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Abstract: It is widely, but not universally, believed that the lipids of the plasma membrane are not
uniformly distributed, but that “rafts” of sphingolipids and cholesterol float in a “sea” of unsaturated
lipids. The physical origin of such heterogeneities is often attributed to a phase coexistence between
the two different domains. We argue that this explanation is untenable for several reasons. Further,
we note that the results of recent experiments are inconsistent with this picture. However, they are
quite consistent with an alternate explanation, namely, that the plasma membrane is a microemulsion
of the two kinds of regions. To show this, we briefly review a simplified version of this theory and
its phase diagram. We also explicate the dependence of the predicted domain size on four physical
parameters. They are the energy cost of gradients in the composition, the spontaneous curvature of
the membrane, its bending modulus and its surface tension. Taking values of the latter two from
experiment, we obtain domain sizes for several different cell types that vary from 58 to 88 nm.
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1. Introduction

The “raft” model of the plasma membrane hypothesizes that its lipid constituents are not
uniformly mixed, as one would expect from entropic considerations, but are clustered into domains
rich in sphingomyelin and cholesterol which float in a “sea” of unsaturated lipids [1,2]. Because the
hydrocarbon tails of the sphingomyelin are relatively well-ordered, their domains have a larger areal
density than those domains rich in the unsaturated lipids whose acyl chains are more disordered.
This difference in areal densities affects the distribution of proteins in the membrane, causing them
to favor one form of domain or the other. The proteins cluster and function more efficiently. Thus,
physical organization leads to functional organization. There are several reviews of this organizing
principle [3–6].

This hypothesis, however, is not universally accepted. One reason is that there have been
no observations of lipid rafts in the plasma membranes of live mammalian cells. In addition,
the underlying physical principles which would give rise to such domains, thought to be of nanoscopic
size, have not been determined. The explanation most commonly cited is that the rafts and the
sea are coexisting phases. This is bolstered by the observation that model membranes, often
consisting of a ternary mixture of a high-melting-temperature lipid, such as sphingomyelin, (SM), a
low-melting-temperature-lipid, such as dioleoyl-phosphatidylcholine (DOPC), and cholesterol, readily
exhibit a separation into two distinct phases [7]. One is rich in the high-melting-temperature lipid
and cholesterol. It is denoted "liquid ordered" (lo). The other is rich in the low-melting-temperature
lipid, and is denoted "liquid disordered" (ld) [8]. We have argued [9–11] that the idea that nanoscopic
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domains are coexisting liquid phases is an untenable one for several reasons. First it provides no
explanation for the nanometer domain size; domains of two coexisting phases are of the size of the
system itself, i.e., macroscopic. Second, phase separation has never been observed in the plasma
membranes of mammalian cells [12]. It has been observed in giant plasma membrane vesicles (GPMVs)
[13], but only at temperatures much lower than physiological ones. To answer this objection, it has
been suggested that nanoscopic domains are not the result of an actual phase separation, but of the
fluctuations associated with a critical point of a separation that would occur at temperatures below
physiological ones [14]. This would require that the cell be self-regulating so that at least two degrees of
freedom, such as chemical potential differences of the components, be tightly controlled. An additional
argument against this explanation is the following: model membranes whose compositions mimic that
of the outer, exoplasmic leaf of the plasma membrane readily exhibit phase separation because of their
mix of ordered SM and disordered lipids such as palmitoyloleoyl-phosphatidylcholine (POPC) [7,15].
However, model membranes whose compositions mimic the inner, cytoplasmic leaf show no tendency
to phase separate [16]. This is because their lipid composition is almost totally that of disordered,
unsaturated, lipids. Hence, even if the coupled leaves of the plasma membrane did phase separate,
there would be little composition contrast in the inner leaf. Consequently, the ensuing raft would
not be a useful one. It should also be noted that if the domains were in fact coexisting phases, this
would have experimentally observable consequences. The heat capacity of the plasma membrane
would be infinite, as one could add heat to the system without changing its temperature. Similarly,
the compressibility of the plasma membrane would be infinite as one could change its area without
changing the surface pressure. These effects are readily observed in more experimentally accessible
physically-adsorbed systems [17].

An alternative explanation for the origins of the “rafts” and “sea” is that they result from a
microemulsion of regions having liquid-ordered-like and liquid-disordered-like properties [9–11]. It is
useful to recall that in a bulk system that can exhibit phase separation, its components can be emulsified
by the addition of a surfactant, a molecule that essentially drives the surface tension between the phases
to zero. A one-phase microemulsion results with two different kinds of regions whose compositions
are similar to those of the previously co-existing phases being mixed. The characteristic sizes of these
regions is related to the volume fractions of the components. We do not believe that in the plasma
membrane the emulsification of lo and ld-like regions is brought about by a molecular analog of a
surfactant [18,19]. Rather, the energy penalty of having these different regions in close proximity arises,
in part, from the differences between the various spontaneous curvatures of the lipid components
and that of the local curvature of the membrane itself. This penalty can be reduced if regions of
different membrane curvature are correlated with domains of different spontaneous curvature [20,21].
The domains have a characteristic size that arises from the spontaneous curvatures of the components,
and the elastic properties of the plasma membrane, its surface tension, and its bending modulus.

The thermodynamic distinction between the three different suggestions for the origin of rafts is
clear. A microemulsion is a well-defined single phase. Its physical properties, such as heat capacity and
compressibility, are not singular in general. In addition, like any single phase of a system comprised of
c different components, it exists in a wide phase space spanned by c + 1 degrees of freedom, such as
temperature, surface tension, and chemical potentials. In contrast, when two phases, such as lo and
ld, are in coexistence, the constraints that the two phases have the same temperature and chemical
potentials of all components reduce the number of degrees of freedom of the system from c + 1 to c.
Furthermore, the response functions, such as heat capacity and compressibility of a system of two
phases in coexistence, are infinite. Finally, the unconstrained one-phase microemulsion also contrasts
with a one-phase system that is constrained to be near a line of critical points. In such a case the
number of degrees of freedom is reduced to c− 1, which implies that the cell would need to be tightly
regulated.

In this paper, we point out that two recent experiments [22,23] are inconsistent with the idea that
rafts and sea are regions of two-phase coexistence, but are quite consistent with the idea that they are
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regions of an emulsion. To do this, we briefly review a simplified theory of the plasma membrane
as a microemulsion [9], and its phase diagram [24]. The model employed exhibits both regions of
genuine two-phase coexistence as well as a one phase emulsion. We show how the results of the recent
experiments are consistent with this phase diagram. In addition, we explicate the manner in which the
size of the domains depends on four physical properties, two of them characteristic of the membrane’s
lipid composition, and two characteristic of the membrane’s elastic properties. This provides some
insight into the manner in which domain size could be controlled.

2. Theory

We consider a model plasma membrane that consists of many different lipids. Because the
most numerous lipids in the outer leaf are SM, POPC, and cholesterol [25], one should characterize
this leaf by at least three order parameters, the local mol fractions of the three species. We have
done this elsewhere [11]. Of these three, only two are independent, as the sum of the three
local mol fractions is unity. Instead of these two, we shall, for simplicity, restrict ourselves to
one order parameter, Φo(r). This measures at point r the difference between the sum of the
mol fractions of SM and cholesterol on the one hand, and of POPC on the other. The major
components of the inner leaf of the plasma membrane are palmitoyloleoyl-phosphatidylserine, (POPS),
palmitoyloleoyl-phosphatidylethanolamine (POPE), POPC, and cholesterol [25]. Consequently, one
should describe this leaf by at least three independent order parameters, as in our previous work [11].
Again for simplicity, we describe this leaf by a single order parameter, Φi(r) which represents the local
difference between the sum of the mol fractions of POPC and POPS and that of the sum of POPE and
cholesterol. This choice was motivated by our recent work [11]. We further simplify by considering
only the local average of these order parameters: φ(r) = [Φo(r) + Φi(r)]/2. Lastly, we assume that
the mol fractions of the components are such that the value of φ(r) averaged over the surface of the
membrane, of area A, vanishes.

An expansion of the Helmholtz free energy of the system as a functional of this order parameter
contains three terms of interest. The first is the free energy of the flat planar bilayer. It can be written
as [24]

Fplane =
∫

d2r
[

a
2

φ2(r) +
b
2
[∇φ(r)]2 +

c
4

φ4(r) +
g
2
[∇2φ(r)]2

]
, (1)

with c and g positive. The coefficients a, b, c, and g are phenomenological parameters which depend
on the subtle interplay of all entropic and energetic contributions to the free energy. If one simply
minimizes Fplane with respect to the order parameter, then when a > 0, the minimum is attained
when the order parameter vanishes everywhere. The system is disordered. When a < 0, the system
undergoes phase separation into two spatially uniform phases characterized by a positive or negative
non-vanishing ensemble average of the order parameter. The positive parameter c guarantees that the
magnitude of the order parameter increases gradually as a becomes more negative. Clearly, within this
simple minimization, the parameter a is proportional to T−T∗({µ}), where T∗({µ}) is the temperature
of phase separation which, in a multi-component system, depends upon the composition, or chemical
potential differences, {µ}. The line tension between the coexisting phases is proportional to (|a|b)1/2,
and vanishes at the transition. We shall refer to the parameter b as the gradient energy. The significant
length which appears in Fplanar is the correlation length, which is proportional to (b/a)1/2. It is the
length over which variations in the composition decay. For example, it is the characteristic width of an
interface between coexisting phases. Except near critical points, the correlation length is usually a few
nanometers.

The second term of interest is the elastic curvature energy of the membrane. We write it in
terms of the local height, h(r), of the membrane above some arbitrary external plane. In the Monge
representation, this can be written as [9,26]

Fcurv =
∫

d2r
1
2
{σ[∇h(r)]2 + κ[∇2h(r)]2}, (2)
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where σ and κ are the surface tension and bending modulus of the membrane. This term introduces a
new length, (κ/σ)1/2, which is characteristic of the membrane. At lengths larger than this, it is the
surface tension which is the dominant force that tends to keep the membrane flat, whereas for shorter
lengths, it is the bending energy which dominates. In the plasma membrane this length is on the order
of 100 nm [27].

Lastly, there is a coupling between the local spontaneous curvature of the membrane, H0(r), which
depends on the composition of both leaves, φ(r), and the actual local curvature of the membrane,
∇2h(r) [20,21]. In the simplest approximation, H0(r) = H0φ(r), this coupling can be written as [9]

Fcoupl = −κH0

∫
d2r∇2h(r)φ(r). (3)

This term introduces a third length, H−1
0 , the membrane’s spontaneous curvature. For the plasma

membrane, this is expected to be on the order of tens of nanometers [11]. The total free energy, Ftot, is
simply the sum of the above three terms.

We are most interested in the disordered phase of the system in which the ensemble average of
the order parameter vanishes everywhere, < φ(r) >= 0. The configuration of minimum free energy,
Ftot = 0, is that of a flat membrane. The free energy of an arbitrary configuration of the disordered
phase is conveniently written in terms of the Fourier components, φ(k)

φ(k) =
1
A

∫
d2r exp(−ik · r)φ(r), (4)

and h(k), of the deviations of the order parameter and the membrane height from their average values.
In terms of these Fourier transforms, the total free energy functional of the disordered system can be
written, to second order, as

Ftot[φ, h]
A

=
A

(2π)2

∫
d2k

[
[
a
2
+

b
2

k2 +
g
2

k4]φ(k)φ(−k)

+
1
2
(σk2 + κk4)h(k)h(−k)− κH0k2h(k)φ(−k)

]
(5)

The fluctuation free energy of Equation (5) contains three structure factors: < φ(k)φ(−k) >,
< φ(k)h(−k) >, and < h(k)h(−k) >. Of these, the one that reveals the most information concerning
compositional ordering is < φ(k)φ(−k) > . The height fluctuations are of less interest, so these
degrees of freedom can be integrated over in calculating ensemble averages. The integration can either
be carried out explicitly, or the free energy of Equation (5) can simply be minimized with respect to the
h(k). Setting the partial derivative of Ftot with respect to h(k) to zero and substituting the resulting
h(k) into Ftot, we obtain

Ff luct[φ]

A
=

A
(2π)2

∫
d2k

{
a
2
+

b
2

[
1−

κ2H2
0

bσ

1
1 + (κk2/σ)

]
k2 +

g
2

k4

}
φ(k)φ(−k). (6)

One notes that the effect of coupling the membrane and spontaneous curvatures is to reduce
the energy penalty of gradients in the order parameter. Therefore thermal excitations with a wave
vector k are more easily excited. The wave vector of the mode with the lowest excitation energy in the
disordered phase, k∗, is obtained from Ff luct[φ] above. Minimizing the excitation energy, we obtain
a cubic equation for k2. The solution of this equation is simplified considerably for values such that
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gσ/bκ << 1, which, as we shall see below, is indeed the case for the plasma membrane. The result
is then

k∗ = 0 for κH0/(σb)1/2 ≤ 1,

=
(σ

κ

)1/2
[(

κH0

(σb)1/2

)
− 1
]1/2 (

1− gσ

2bκ

κH0

(σb)1/2

)
for κH0/(σb)1/2 ≥ 1 (7)

The implication of this result that the most readily excited modes of the system can have a
non-zero wavelength is discussed below.

The value of the gradient energy, b, is a few kBT [28], and one expects that g is of the order
kBTnm2. However, the area κ/σ is on the order of 104 nm2 for the plasma membrane [29]. Further,
the dimensionless coupling κH0/(σb)1/2 is less than 102, as we shall see below. Hence we ignore the
factor proportional to g and simply write

k∗ = 0 for κH0/(σb)1/2 ≤ 1,

=
(σ

κ

)1/2
[(

κH0

(σb)1/2

)
− 1
]1/2

for κH0/(σb)1/2 ≥ 1 (8)

The phase diagram of the model can be obtained as follows. As the major effect of the coupling
between the fluctuations of the membrane height to those of the composition is to reduce the energy
cost of gradients in the composition, the free energy of a configuration of the system is well described
by that of Equation (1) alone. However, the coefficient of the gradient energy, b, must be replaced
by an effective one, b(1− κ2H2

0 /bσ). This is a good approximation for the gradient energy except
for fluctuations at short distances whose effect on the phase diagram is small. The phase diagram
calculated by following this procedure is shown in Figure 1. It was obtained from a molecular dynamics
simulation: space is divided into a grid, so that one has a lattice model, but the order-parameter variable
at each site is continuous, rather than a discrete one. The equations of motion of the order parameter
are the Euler–Lagrange equations obtained from the minimization of the free energy. They are not
Newtonian [30]. Such a simulation includes all configurations of the order parameter φ(k) [24].
The ordinate is ā = a/c, where a and c are the coefficients in Equation (1). It is proportional to
T− T∗({µ}). The abscissa, τ, is equal to [b/(cg)1/2](1− κ2H2

0 /bσ). When the dimensionless coupling
between concentration and curvature, κH0/(bσ)1/2 is small, τ is positive. At high temperatures,
the system is disordered; that is, the ensemble average of the order parameter, < φ(k) > vanishes for
all k. As the temperature is lowered, a continuous transition, shown by a solid line, occurs to a region
of two-phase coexistence: the two phases are characterized by a non-zero value of < φ(k = 0) >,
one positive, one negative. Domains of these phases are macroscopic. At sufficiently stronger values
of the coupling, τ < 0, the system exhibits a modulated phase of alternating lo-like stripes and
ld-like stripes. The ensemble average, < φ(k) > 6= 0 for non-zero wavevector k. The parameter g
of Equation (1) guarantees that the magnitude of < φ(k) > increases gradually as the temperature
is reduced. At higher temperatures, the system is again disordered in that the ensemble average
< φ(k) >= 0 for all k. However, this disordered phase is characterized by structure; this can be
observed by scattering experiments that measure the structure factor S(k) ∝< φ(k)φ(−k) > . In the
region of sufficiently strong coupling, i.e., κH0/(bσ)1/2 > 1, the structure factor has a peak at non-zero
k, a value which is approximately equal to k∗. This shows that the disordered system has structure
with a domain size that can be taken to be d ≡ π/k∗. As we will see below, this domain size is on
the order of tens of nanometers for the plasma membrane. This region of the disordered phase is
a microemulsion, an emulsion of lo-like and ld-like domains. There is no phase transition between
the microemulsion and the disordered phase which occurs at high temperature and small values of
the coupling, and that has a peak in the structure factor at k = 0. Thus, the boundary between these
disordered phases is arbitrary. It is convenient to take it to be the Lifshitz line, the loci of points at
which the peak in the structure factor moves off of the zero wave vector, i.e., where k∗ of Equation (8)
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just becomes non-zero. The Lifshitz line is shown in Figure 1 by a dashed-dotted vertical line. There is
a line of three-phase coexistence between the region of two-phase coexistence and the microemulsion,
shown by a dashed line. There is also a line of three-phase coexistence between the region of two-phase
coexistence and the modulated phase. This is also shown by a dashed line.

_	  

Figure 1. Phase diagram of the model. The dimensionless parameter ā = a/c is proportional
to the difference between the actual temperature and the compositionally-dependent transition
temperature. τ is equal to [b/(cg)1/2](1− κ2H2

0 /bσ). First-order transitions are shown with dashed
lines. The Lifshitz line is shown at τ = 0. After reference [24].

3. Recent Experimental Results

We now consider the results of two recent experiments. In the first, [22] a system of
four components, distearoyl-phosphatidylcholine, (DSPC), dipalmitoyloleoyl-phosphatidylcholine,
(DOPC), palmitoyloleoyl-phosphatidylcholine, (POPC), and cholesterol was prepared as a GUV in a
region of two-phase coexistence. With the addition of cholesterol, the system was brought closer to its
critical point and the line tension between the macroscopic phases, was reduced. On the replacement
of DOPC by POPC, the system first entered what appears to be a modulated phase. With further
replacement, there was another transition to a phase in which no domains could be seen optically.
However, from previous experiments [19], this region is known to be characterized by nanodomains.
We first observe that having begun in a region of two-phase coexistence and having undergone two
phase transitions manifested by morphological transitions, the system exhibiting nanoscopic domains
was certainly no longer in a region of two-phase coexistence.

The two observed transitions are, however, quite compatible with our model, and our picture that
the region of nanodomains is a microemulsion. The system starts in a region of two-phase coexistence.
Hence the compositionally-dependent transition temperature of the system, T∗({µ}), is much higher
than the actual temperature of the system, T. Therefore, the parameter ā, plotted on the ordinate of
the phase diagram of Figure 1 is negative and large in magnitude. As DOPC is replaced by POPC, its
transition temperature is reduced; hence, ā increases, becoming less negative. With further replacement
of DOPC, T∗ decreases further and ā continues to increase. One sees from Figure 1 that there is a
large phase space in which paths of increasing T − T∗ lead to the observed sequence of two-phase
coexistence to modulated phase to microemulsion, consistent with experiment. The observation of this
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sequence of transitions also argues that the system of the GUV is a weakly coupled one; that is, the
magnitude of τ in Figure 1 is not large, or equivalently, the dimensionless coupling κH0/(bσ)1/2 is not
large compared to unity.

The other recent experiment of interest [23] detected nanoscopic domains in giant plasma
membrane vesicles at temperatures some twenty centigrade degrees higher than the highest
temperature at which macroscopic phase separation is observed in them [31]. The absence of
macroscopic domains at the higher temperatures clearly indicates that the system with nanodomains
does not exhibit two-phase coexistence. Further, nanodomains were observed over a wide range of
lipid compositions. This is a strong argument that the nanodomains are in a one-phase region in which
one has all of the c + 1 degrees of freedom, where c is the number of components. It argues against
an interpretation that the domains are a result of critical fluctuations as the constraint of being near a
critical line eliminates two of those degrees of freedom. Consequently, the cell would have to be tightly
controlled. In further support of the emulsion interpretation, one sees from Figure 1 that a transition
with increasing temperature from a region of two-phase coexistence, as observed in reference [31],
to an emulsion of nanodomains, as observed in reference [23], can certainly be brought about.

4. Domain Size and Physical Parameters

In the above theory, the wave vector of the fluctuation in composition that is most easily excited
thermally is given by Equation (8). If we arbitrarily choose the size of the domain, d, to be given by
d = π/k∗, then

d = π
( κ

σ

)1/2
[(

κH0

(σb)1/2

)
− 1
]−1/2

for κH0/(σb)1/2 ≥ 1 (9)

The domain size depends on four physical parameters: the total spontaneous curvature of the lipid
components of the membrane, H0; the energy cost of spatial variations in the composition, b; and two
elastic constants, the membrane’s surface tension, σ, and its bending modulus, κ. These elastic constants
were measured several years ago for a variety of cell types [27]. Fourteen values of the surface tensions
varied from 1.5 × 10−5 J/m2 to 7.8× 10−5 J/m2; the bending modulus varies from 1.8 × 10−19 J to
8.7 × 10−19 J. For the gradient energy, we take the reasonable value b = 5kBT = 2.1× 10−20 J [28].
For the membrane spontaneous curvature, we use H0 = 0.05 ×10−9 m−1 as this is comparable to
the value calculated recently [11]. That this is indeed reasonable follows from observing that the
magnitude of the spontaneous curvature of most lipids varies [32] between 0.01 and 0.4× 10−9 m−1.
Further, as a lipid on the inner leaf has a spontaneous curvature that is of opposite sign from that of
the same lipid on the outer leaf, there is cancellation in the total lipid contribution to the membrane
spontaneous curvature. Utilizing these values for the physical parameters, we find that the domain
size for these cell types varies from 58 nm to 88 nm, which is in accord with domain sizes estimated
from experiments [33–36]. The same group also measured the elastic properties of GPMVs (denoted
PMVs by them) and obtained σ = 0.80× 10−5 J/m2 and κ = 4.1× 10−19 J. Presumably the smaller
surface tension in the GPMV is due to the lack of a cytoskeleton. In this case one obtains a domain size
of 101 nm, somewhat larger than that predicted for the intact cells.

It is also of interest to calculate the dimensionless coupling strength between the membrane
configuration and the membrane composition, κH0/(bσ)1/2. For the various cell types, we calculate
that this coupling varies between 10 and 37. This indicates that the plasma membrane is a
strong microemulsion, as opposed to one for which the dimensionless strength is closer to unity.
This indication of a strong microemulsion is in accord with somewhat more detailed estimates made
earlier [10].

The dependence of the domain size on the four parameters of interest, the membrane’s
spontaneous curvature, H0, its bending modulus, κ, its surface tension, σ, and the gradient energy b,



Membranes 2020, 10, 167 8 of 13

can be obtained from Equation (9). We first consider its dependence on the membrane’s spontaneous
curvature, H0. We rewrite Equation (9) in dimensionless form as

d
(σ

κ

)1/2
= π

(
1

κH0/(bσ)1/2 − 1

)1/2
, (10)

which gives the domain size in terms of themembrane’s natural length (κ/σ)1/2. The function on the
right-hand side of Equation (10) is plotted in Figure 2. The domain size diverges at the Lifshitz line,
κH0/(bσ)1/2 = 1 and decreases monotonically with increasing spontaneous curvature.

Out[29]=

2 3 4 5

kHH0L
bs

1.0

1.5

2.0

d
s

k

Figure 2. Domain size, d in units of (κ/σ)1/2 is plotted vs. κH0/(bσ)1/2, the spontaneous curvature in
units of (bσ)1/2/κ. The domain size diverges at the Lifshitz line, κH0/(bσ)1/2 = 1.

To isolate the dependence of the domain size on the bending modulus, we multiply Equation (10)
by (κ2H2

0 /bσ)1/4 to obtain

d

(
σH2

0
b

)1/4

= π

(
κH0/(bσ)1/2

κH0/(bσ)1/2 − 1

)1/2

. (11)

The function on the right-hand side is plotted in Figure 3. Again, the domain size diverges at the
Lifshitz line, κH0/(bσ)1/2 = 1. It decreases with increasing bending modulus, but for large modulus,
it becomes independent of it and asymptotes to a value of d ≈ π(b/σH2

0)
1/4. We noted above that, for

the cell types examined in reference [27], the strength of the dimensionless coupling, κH0/(bσ)1/2 was
indeed large compared to unity. It follows that for these cells, the domain size is largely independent
of the bending modulus of the plasma membrane, and is given by d ≈ π(b/σH2

0)
1/4 which, up to a

factor of pi, is the geometric mean of two lengths, (b/σ)1/2 and H−1
0 .
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Out[30]=

1 2 3 4 5

kHH0L
bs

0.5

1.0

1.5

2.0

d
sHH0L2
b

4

Figure 3. Domain size, d, in units of (b/σH2
0)

1/4 is plotted vs. κH0/(bσ)1/2, the bending modulus in
units of (bσ)1/2/H0. The domain size diverges at the Lifshitz line, κH0/(bσ)1/2 = 1.

To isolate the dependence of the domain size on the gradient energy, b, we simply rewrite
Equation (10) in terms of the variable bσ/κ2H2

0 , linear in b, as

d
(σ

κ

)1/2
= π

(
(bσ)1/2/κH0

1− (bσ)1/2/κH0

)1/2

. (12)

This function is plotted in Figure 4. The domain size vanishes with vanishing gradient energy,
and increases with the gradient energy. For sufficiently large gradient energy, the domain size diverges
at the Lifshitz line. Recall that in two-phase coexistence, the line tension between phases is proportional
to b1/2. Thus this dependence of domain size on gradient energy is in agreement with the experimental
observation that the size of nanoscopic domains increases with increasing line tension between the
macroscopic domains from which they were formed [19].

Out[27]=

0.2 0.4 0.6 0.8

bs

k2HH0L2
1

2

3

4

d
s

k

Figure 4. Domain size, d, in units of (κ/σ)1/2 is plotted vs. bσ/κ2H2
0 /, the gradient energy in units of

κ2H2
0 /σ. The domain size diverges at the Lifshitz line, bσ/κ2H2

0 = 1.
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Lastly, to isolate the dependence of domain size on the membrane surface tension, we multiply
Equation (12) by κH0/(bσ)1/2 to obtain

d

(
κH2

0
b

)1/2

= π

[
1

[(bσ)1/2/κH0][1− (bσ)1/2/κH0]

]1/2
. (13)

This dependence on the surface tension, σ, is shown in Figure 5. One sees that the dependence is
not monotonic. The domain size diverges at small surface tension, decreases as the tension increases,
and then increases with increasing tension as the Lifshitz line is approached. The increase of domain
size with tension for large tensions has been experimentally observed both in giant unilamellar vesicles
and in GPMVs [37]. We note that this observation, like that of the sequence of transitions observed in
reference [22] argues that the GPMVs are also weakly coupled systems, i.e., that κH0/(bσ)1/2 is not large.
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Figure 5. Domain size, d, in units of (b/κH2
0)

1/2 is plotted vs. bσ/κ2H2
0 , the surface tension in units of

κ2H2
0 /b. The domain size diverges both as the surface tension goes to zero, and also at the Lifshitz line,

bσ/κ2H2
0 = 1.

5. Discussion

We have noted that the results of two recent experiments are incompatible with the hypothesis
that domains in the plasma membrane, or at least in GPMVs and GUVs where they are observed,
are regions of distinct lo and ld phases that are in coexistence with one another. The experimental
results, however, are well understood in terms of the theory that domains are a microemulsion of
lo-like and ld-like regions. The microemulsion is brought about by a coupling of the fluctuations of the
membrane’s height and its composition. We noted that experiments indicate that in GPMVs and GUVs,
the dimensionless coupling is not a very strong one. This contrasts with the observation we made
above: measurements of the plasma membrane’s elastic properties [27] lead us to expect the coupling
to be stronger there. The difference would presumably be due to the absence of the cytoskeleton
in GPMVs and GUVs. A sufficiently strong coupling leaves open the possibility that in the plasma
membrane, rafts might be the result of a modulated phase. This deserves further exploration [38,39].

We have stressed that the picture of phase coexistence implies that the plasma membrane would
have singular physical properties, and that the system would have to control tightly at least one, if not
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two degrees of freedom, such as chemical potential differences. This is in contrast to the microemulsion
picture in which the physical properties of the membrane are not singular, and its composition need
not be tightly controlled.

We do not imply that the tendency to phase separate is unimportant. If there were not two
different regions that tended to separate, there could be no emulsification of those regions. This points
to a further shortcoming of the conventional explanation for domains; there is no tendency for the
components of the cytoplasmic leaf of the plasma membrane to phase separate due only to their
mutual interactions [16]. However, the coupling of membrane height and composition fluctuations
tends to separate lipids with different spontaneous curvatures. The cytoplasmic leaf has large mol
fractions of lipids whose spontaneous curvatures are large in magnitude, such as POPE, and small
in magnitude, such as POPC. Consequently, the emulsion theory predicts that one of the domains in
the cytoplasmic leaf will be rich in POPE and cholesterol, while the other will be rich in POPC and
POPS [11]. While the conventional explanation can say nothing about the coupling of the domains
in the two leaves, the emulsion picture, depending upon the total spontaneous curvature of the two
leaves, provides a natural coupling between them [10,11]. It predicts that the domains of SM and
cholesterol in the outer leaf will be co-localized with those of POPC and POPS in the inner leaf, as
suggested by others [40], and that the domain rich in POPC in the outer leaf will be co-localized with
that which is rich in POPE and cholesterol in the inner leaf [11].

Lastly, the coupled fluctuation theory provides a natural origin for the size of the domains.
Therefore, it can explicate the dependence of the domain size on several physical parameters:
the surface tension and bending modulus of the membrane, and the gradient energy and spontaneous
curvatures of the lipids. As we showed, the size of domains predicted by the theory did not vary a
great deal over a variety of cell types: from 58 to 88 nm. In particular, we saw that the domain size was
relatively independent of the membrane’s bending modulus, as long as the modulus was sufficiently
large. Knowledge of the dependence and independence of domains on these physical parameters
gives some insight into the manner in which cells can manifest such control over the sizes of rafts, and
further, how they might manipulate their properties.
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