PVA/PPy/KI/I2 electrolyte with various plasticizers (in wt.%); (a) EC,
(b) PC, (c) GBL, and (d) DBP.

Table 4. EIS parameters for the PVA/PPy/KI/I2 electrolyte with various plasticizers.

Sample Rs (Ω cm2) Rct1 (Ω cm2) Rct2 (Ω cm2)

PVA/PPy/EC/KI/I2 5.339 3.050 3. 879

PVA/PPy/PC/KI/I2 6.139 3.252 3.884

PVA/PPy/GBL/KI/I2 5.850 3.900 4.610

PVA/PPy/DBP/KI/I2 6.565 3.505 3.974

3.6. Photovoltaic Performances

The J–V characteristics of the four dye-sensitized solar cells are presented in Figure 8.
The calculated photovoltaic parameters are summarized in Table 5. The DSSC using
the EC-based polymer electrolyte achieved the maximum photo-conversion efficiency of
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4.19% under illumination of 100 mW cm−2. Moreover, the minimum interfacial resistance
value attributed to the increased contact area at the polymer electrolyte/photoanode
and electrolyte/counter electrode interfaces in the EC-based polymer electrolyte led to
an increase in the short-circuit current density [31]. The higher Jsc value indicated the
acceleration of charge carriers in the EC-based polymer electrolyte [32]. Moreover, the open
circuit voltage (Voc) of all plasticized polymer electrolytes was almost equal, indicating
that the device did not depend on the different plasticizers.
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Table 5. Photo-voltaic parameters of fabricated DSSCs composed of different plasticized polymer
electrolytes.

Sample Voc (mV) Jsc (mAcm−2) FF Efficiency, η %

PVA/PPy/EC/KI/I2 0.714 11.097 0.530 4.19

PVA/PPy/PC/KI/I2 0.711 10.709 0.542 4.15

PVA/PPy/GBL/KI/I2 0.696 10.580 0.556 4.10

PVA/PPy/DBP/KI/I2 0.692 10.413 0.550 4.12

3.7. AFM Analysis

Figure 9 shows the AFM 3D topographical images of the PVA/PPy/KI/I2 electrolyte
with various plasticizers. The average roughness Ra of EC is 23.918 nm, smaller than those
of PC, GBL, and DBP, which are 28.724, 38.437, and 30.012 nm, respectively. In addition,
the roughness skewness Rsk of EC is −0.185 nm, higher than those of the other plasticized
polymer electrolytes. The EC-based polymer electrolyte exhibited the higher negative
value of Rsk due to its porous nature, which is desirable for entrapping the electrolyte.
The roughness kurtosis Rku values for EC, PC, and DBP are 2.67, 2.237, and 2.985 nm,
respectively. The Rku value of GBL is 4.199 nm, which indicates a spiky surface; for all the
other samples it is less than 3 nm, which indicates a rough surface. The EC-based polymer
electrolyte showed the lowest Rrms compared to the other plasticized samples. Finally, a
low Ra may increase the surface contact at the plasticized polymer electrolyte/electrode
interface [13].
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4. Conclusions

Quasi-solid-state polymer electrolytes with various plasticizers were prepared by the
solution casting process. The interactions between polymers, salt, and different plasticizers
were confirmed by FTIR. The degree of crystallinity of the plasticized polymer electrolytes
was determined by XRD. The polymer electrolyte containing EC exhibited the highest
electrical conductivity of 0.496 Scm−1. The EC-based polymer electrolyte exhibited lower
activation energy as well as reduced bandgap energy compared to the other plasticized
polymer electrolytes. From the EIS analysis, the charge transfer resistances Rct1 and Rct2
at the polymer electrolyte/electrode interface of the EC-based polymer electrolyte was
significantly smaller than those of the other plasticized polymer electrolytes. The EC-based
polymer electrolyte exhibited a higher negative value of Rsk due to its porous nature,
which is a desirable feature for entrapping the electrolyte. The photo-conversion efficiency
of 4.19% was recorded in the DSSC with the EC-doped polymer electrolyte under the
illumination of 100 mWcm−2.
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