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Abstract: In the mitochondrial matrix, there are insoluble, osmotically inactive complexes that
maintain a constant pH and calcium concentration. In the present paper, we examine the properties
of insoluble calcium and magnesium salts, such as phosphates, carbonates and polyphosphates,
which might play this role. We find that non-stoichiometric, magnesium-rich carbonated apatite,
with very low crystallinity, precipitates in the matrix under physiological conditions. Precipitated salt
acts as pH buffer, and, hence, can contribute in maintaining ATP production in ischemic conditions,
which delays irreversible damage to heart and brain cells after stroke.

Keywords: mitochondrion; calcium carbonates; calcium phosphates; calcium polyphosphates; ATP
production; hypoxia; ischemia; pre-conditioning

1. Introduction

Mitochondria are responsible for the adenosine triphosphate (ATP) production in eukaryotic
organisms. They are also involved in Ca2+ signalling, lipid metabolism, heat production, reactive
oxygen species production and apoptosis [1]. It is becoming increasingly apparent that mitochondria
can accumulate, store and release a large amount of calcium ions under a variety of physiological and
pathological conditions such as epilepsy [2], ischemia [3,4] and concussive brain injury [5].

The mitochondrial matrix is surrounded by two membranes. The outer membrane acts as
a molecular sieve, while the inner membrane is ion-selective. The major function of the mitochondrial
inner membrane is the formation of the electrochemical proton gradient, known as proton motive
force [6], utilizing the energy produced by burning fats and sugars. The proton motive force is then
used by ATP synthase to synthetize ATP from adenosine diphosphate (ADP) and inorganic phosphate.
In the mitochondrial inner membrane there are numerous ion channels and ion exchangers which are
involved in the transport of calcium, magnesium, potassium, sodium, protons, phosphates and other
ions. The most relevant transporters in the mitochondrial inner membrane are depicted in Scheme 1.
Due to the very high electric potential difference (inside negative), the mitochondrial matrix tends to
accumulate calcium ions, which form a complex of calcium phosphates and carbonates. Of interest
in this report are free calcium and magnesium ions, and the composition of the solid aggregates
precipitating in the matrix.

The free concentration of Ca2+ and Mg2+ depends on complex chemistry which is not easy to
decode because of thermodynamic and kinetic factors. The capacity of isolated mitochondria to
accumulate calcium up to total matrix concentration of 0.5 M to 0.8 M, has been established more than
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half a century ago [7–11]. However, the free calcium concentration in the range of 0.17 to 5 µM has
been reported by numerous studies using fluorescent Ca2+ indicators (see Table 1).
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1.47. Dołowy, in the most recent hypothesis [30], assumed that brushite turns into isoclasite via all 
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sodium and potassium salts are soluble. Calcium and magnesium, on the other hand, can form a 
variety of insoluble salts. The solubility products of calcium and magnesium hydroxides are 
relatively high (KCa(OH)2 = 6.5 × 10−6 and KMg(OH)2 = 5.6 × 10−12), therefore in considered system Ca(OH)2 
and Mg(OH)2 will dissociate completely. In this work, the chemical equilibria of numerous 
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intentionally examined. Based on the solubility products and other properties of these salts, we 

Scheme 1. Ion channels, exchangers, pumps and oxidative phosphorylation chain of the inner
mitochondrial membrane: green—uniporters, blue—exchangers, yellow—four complexes of oxidative
phosphorylation chain, and red—ATP synthasome. There are more than one type of mitoBKCa, mitoKv
or mitoCl channels.

In mitochondria calcium has important physiological role in stimulation of ATP synthesis via
activation of several Ca2+-sensitive enzymes (pyruvate-, α-ketoglutarate-, isocitrate dehydrogenases),
ATP synthase and adenine nucleotide translocase [12,13]. Matrix enzymes are activated by calcium of
concentration in the micromolar range, i.e., [Ca2+]matrix = 0.5 to 2 µM [14]. Calcium can be accumulated
in or released from the mitochondrion, depending on the proton motive force of the mitochondrion
and cytoplasmic free calcium concentration.

In the presence of phosphates, calcium appears to form an insoluble and osmotically inactive
complex, which buffer calcium concentration [7]. Amorphous granules containing calcium and
phosphorus were identified within the mitochondria of osteoclasts [15], chondrocytes [16,17],
osteoblasts [18], osteocytes [19–21], calcifying cartilage [22], and mineralizing bone [23–25].
It is impossible to investigate the nature of the calcium phosphates in the matrix directly, due
to their instant dissociation when mitochondria are disrupted and due to their ability to transform
during fixation or drying for chemical analysis [26]. Additionally, it is reasonable to presume that these
complexes in the matrix are inert, to some extend at least. Even more importantly, the composition of
mitochondrial granules is still largely unknown [27] and it is based on several hypotheses. Thomas and
Greenawalt [28] suggested that inorganic granules found in mitochondria are a colloidal, sub-crystalline
precursor of calcium-deficient hydroxyapatite. Lehninger [8] and later Nicholls and Chalmers [29]
assumed the formation of amorphous tricalcium phosphate, while Kristian et al. [27] suggested the
formation of brushite and non-stoichiometric amorphous calcium phosphate with Ca/P ratio equal
1.47. Dołowy, in the most recent hypothesis [30], assumed that brushite turns into isoclasite via all
intermediate forms of calcium phosphate minerals forming a polymer-like structure.

The inorganic cations present in the mitochondrial matrix include Na+, K+, Ca2+ and Mg2+.
All sodium and potassium salts are soluble. Calcium and magnesium, on the other hand, can form
a variety of insoluble salts. The solubility products of calcium and magnesium hydroxides are relatively
high (KCa(OH)2 = 6.5 × 10−6 and KMg(OH)2 = 5.6 × 10−12), therefore in considered system Ca(OH)2 and
Mg(OH)2 will dissociate completely. In this work, the chemical equilibria of numerous compounds,
including calcium and magnesium carbonates, phosphates and polyphosphates are intentionally
examined. Based on the solubility products and other properties of these salts, we identify the reason
for the pH buffering effect, i.e., the calcium hydroxide buffer effect in the mitochondrial matrix.
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2. Calculations and Data

2.1. Mitochondrial pH, Ionic Concentrations and Activities

One must realize the meaning of pH in the systems with very low volumes. The amount of
protons can be calculated as nH+ = NA × V × 10−pH, where NA = 6.02 × 10−23 is the Avogadro number
and V represents volume. The mitochondrion is an organelle with a diameter of c.a. 1 µm, hence the
volume of ~1 fL. The mitochondrial matrix occupies 90% of mitochondrial volume. With pHmat = 8.2,
one obtains 3.4 protons in the matrix. This indicates that water is too weakly dissociated to be a direct
donor or acceptor of protons at very low biological volumes (even if one can still define the pH formally)
and that protons can be shuttled to reaction centers by other biomolecules, whose concentrations are
not constrained by the solubility product of water [31]. These protons may be provided by carbonic or
phosphoric acid or dissolution of their salts.

The molecular probes used for pH measurements, like e.g., SNARF-1 (seminaphtharhodafluor) [32–34]
or mutants of green fluorescent protein [35–37], report their own protonation state and not the
concentration of free protons in the solution.

The values of pH and the concentrations of inorganic ions, measured in mitochondria using
various methods, are listed in Table 1. The mitochondrion is a complex organelle in which pH and
concentrations of ions fluctuate in response to metabolic processes and perturbations of the cytosolic
environment [38]. Mitochondrial pH is reported to be in the range of 7.2 to 8.4 with an average value
of 7.8 (see Table 1). However, when mitochondria are loaded with succinate, the pH can reach values
close to 9 [39]. The concentration of calcium in mitochondria usually varies between 0.17 to 5 µM
(see Table 1). However, in the case of mitochondria of firing axon, it can reach values as high as
24 µM [40]. Furthermore, the concentrations of ions are interdependent, e.g., calcium effluxes from
mitochondria can depend on the concentration of sodium [41].

The driving force for the transition of dissolved matter from a supersaturated solution to the
equilibrium solid phase, is given by the change of standard free energy ∆G0 = −RTlnS , where S = Q/Ksp

is supersaturation defined as the ratio of the ion activity product (Q) of constituent ions in solution
over its equilibrium solubility product (Ksp). If S > 1, the solution is supersaturated, and precipitation
may occur. If S < 1, the solution is undersaturated, and there will be no precipitation.

The activity product of a salt AxBy is defined as:

Q = {A}x × {B}y = γA
x
× γB

y
× [A]x × [B]y (1)

where {A} and {B} are the activities, [A] and [B] are the concentrations, γA and γB are the activity
coefficients of ions A and B, respectively.

In ideal solution, the activity coefficients of all ions equal one. However, in the concentrated
solutions γi can significantly vary from unity and strongly depends on the ionic strength of the solution
defined as:

I = 0.5
∑

zi
2ci (2)

where ci is the concentration of i-th ion and zi represents its charge. It is impossible to precisely calculate
the ionic strength of the mitochondrial matrix. Taking into account just the inorganic ions present in
the matrix (see Table 1) and assuming similar concentration of inorganic ions, one can assume I of the
matrix to be in the range of 0.4 to 1 M. The extended Debye-Hückel can predict the activity coefficient
in a solution with an ionic strength up to 100 mM and Davies equation is valid up to an ionic strength
of 500 mM [42]. In this work, we use the modified Davies equation, which can correctly predict the
values of the activity coefficient in solutions with ionic strength up to 1 M [42]:

lnγi = −
Azi

2
√

I

1 + aiB
√

I
+

(0.2− 4.17× 10−5I)Azi
2I

√
1000

(3)
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where A =
√

2F2e0

8π(εRT)3/2 and B =
√

2F2

εRT , F is the Faraday constant (96,488.46 C/mol), R is the ideal

gas constant (8.3143 J/mol/K), T is the temperature (310 K), e0 stands for the electronic charge
(1.602 × 10−19 C), ε = ε0εr is the permittivity of the medium (ε0 = 8.854× 10−12 F/m, εr = 80 for water),
and ai represents the radius of hydrated ion (values according to Kielland [70]).

Table 1. Mitochondrial concentrations of selected inorganic ions.

Value Measuring Technique Type of Cell Ref.

pH

7.14 SNARF pig heart [32]
7.8 BCECF beef heart [43]

7.65–8.1 SNARF beef heart [33]
8.0–8.9 DMO distribution rat heart [39]

7.40–7.51 DMO distribution beef heart [44]
7.74–7.95 ratiometric pericam motor nerve of Drosophila fly larvae [40]

7.7 SNARF canine kidney (MDCK) [34]
7.64 YFP (SypHer) HeLa [38]

7.6–8.2 GFP (mtAlpHi) HeLa [36]
7.8 enhanced YFP human bladder carcinoma [45]

7.7–8.2 pH-sensitive GFP (Jurkat) T lymphocyte and HEK-293 [37]
7.98 enhanced YFP HeLa [46]
7.91 enhanced YFP rat cardiomyocytes [46]

7.2–7.7 isotope distribution ‡ rat liver [47]
7.2–8.4 [U-14C]glutamate efflux rat kidney [48]

Na+

50–113 mM CoroNa Red canine kidney (MDCK) [49]
5 mM SBFI pig heart [50]

5.1 mM SBFI rat ventricular myocytes [51]
5 mM assumed physiol. value - - - - - - - - - [52]

K+

15 mM PBFI isolated rat hepatocytes [53]
10–20 mM PBFI rat heart [54]

20–60 mM † Potentiometric ISE rat liver [55]
150 mM assumed physiol. value - - - - - - - - - [52]

Mg2+

0.35 mM Mg2+ efflux null-point rat hepatocytes [56]
0.9 mM Mg2+ efflux null-point beef heart [57]
2.4 mM 31P-NMR spectroscopy heterotrophic sycamore [58]
0.5 mM Fura-2 beef heart [59]

0.8–1.5 mM Indo-1 and Fura-2 rat heart [60]

Ca2+

0.22 µM mito-TN-XXL motor nerve of Drosophila fly larvae [40]
24 µM * Rhod-FF/Rhod-5N motor nerve of Drosophila fly larvae [40]

0.19–3.34 µM YC2 HEK-293 and HeLa [61]
0.41 µM aequorin luminescence bovine adrenal glomerulosa cells [62]
183 nM Indo-1 rat heart [63]

0.1–0.6 µM Indo-1/AM rat cardiac myocytes [64]
0.2–1.1 µM Indo-1 rat heart [65]

0.17–0.92 µM Fura-2/AM rat heart [66]
0.2–1.8 µM Fura-2 rat heart [67]
0.4–2.1 µM Fura-2 rat heart myocytes [68]

1–5 µM Fura-2/AM rat brain [29]

Cl-
4.2 mM liquid chromatography human liver [69]

0.9–22.2 mM liquid chromatography human liver [69]

* axon firing; † results originally given in mmol/mg; ‡ distribution of [14C]− or [3H]acetate or [14C]5,5-
dimethyloxazolidine-2,4-dione. Abbreviations: AM—acetoxymethyl ester, BCECF—2’,7’-biscarboxyethyl-
5(6)-carboxyfluorescein, DMO—C-5-5-dimethyl-2,4-oxazolidinedione, GFP—green fluorescent protein,
HEK-293—human embryonic kidney cells, Fura-2—calcium indicator C29H22N3O14K5, HeLa—human cervix-carcinoma
cells, Indo-1—calcium indicator C32H31N3O12, MDCK—Madin-Darby Canine Kidney, PBFI—potassium-binding
benzofuran isophthalate, SBFI—sodium-binding benzofuran isophthalate, SNARF—seminaphthorhodafluors
fluorescence, YC2—Yellow Cameleon protein, YFP—yellow fluorescent protein.
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As presented in Figure 1, in the ionic strengths I > 1 mM, the ideal solution assumption (γi = 1) is
not valid. In strong electrolytes, I > 200 mM, the activity coefficients (γi , 1) remain almost constant.
In further calculations, the activity coefficients obtained for I = 0.7 M will be used.
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2.2. Precipitation of Carbonates

Calcium and magnesium carbonates may form in the mitochondrial matrix due to the presence of
carbon dioxide produced in citric acid cycle. Although the measurements of partial pressure of CO2

inside mitochondria is not yet possible with existing methods, it might be assumed to be equal or
slightly higher than the partial pressure in blood. The partial pressure of carbon dioxide measured
in human mixed venous blood is pCO2 = 6.1 kPa [71] to 6.3 kPa [72]. However, during exercises,
it can rise to 7.8 kPa and after crossing the lactate acidosis threshold, it can reach values as high as
10.4 kPa [72].

The amount of gas dissolved in a solution is proportional to its partial pressure in the gas
phase [73]. The proportionality factor is called the Henry’s law constant. Nevertheless, it should
be kept in mind that its value still depends on certain parameters, e.g., temperature and the
ionic strength of the solution. The Henry’s law constant for carbon dioxide dissolved in water
at 25 ◦C equals KH = 3.4 × 10−4 mol·m−3

·Pa−1 [74]. It lowers with the increasing temperature reaching
2.5 × 10−4 mol·m−3

·Pa−1 at 37 ◦C [75].
The hydration of carbon dioxide to form carbonic acid is slow to attain equilibrium below pH = 8

in pure systems. In biological systems the hydration of carbon dioxide is catalysed by carbonic
anhydrase (a Zn-containing enzyme). Only a small portion of the aqueous carbon dioxide exists in its
hydrated form as H2CO3. Hence, the relation between the carbonic species is usually expressed as:{

K1 × {CO 2(aq)} = {H+
} ×

{
HCO3

−
}

K2 × {HCO 3
−
} = {H+

} × {CO3
2−
}

(4)

where the equilibrium constants in pure water solutions at 25 ◦C equal K1 = 4.5 × 10−7,
K2 = 4.7 × 10−11 [76].

These constants are temperature-dependent. Several different empirical equations have been
developed to describe the relation between the equilibrium constants and temperature, including ones
determined by Harned and co-workers [77–79], Ryzhenko [80], Millero and co-workers [81–83], as well
as Plummer and Busenberg [75]. The values calculated using the latter at 37 ◦C, i.e., K1 = 4.96 × 10−7

and K2 = 5.73 × 10−11 are used in this work.
It should be noted, that mentioned equations are valid only for the solutions of carbon dioxide in

pure water. The presence of other ions in the system lead to the increase of K1 and K2, e.g., values of
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equilibrium constants measured in sea water at 40 ◦C can reach K1 = 2.1× 10−6 and K2 = 2.3 × 10−10 [83],
comparing with calculated K1 = 5.1 × 10−7 and K2 = 6.0 × 10−11. In biological systems they can vary
significantly and are treated not as true thermodynamic constants, but rather as apparent dissociation
constants determined experimentally from the measurements of pH, pCO2 and dissolved CO2 [84].
Several studies [85–89] revealed the variability of K1 in human plasma in the range of 4.78 × 10−7 to
1.58 × 10−6. A case study of a diabetic child in ketoacidosis showed a change of K1 from 3.24 × 10−6 to
9.54 × 10−7 after just 7 h of treatment [90].

2.2.1. Calcium Carbonates

Ca2+ and CO3
2− ions form calcium carbonates CaCO3. There are six different forms

of CaCO3, namely:

(1) calcite, anhydrous CaCO3 with trigonal structure
(2) aragonite, anhydrous CaCO3 with orthorhombic structure
(3) vaterite, anhydrous CaCO3 with hexagonal structure
(4) monohydrocalcite, CaCO3·H2O with trigonal structure
(5) hexahydrate known as ikaite, CaCO3·6H2O with monoclinic structure
(6) amorphous calcium carbonate (ACC), colloidal hydrate containing less than one molecule of

water per molecule of CaCO3.

Although the first attempts to quantify the solubility of calcium carbonates in aqueous systems
date back to the middle of the 19th century [91,92] and despite the many efforts with current advanced
ionic interaction models available, there are still no universally accepted values of the solubility
constants of the calcium carbonate forms [93]. Values of the solubility products for various forms of
CaCO3 and their activity products are presented in Table 2. Using these values, one can calculate the
equilibrium concentration of free calcium in the solutions of respective salts as functions of pH and
partial pressure of carbon dioxide.

Table 2. The precipitation of insoluble calcium carbonates. The activity products (IAP) and the solubility
products Ksp (at 37 ◦C) are obtained from the literature.

Formula Activity Product
(Q)

Solubility Product, Ksp at
37 ◦C Ref.

Calcite CaCO3 {Ca2+} {CO3
2−}

3.31 × 10−9 * [75]
3.27 × 10−9 to 4.02 × 10−9 [93]

Aragonite CaCO3 {Ca2+} {CO3
2−}

4.57 × 10−9 * [75]
4.67 × 10−9 to 5.41 × 10−9 [93]

Varietite CaCO3 {Ca2+} {CO3
2−}

1.23 × 10−8 * [75]
1.18 × 10−8 to 1.84 × 10−8 [93]

Ikaite CaCO3·6H2O {Ca2+} {CO3
2−}

2.40 × 10−7 * [94]
3.50 × 10−7 [95]

Monohydro-calcite CaCO3·H2O {Ca2+} {CO3
2−}

7.09 × 10−8 * [96]
2.51 × 10−8 [97]

ACC
CaCO3·nH2O

{Ca2+} {CO3
2−}

9.09 × 10−7 * [94]
(n < 1) 3.98 × 10−7 [98]

* Values used in the calculations presented in this work.

2.2.2. Magnesium Carbonates

Mg2+ and CO3
2− ions can form a variety of anhydrous, hydrated and basic magnesium carbonates,

namely [99–103]:
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(1) magnesite, anhydrous MgCO3 with trigonal crystal structure
(2) barringtonite, dihydrate MgCO3·2H2O with triclinic structure
(3) nesquehonite, trihydrate MgCO3·3H2O with monoclinic structure
(4) lansfordite, pentahydrate MgCO3·5H2O with monoclinic structure
(5) pokrovskite, basic carbonate Mg2CO3(OH)2 with monoclinic structure
(6) artinite, hydrated basic carbonate Mg2CO3(OH)2·3H2O with monoclinic structure
(7) hydromagnesite, hydrated basic carbonate Mg5(CO3)4(OH)2·4H2O with monoclinic structure
(8) dypingite, hydrated basic carbonate Mg5(CO3)4(OH)2·5H2O with monoclinic structure
(9) giorgiosite, hydrated basic carbonate Mg5(CO3)4(OH)2·6H2O
(10) octahydrate (UM1973-06-CO:MgH) with the formula Mg5(CO3)4(OH)2·8H2O, possibly identical

to dypingite, but differs in optical properties
(11) protomagnesite, hydrated basic carbonate Mg5(CO3)4(OH)2·11H2O
(12) shelkovite, hydrated basic carbonate Mg7(CO3)5(OH)4·24H2O

Not all of the salts listed above can be precipitated directly from water solutions. Barringtonite is
formed as the result of cold meteoric water percolating through olivine basalt and leaching magnesium
from it [104]. Artinite is found along with hydromagnesite and other minerals as a low-temperature
alteration product, as veinlets or crusts in serpentinized ultrabasic rocks [103]. Pokrovskite occurs
within ultramafic bodies of dunite or serpentinite [105], and can be formed as an intermediate product
in the thermal decomposition of artinite [106]. Shelkovite is a substance of anthropogenic origin,
i.e., a product of burning coal mine dump [103].

Formation of the most stable anhydrous magnesite (MgCO3) is strongly kinetically inhibited
because of the high hydration energy of Mg2+ [107,108]. The precipitation of magnesite is apparently
inhibited at temperatures of less than 80 ◦C [109–111]. Therefore, various hydrous magnesium
carbonates form instead. In water solutions, landsfordite, nesquehonite and hydromagnesite can
precipitate, depending on the temperature. Lansfordite decomposes into nesquehonite at temperatures
above 10 ◦C [112,113]. Most commonly, only the mineral nesquehonite can be precipitated from aqueous
solutions at 25 ◦C and partial pressure of CO2 close to the ambient pressure or below [100,112–116].
At higher temperatures, i.e., above approximately 40 ◦C, various basic Mg-carbonates are usually
formed by precipitation, mostly in the form of hydromagnesite [112,114,116,117].

The transformation from nesquehonite to hydromagnesite is unlikely to follow a single simple
sequential reaction pathway [107] and a range of intermediate phases may form during this
transformation [99]. Giorgiosite is a very poorly described basic magnesium carbonate [103,125]
and it is considered as a metastable phase between nesquehonite and hydromagnesite [103].
Protohydromagnesite, a phase similar to dypingite, appears only as a metastable intermediate
phase [114,126]. One intermediate phase is of particular interest, namely dypingite, a mineral
that is known to be produced by cyanobacteria from alkaline wetlands [127]. Octahydrate
Mg5(CO3)4(OH)2·8H2O is often considered a form of dypingite [120].

The reactions leading to the formation of the relevant magnesium carbonates together with the
values of respective solubility products at 25 ◦C are summarized in Table 3. Several values obtained at
35 ◦C are also included in Table 3. Using these values, one can calculate the equilibrium concentration
of free magnesium in the solutions of respective salts as functions of pH and partial pressure of
carbon dioxide.
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Table 3. The precipitation of insoluble magnesium carbonates. The activity products (Q) and the
solubility products Ksp (at 25 ◦C) are obtained from the literature.

Formula Activity Product (Q) Solubility Product, Ksp at 25
◦C Ref.

Nesquehonite MgCO3·3H2O {Mg2+} {CO3
2−}

2.38 × 10−6 [99]
1.10 × 10−5 [118]
2.57 × 10−6 [119]
5.37 × 10-6 [120]

4.57 × 10−6 *† [120]
5.90 × 10−5 [121]

Artinite Mg2CO3(OH)2·3H2O {Mg2+}2 {CO3
2−} {OH−}2 6.31 × 10−18 [119]

7.76 × 10−18 * [122]

Hydromagnesite Mg5(CO3)4(OH)2·4H2O {Mg2+}5 {CO3
2−}4 {OH−}2

6.31 × 10−31 [119]
1.25 × 10−32 [123]

3.16 × 10−33 *† [123]
8.32 × 10−38 [124]

Dypingite Mg5(CO3)4(OH)2·nH2O
{Mg2+}5 {CO3

2−}4 {OH−}2 1.12 × 10−35 [120]
(n = 5 or 8) 9.12 × 10−37 *† [120]

* Values used in the calculations presented in this work; † Ksp obtained at 35 ◦C.

2.3. Precipitation of Orthophosphates

Orthophosphate salts containing the PO4
3− group are distinguished from metaphosphates and

pyrophosphates that contain PO3
− and P2O7

4− groups, respectively. The PO4
3− group takes part in ATP

synthesis and occurs inside the mitochondrion in relatively high concentrations. Hence, the formation
of metaphosphates and pyrophosphates will not be taken into consideration.

The concentration of phosphate ions is kept constant by the phosphate carrier while the relationship
between them is given as: 

K1 × { H 3PO4} = {H+
} ×

{
H2PO4

−
}

K2 × {H 2PO4
−
} = {H+

} × {HPO4
2−
}

K3 × {HPO 4
2−
} = {H+

} × {PO4
3−
}

(5)

where K1 = 7.41 × 10−3, K2 = 6.31 × 10−8 and K3 = 4.07 × 10−13 [128].

2.3.1. Calcium Orthophosphates

The calcium ortophosphates found in nature include [30,129–131]:

(1) monocalcium phosphate monohydrate (MCPM), Ca(H2PO4)2·H2O with Ca/P ratio = 0.5
(2) anhydrous monocalcium phosphate (AMCP), Ca(H2PO4)2 with Ca/P ratio = 0.5
(3) dicalcium phosphate dihydrate, CaHPO4·H2O, known as brushite (BRU), Ca/P ratio = 1.0
(4) anhydrous dicalcium phosphate, CaHPO4, known as monetite, Ca/P ratio = 1.0
(5) octacalcium phosphate (OCP) with the formula Ca8(HPO4)2(PO4)4·5H2O, Ca/P ratio = 1.33
(6) α-tricalcium phosphate (α-TCP), Ca3(PO4)2 with monoclinic crystallographic structure and Ca/P

ratio = 1.5
(7) β-tricalcium phosphate (β-TCP), Ca3(PO4)2 with rhombohedral crystallographic structure and

Ca/P ratio = 1.5
(8) amorphous calcium phosphates (ACP), CaxHy(PO4)z·nH2O, n = 3 to 4.5, Ca/P ratio = 1.2 to 2.2
(9) calcium-deficient hydroxyapatite (CDHA), Ca10−x(HPO4)x(PO4)6−x(OH)2−x (0 < x ≤ 2) with Ca/P

ratio = 1.5 to 1.67
(10) hydroxyapatite (HA) with the formula Ca10(PO4)6(OH)2, Ca/P ratio = 1.67
(11) chloroapatite (ClA) with the formula Ca10(PO4)6(Cl)2, Ca/P ratio = 1.67
(12) carbonated apatite (CO3A), Ca10(PO4)6CO3, known as dahllite, Ca/P ratio = 1.67
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(13) fluoroapatite (FA), with the formula Ca10(PO4)6F2 and Ca/P ratio = 1.67
(14) oxyapatite (OA), with the formula Ca10(PO4)6O and Ca/P ratio = 1.67
(15) tetracalcium phosphate (TetCP), Ca4(PO4)2O, known as hilgenstockite, Ca/P ratio = 2.0

Another calcium salt, i.e., isoclasite with the formula Ca2(PO4)OH·2H2O, has been reported in
1870 by Sandberger [132] as orthorhombic crystals. His measurement was rather inaccurate (the angle
between prismatic faces measured by contact goniometer) and the crystals could be hexagonal, possibly
of apatite. Doubts concerning validity of data on isoclasite are supported by the absence of any
additional description of isoclasite anywhere [133].

Some of the calcium salts mentioned above, including tetracalcium phosphate, oxyapatite,
α-tricalcium phosphate and β-tricalcium phosphate, cannot be precipitated from aqueous
solutions [131]. Anhydrous monocalcium phosphate and anhydrous dicalcium phosphate are stable
only in temperatures above 100 ◦C, while monocalcium phosphate monohydrate is stable only at
pH < 2 [131]. Energy dispersive x-ray spectra from mitochondrial precipitates do not show the presence
of fluor [27]. Hence, the formation of fluoroapatite can be ruled out as well.

The formulas of the calcium phosphates that might precipitate in the mitochondrion matrix,
together with the values of respective solubility products at 37 ◦C are summarized in Table 4 (some of
the literature values have been recalculated to correspond to the activity product given in the table).
To calculate the equilibrium concentration of chloroapatite and carbonated apatite, the concentrations
of chlorides and carbonates have to be provided. The free chloride concentration in the mitochondrial
matrix equals [Cl−] = 4.2 mM [69]. The concentration of carbonate ions [CO3

2−] are calculated using
Equation (4), assuming that partial pressure of carbon dioxide equals pCO2 = 7 kPa.

Table 4. The precipitation of insoluble calcium orthophosphates. The activity products (Q) and the
solubility products Ksp (at 37 ◦C) are obtained from the literature.

Formula Activity Product (Q) Solubility Product, Ksp at 37 ◦C Ref.

BRU CaHPO4 {Ca2+} {HPO4
2−}

2.34 × 10−7 * [129]
2.26 × 10−7 [134]
0.92 × 10−7 [135]

OCP Ca8(HPO4)2(PO4)4 {Ca2+}8 {H+}2 {PO4
3−}6

1.25 × 10−96 * [129]
1.20 × 10−97 [134]
3.98 × 10−98 [136]
2.51 × 10−99 [137]

ACP CaxHy(PO4)z

{Ca2+}x {H+}y {PO4
3−}z 2.0 × 10−26 *† [130]

{Ca2+}3 {PO4
3−}2 2.0 × 10−33–1.6 × 10−25 [29]

{Ca2+} {H+}0.22 {PO4
3−}0.74 2.3 × 10−11, 3.2 × 10−12 § [138]

CDHA Ca10-x(HPO4)x(PO4)6-x(OH)2-x {Ca2+}10−x {H+}x {PO4
3−}6 {OH−}2−x ~7.94 × 10−86 * [130]

HA Ca10(PO4)6(OH)2 {Ca2+}10 {PO4
3−}6 {OH−}2

1.00 × 10−118 [29]
6.31 × 10−118 * [129]
2.00 × 10−119 ‡ [139]
2.51 × 10−111 [140]
5.42 × 10−119 [141]

ClA Ca10(PO4)6Cl2 {Ca2+}10 {PO4
3−}6 {Cl−}2 3.98 × 10−116 * [140]

CO3A Ca10(PO4)6CO3 {Ca2+}10 {PO4
3−}6 {CO3

2−} 1.58 × 10−103 *‡ [139]

* Values used in the calculations presented in this work; † Ksp is pH-dependent, value in the table for pH = 7.4;
‡ Ksp obtained at 25 ◦C; § authors observed two different metastable phases.

2.3.2. Magnesium Orthophosphates

The magnesium ortophosphates found in nature include [142]:

(1) anhydrous trimagnesium phosphate, Mg3(PO4)2 with monoclinic crystal structure, occurs as the
natural mineral farringtonite

(2) trimagnesium phosphate octahydrate, Mg3(PO4)2·8H2O with monoclinic structure, occurs as the
natural mineral babierrite
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(3) trimagnesium phosphate docosahydrate, Mg3(PO4)2·22H2O with triclinic structure, occurs as the
natural mineral cattiite

(4) anhydrous dimagnesium phosphate, Mg(HPO4)
(5) dimagnesium phosphate monohydrate, Mg(HPO4)·H2O
(6) dimagnesium phosphate trihydrate, Mg(HPO4)·3H2O with orthorhombic structure, occurs as the

natural mineral newberyite
(7) dimagnesium phosphate heptahydrate, Mg(HPO4)·7H2O with monoclinic structure, occurs as

the natural mineral phosphorrösslerite
(8) anhydrous monomagnesium phosphate, Mg(H2PO4)2

(9) monomagnesium phosphate dihydrate, Mg(H2PO4)2·2H2O
(10) monomagnesium phosphate tetrahydrate, Mg(H2PO4)2 ·4H2O
(11) magnesium hydroxyphosphate, Mg2(PO4)(OH) with trigonal structure, occurs as the natural

mineral holtedahlite
(12) magnesium ammonium phosphate, NH4MgPO4·6H2O with orthorhombic structure, occurs as

the natural mineral struvite
(13) magnesium potassium phosphate, KMgPO4·6H2O

Due to the high hydration energy, the direct precipitation of anhydrous magnesium phosphates
is not possible. The anhydrous Mg(HPO4) compound is formed by dehydration at 100–170 ◦C [142].
The anhydrous farringtonite is formed by heating its hydrates at 400 ◦C [142].

Monomagnesium phosphate and its hydrates dissolve in water, forming phosphoric acid and
depositing a solid precipitate of Mg(HPO4)·3H2O [142], e.g., precipitation monomagnesium phosphate
tetrahydrate requires a non-aqueous solvent in which H3PO4 is soluble but Mg(H2PO4)2·4H2O
has limited solubility [143]. Among dimagnesium phosphates only the trihydrate is stable in the
MgO/H2O/P2O5 system at room temperature [142]. The trimagnesium phosphate docosahydrate is
metastable and reverts to octahydrate in water [144].

It has been shown that increased levels of ammonia disturb mitochondrial function, induce
oxidative stress, causes mitochondrial membrane potential collapse and negatively affects several key
enzymes responsible for energy metabolism [145–148]. Although the mitochondria are responsible
for the production of NH4

+ ions during the oxidation of glutamate [149], in healthy mitochondria the
concentration of ammonia is very low. Hence, the formation of struvite can be ruled out. Furthermore,
in the biological precipitation of struvite, Ca2+ ions make struvite precipitation difficult and even
inhibit it [150,151].

The reactions leading to the formation of the relevant magnesium phosphates together with
the values of respective solubility products at 38 ◦C are summarized in Table 5. Using these values,
the equilibrium concentration of phosphates [

∑
Pi]eq, required for the formation of each magnesium

orthophosphate can be calculated.

Table 5. The precipitation of insoluble magnesium phosphates. The activity products (Q) and the
solubility products Ksp (at 38 ◦C) are obtained from the literature.

Formula Activity Product (Q) Solubility Product, Ksp at 38 ◦C Ref.

Babierrite Mg3(PO4)2·8H2O {Mg2+}3 {PO4
3−}2

6.31 × 10−28 [152]
5.37 × 10−26 *†‡ [144]
2.00 × 10−26 § [153]

Newberyite Mg(HPO4)·3H2O {Mg2+} {HPO4
2−}

3.47 × 10−5 [154]
1.78 × 10−6 *† [144]
2.40 × 10−6 ‡ [144]
1.78 × 10−6 § [155]
1.48 × 10−6 § [153]

Magnesium potassium phosphate KMgPO4·6H2O {K+} {Mg2+} {PO4
3−} 2.4 × 10−11 § [156]

* Values used in the calculations presented in this work; † recalculated based on [152]; ‡ recalculated based on [154];
§ Ksp obtained at 25 ◦C.
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2.4. Precipitation of Polyphosphates

It has been reported that PO4
3− can be concentrated and stored by biochemical polymerization

into polyphosphate (polyP) ions [157]. They are negatively charged polyanions (PnO3n+1)(n+2)− with
great affinity for calcium and other multivalent cations [158]. PolyP is a macroergic compound so that
the energy of phosphoanhydride bond hydrolysis is the same as in ATP [159]. Polyphosphates have
been found in all organisms ranging from bacteria to mammals [160].

The synthesis of polyP is mainly realized by the polyphosphate kinase, which catalyses the reaction
ATP + [PO3

−]n↔ADP + [PO3
−]n+1. PolyP can play a role in the energetic metabolism of mitochondria [161],

e.g., it has been shown that, in human cell lines, specific reduction of mitochondrial polyP under expression
of yeast exopolyphosphatase PPX1 significantly modulates mitochondrial bioenergetics and transport [159].
Polyphosphates (including pyrophosphate) have also a significant role in the regulation of the intensity of
several biosynthetic processes in mitochondrial and cell energy metabolism [162,163].

PolyP can form several insoluble salts. Bobtelsky and Kertes [164], have analysed the properties of
pyrophosphates (P2O7)4− and tripolyphosphates (P3O10)5− and the precipitation of calcium, magnesium,
barium and strontium salts of these ions. With the addition of calcium to the respective polyP solution,
the insoluble Ca2P2O7 and Ca5(P3O10)2 will form, while the addition of magnesium leads to the
precipitation of Na2Mg3(P2O7)2 and NaMg2P3O10, respectively. Interestingly, the redissolution of
these salts will take place if the excess of the polyphosphate ions is added to the solution [164].

Polyphosphate chelation of calcium reduces the free calcium concentration [165] and produces
a neutral, amorphous, [Ca(PO3)2]n complex. Discrete granules containing calcium–polyP complexes
have been observed e.g., in acidocalcisomes, the electron-dense acidic organelles that have been
conserved from bacteria to humans [166]. PolyP are noted to be highly inhibitory to calcium phosphate
nucleation and precipitation [167], e.g., they inhibit crystalline calcium hydroxyapatite nucleation and
growth from solution [168]. However, in basic pH solutions calcium polyphosphate glass releases
hydrated calcium and polyphosphate ions into solution and, through hydrolytic degradation of
polyP, calcium polyphosphate eventually transforms into hydroxyapatite [169]. The relationships
between polyphosphate chemistry and apatite biomineralization as well as the possible role of polyP
in mitochondria have been discussed in detail by Omelon et al. [165,170].

The important polyP forms in living cells are specific complexes with polyhydroxybutyrate (PHB)
and Ca2+, which have been found in the membranes of many organisms, including membranes of
mitochondria of animal cells [171,172]. The PHB forms a helix with a lipophilic shell of methyl groups
and polar lining of ester carbonyl oxygens surrounding a core helix of polyP with Ca2+ bridging the
two polymers. These helices can form voltage-dependent, Ca2+-selective channels, or be components
of ion-conducting proteins: namely, the human erythrocyte Ca2+-ATPase pump and the Streptomyces
lividans potassium channel [173].

The polyP pool in mitochondria likely consists of two parts, i.e., one part localized directly in the
membranes as a polyP–PHB–Ca2+ complex, and the other part present in the intermembrane space and
not bound to PHB, though its association with cations, including Ca2+, is not improbable [159]. It was
determined by subfractionation of isolated mitochondria by mild osmotic treatment, that intermembrane
space contained ~90% of total mitochondrial polyP [174]. This suggests that polyphosphates are formed
outside the mitochondrial matrix. Furthermore, the formation of calcium polyP inside the matrix
seems less likely than calcium orthophosphates, because the Ca/P ratio of this complex is less than 1,
while the mitochondrial Ca/P ratio is between 1 and 2.

3. Results

3.1. Precipitation of Calcium Carbonates

Using the values presented in Table 2, one can calculate the equilibrium concentration of free
calcium in the solutions of respective salts as functions of pH and partial pressure of carbon dioxide.
Such calculations are shown in Figure 2.
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The more stable crystalline forms are generally those with a lower solubility product, hence lower
equilibrium concentration of calcium. However, the formation and transformation of solid phases
during the spontaneous precipitation of calcium carbonate from alkaline, carbonate-rich solutions is
a highly complicated and time-dependent process. The local conditions of temperature, concentration
and impurities can have a profound effect on the qualitative nature of the phases formed, as well as on
the quantitative kinetics of individual processes.

The Ostwald-Lussac Law of Stages states that, in the pathway to the final crystalline state, will pass
through all less stable states in order of increasing stability [175]. The formation of metastable phases is
a quite common phenomenon during spontaneous precipitation of supersaturated solutions [98,176,177].
During the precipitation of more stable anhydrous forms, amorphous calcium carbonate, calcium
carbonate hexahydrate and calcium monohydrocalcite appear as intermediate phases of importance
and consequence. At high supersaturation, the first-formed phase is ACC, a rather unstable precursor
consisting of spherical particles of calcium carbonate [94,98]. ACC changes to more stable forms via
dissolution and precipitation. The solubility product of ACC is higher than for other forms of CaCO3.
Hence, any solution in equilibrium with the amorphous phase will be highly supersaturated with
respect to the crystalline phases, which leads to nucleation-controlled growth [178]. In other words,
ACC serves as a precursor for other polymorphs, the nucleation of the polymorphous crystals occurs in
the vicinity of the clouded precursor and the crystals grow by consuming the precursors surrounding
the crystals [179].

If magnesium ions are present in the reaction system, they become incorporated into the ACC
structure. The crystalline phase, which forms from the amorphous precursor, is controlled by the
magnesium content of the precursor. Pure crystallises to vaterite [180], ACC containing 10% Mg
crystallises to calcite [181], ACC with 30% crystallises to monohydrocalcite [178,182] and ACC with
50% Mg crystallises to protodolomite/dolomite (at temperatures higher than 60 ◦C) [183].

High concentrations of orthophosphates prevent the crystallization of the more stable anhydrous
forms of CaCO3, which leads to the occurrence of ikaite and monohydrocalcite in the system [94,98].
Ikaite, however, for its formation requires near-freezing conditions and is unstable in the temperatures
above 25 ◦C [184]. Soluble acidic proteins occurring in the mitochondrial matrix might also have
a strong inhibiting effect on the nucleation of anhydrous polymorphs, e.g., it has been shown that
poly-l-aspartic acid completely inhibits the formation of varietite [185]. Na+ and Cl− ions exert a weak
or no influence on the precipitation of carbonates [186,187].

The presence of both magnesium and orthophosphate ions in mitochondrial matrix suggests
that monohydrocalcite might be the phase occurring inside mitochondria. However, the solubility
calculations presented in Figure 2, clearly show that monohydrocalcite can form only if matrix pH
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is greater than 7.8 (for [Ca2+] = 5 µM) or even 8.6 (for [Ca2+] = 0.17 µM). In lower pH, neither
monohydrocalcite, nor any other calcium carbonate will precipitate.

3.2. Precipitation of Magnesium Carbonates

Using the solubility products presented in Table 3, one can calculate the equilibrium concentration
of free magnesium in the solutions of respective salts as functions of pH and partial pressure of carbon
dioxide. Solubility calculations, presented in Figure 3, clearly show that nesquehonite is the most stable
magnesium carbonate in given conditions. It is also the only magnesium carbonate that can precipitate
in the mitochondrial matrix, but only if the matrix pH is greater than 7.5 (for [Mg2+] = 1.5 mM) or even
7.9 (for [Mg2+] = 0.35 mM). In lower pH, neither nesquehonite, nor any other magnesium carbonate
will precipitate.
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3.3. Precipitation of Calcium Orthophospates

The total concentration of phosphates [
∑

Pi]eq, required for the formation of each salt at constant
free calcium concentration [Ca2+] = 0.17 µM and [Ca2+] = 5 µM, is presented in Figure 4. Salts with the
lowest [

∑
Pi]eq are thermodynamically most stable and therefore dominate in the system, i.e., whenever

the total concentration of free phosphates exceeds the lowest [
∑

Pi]eq, formation of the respective salt
will occur, keeping [

∑
Pi] at a constant level. As shown in Figure 4, carbonated apatite is the most

stable calcium salt, if [Ca2+] is kept in the micromolar range.
Assuming the constant concentration of phosphates in the cytoplasm [

∑
Pi]cyt = 2 mM, and that

the equilibrium at phosphate translocase yields [
∑

Pi]mat/[
∑

Pi]cyt = [H+]cyt/[H+]mat, one can calculate
the total concentration of mitochondrial phosphates [30]. The calculated values of [

∑
Pi]mat compared

with the [
∑

Pi]eq of the respective salts (see Figure 4b) clearly show that if the calcium concentration is
elevated, the solution of the mitochondrion matrix (pH = 7.4 to 8.2) is supersaturated with respect to
up to three salts. i.e., hydroxyapatite, chloroapatite and carbonated apatite. Other salts (OCP, brushite,
CDHA and ACP) having [

∑
Pi]eq > [

∑
Pi]mat will dissolve, hence cannot form inside mitochondria.

Calcium apatites (hydroxyapatite, chloroapatite, fluoroapatite and carbonated apatite) are
members of a large family of more than 75 chemically different apatites, i.e., compounds with
the chemical formula: A2B3(XO4)3Y, where A and B are bivalent cations, and XO4 and Y are trivalent
and monovalent anions, respectively [188]. The high-symmetry members of the apatite family crystallise
in the hexagonal system.

Calcium apatites are very often non-stoichiometric, due to the substitution of OH− in
hydroxyapatite with Cl−, F− and CO3

2−. Therefore, the formulas for carbonated apatite and chloroapatite
are often given as Ca10(PO4)6(CO3)x(OH)2−2x and Ca10(PO4)6Clx(OH)2−x, respectively [139,140].
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The apatite structure allows varied substitutions of calcium and phosphate ions to take place without a
significant alteration in its basic structure, e.g., one of the basic phosphorite minerals, known as francolite,
has a variable chemical composition, which can be represented by (Ca,Mg,Sr,Na)10(PO4,SO4,CO3)6F2+x,
where 0 < x < 1 [189,190].
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2−-substituted hydroxyapatite is common in biological and geological systems

and this substitution has been well documented in several studies [191–193]. Carbonate ion in the
structure of biological apatites can substitute either the OH− ion (type A carbonated apatite) or PO4

3−

ion (type B carbonated apatite) [194] and these two locations of carbonate species can be distinguished
using spectroscopic methods [195,196]. The carbonate group distorts the apatite lattice and causes the
resulting solid to be considerably more soluble than hydroxyapatite [197]. The substitution of carbonate
for phosphate would also reduce the crystallinity and precipitation rate of HA [198]. Another specificity
of biological apatites is the presence of hydrogen phosphate (HPO4

2−) ions in PO4
3− sites [199–201].

These two types of bivalent ions substituting for PO4
3− have been shown to correspond to the formation

of calcium deficient apatites, i.e., the loss of a negative charge due to these substitutions is compensated
by the creation of cationic vacancies and anionic vacancies in the OH− site [202]. The formula for
biological apatites taking into account the possible existence of both type A and B substitutions
reads [203,204]:

Ca10−x(PO4)6−x(HPO4 or CO3)x(OH or
1
2

CO3)2−x with 0 < x < 2. (6)

This general formula can be used, e.g., to represent the bone composition at all ages in many
vertebrates (x = 1.7) or a typical composition of human tooth enamel (x = 0.6) [203]. The Ca/P ratio
of carbonated apatite vary from 2.0 (x = 2 and all type B substitutions with CO3

2−) down to 1.2
(x = 2 and all type B substitutions with HPO4

2−) or even lower if cationic substitutions (2Na+ or Mg2+

for Ca2+) occur.
Precipitated apatite crystals generally exhibit a structured hydrated surface layer containing

mainly bivalent cations and anions. This feature should not be confused with the Stern double layer
that forms on most mineral surfaces. The substitution possibilities in the hydrated layer are not well
known but seem to be greater than in the core of the apatite structure [203]. Magnesium ions for
example, which hardly penetrate the apatite lattice, are easily and reversibly incorporated into the
hydrated layer in large amounts [205]. Ion substitutions in the hydrated layer considerably modify its
structure even though these alterations seem reversible in most cases [206].
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3.4. Precipitation of Magnesium Orthophospates

The solubility calculations for magnesium orthophosphates at low magnesium concentration
[Mg2+] = 0.35 mM (see Figure 5a) clearly show that solution of mitochondrial matrix is undersatured
with the respect to all magnesium phosphate salts. Hence, they cannot precipitate. At high magnesium
concentrations [Mg2+] = 1.5 mM, the precipitation of babierrite is possible if pH > 7.9 (see Figure 5b).
In lower pH, neither babierrite, nor any other magnesium phosphate will precipitate.
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4. Discussion

The results of solubility calculations (presented in Figures 2–5) show that four different salts can
form in the mitochondrion, depending on the changes in ionic concentrations induced by the metabolic
processes in mitochondria and by the concentration changes in cytosol. Babierrite can precipitate at
high magnesium concentration and pH > 9. Nesquehonite precipitates at pH > 7.5 (or pH > 7.8 if
calcium concentration is low). Monohydrocalcite precipitates at high Ca2+ concentrations and pH > 7.8.
Carbonated apatite at high calcium concentrations precipitates in a whole mitochondrial pH range,
and dissolves when mitochondrial [Ca2+] is low. However, these calculations do not take into account
the influence of magnesium ions on precipitation of calcium salts and vice versa. They also neglect the
influence of phosphate ions on the precipitation of carbonate salts and the influence of carbonate ions
on the precipitation of phosphate salts. These relations are discussed below.

4.1. Carbonates in the Ca/Mg System

Insoluble salts containing both calcium and magnesium are known as dolomites, i.e., the
family of non-stoichiometric compounds with the formula Ca1−xMg1+x(CO3)2 [207–210]. Sedimentary
dolomites with x < 0 are named calcium dolomites, and the ones with x > 0 are named magnesian
dolomites. The carbonate dominated by calcite is called limestone and the mineral Ca0.5Mg1.5(CO3)2

(x = 0.5) is named huntite. Other carbonates: ankerite Ca(Fe, Mg, Mn)(CO3)2 and kutnohorite
Ca(Mn,Mg,Fe)(CO3)2, with bivalent cations: Fe2+ and Mn2+, substituting a part of Mg2+ ions in the
layered structure, also enter the dolomite group [211].

The hydration shell of magnesium is more strongly bound than the hydration shell of
calcium [108,212]. Hence, the energy required to desolvate magnesium is higher than that of
calcium. That explains the high temperatures required to crystallize anhydrous Mg-Ca carbonates,
i.e., temperature of 60 ◦C is required for the formation of dolomite [183] and repeated trials to precipitate
it under laboratory conditions at room temperature were unsuccessful [213,214]. Another anhydrous
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carbonate with two cations, namely eitelite with the formula Na2Mg(CO3)2, can also be precipitated
only at temperatures above 60 ◦C [215].

The hydrated nature of monohydrocalcite means that full dehydration of Mg2+ is not required
before incorporation into the crystal lattice. Therefore, it will more likely form than the anhydrous
calcium carbonate phases [178]. Monohydrocalcite has a high capacity to accommodate magnesium
within its structure. The coordination number of Ca2+ in monohydrocalcite is 8 [216,217] and Mg2+

does not take a coordination number other than 6. Therefore, Mg2+ is not incorporated into the
monohydrocalcite structure, directly but forms discrete hydrated magnesium carbonate insertions.
According to the solubility calculations presented in Figures 2 and 3, the solution in mitochondrial
matrix is saturated with respect to both monohydrocalcite and nesquehonite, if pH > 8. It is in
agreement with the observations of Nishiyama et al. [182], who have shown that in Ca2+/Mg2+/CO3

2−

systems nesquehonite with very low crystallinity is expected to be formed with monohydrocalcite and
the amorphous material. The hydrous magnesium carbonates surrounding monohydrocalcite play
a protective role in preventing its dehydration to anhydrous calcium carbonates.

High-Mg monohydrocalcite consists of individual nanometer-sized crystals (<35 nm) with
a significant part of its structural H2O being associated with magnesium [178]. X-ray diffraction
(XRD) experiments show that monohydrocalcite exhibits low crystallinity and small particle size when
the ratio of magnesium to calcium in the solid is higher than 0.4, i.e., the increase of magnesium
content lead to broad X-ray diffraction peaks with low intensity. Monohydrocalcite with Mg/Ca
ratio higher than 0.5 exhibits the properties characteristic for amorphous material (no XRD peaks
are observed) [182]. This corresponds well with the results of the electron microscopy measurements
of brain and liver mitochondria that show a lack of crystal structures in the matrix [27]. The value
of solubility of amorphous Mg-rich monohydrocalcite is slightly higher than in the case of pure
monohydrocalcite [182]. Hence, in order to precipitate, it requires the solution to be more alkaline than
the mitochondrial matrix.

4.2. Carbonated Apatite in Physiological Solutions

The studies on slow spontaneous precipitation of calcium carbonates and calcium phosphates
under physiological conditions [218], show that calcium carbonate precipitation is prevented by the
presence of phosphate ions at concentrations too low for the precipitation of calcium phosphate.
Such precipitation is prevented, when the phosphate/bicarbonate concentration ratio is higher than
about l/300. Above this ratio, the competition of the phosphate ions with the carbonate ions is sufficient
to inhibit the nucleation and crystal growth of calcium carbonates, while the phosphate concentration is
still too low for the nucleation of phosphates [218]. Pyrophosphate and hexametaphosphate ions inhibit
the precipitation of calcium carbonate in a similar way. Hence, the composition of most biological
fluids does not allow the deposition of calcium carbonate and it is suggested that such deposition can
occur only under the influence of metabolic processes which locally raise the bicarbonate and lower
the phosphate concentration [218].

Carbonate ions may affect the solubility of phosphate salts in several ways [191]. Ion pair complexes
between calcium and bicarbonate and carbonate will form and the presence of ion pairs and reduction
of free Ca2+ would increase the soluble concentration of phosphate. However, the calculations indicate
that ion pairs will be the predominant calcium-containing species at pH greater than 8.5 and at high
carbonate levels (0.05 M) [219]. The carbonate ions may also compete with phosphate for sites on the
growing crystallites. Nucleation and crystal growth may be hindered by the extra time and energy
required to eliminate carbonate from phosphate sites and vice versa. When crystal growth does take
place, carbonate can readily substitute for phosphate in the apatite lattice, as discussed earlier. Chemical
analyses reveal that the apatitic tissues always contain smaller or larger amounts of carbonate which
does not crystallize separately as carbonate [197].

Precipitation of babierrite is also inhibited, because of the presence of carbonate and calcium
ions. Due to the chemical similarity between Mg2+ and Ca2+, magnesium co-precipitates with
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calcium phosphates instead, inducing the formation of an amorphous phase rather than a stable
crystalline carbonated apatite [191,220]. Magnesium ions stabilize the amorphous precipitates of
calcium carbonate phosphate. Apatitic precipitates are more poorly-crystallized when formed in the
presence of magnesium ions than when formed in their absence, and the crystallinity of the precipitates
formed in the presence of magnesium decreases with rising [Mg2+]. The Ca/P ratios of the amorphous
precipitates are often significantly lower when formed in the presence of Mg2+ ions, and the equilibrium
concentrations of calcium and phosphates are higher when the precipitates are amorphous, than when
they are crystalline [221].

Biological calcium apatites show a broad range of chemical compositions but also structure. It has
been shown that hydroxyapatite precipitates obtained in the conditions where pH is kept constant show
low crystallinity [222]. In primitive organisms, calcium apatites are generally amorphous, while in more
elaborated organisms, especially in vertebrates, calcium apatites can crystallise [203]. Magnesium has
been shown to disturb the crystallization of calcium apatites from solution when used at concentrations
sufficient to be a major competitor for calcium [223]. The growth of apatite crystals is impeded by the
Mg2+ ions, because they block the active growth sites and interrupt the crystal structure [224].

Organic compounds present in the mitochondrial matrix have a similar effect on phosphate crystals
formation. Namely, the nucleotide diphosphates and triphosphates, including ADP and ATP, as well
as low molecular weight metabolites containing two attached ester phosphate groups such as citrate
also have the ability to inhibit the crystallization of calcium phosphates and may function as in vivo
mineralization inhibitors [225,226]. Adsorption of organic compounds on the newly-formed nuclei
results in a small crystal size and could be a factor in producing less crystalline phase [198]. Although
apatite is usually considered a crystallographic structure, we use the term amorphous carbonated
apatite to distinguish it from the amorphous calcium phosphate with the formula CaxHy(PO4)z.

A characteristic property of apatite compounds is the ability to incorporate ions and individual
molecules during its synthesis. One of the most interesting examples is the molecular oxygen,
which forms inside the structure through the decomposition of unstable precursor: peroxide ions and
hydrogen peroxide molecules trapped in the apatite structure [227]. Mitochondria are involved in the
cell’s response to oxidative stress, hence the ability of apatite to entrap H2O2 and convert it to O2 might
have had a crucial role in the evolution of mitochondria, especially in the early stages before the ability
to create enzyme glutathione peroxidase has been developed.

Apatite can incorporate a large variety of foreign ions, including sodium, potassium, strontium,
barium, manganese, zinc, iron, cobalt, nickel and even rare earth elements (see [228] for a detailed
review). This property is used by a few organisms to eliminate toxic elements and survive in
polluted environments, e.g., in gastropods Littorina Littorea, apatites allow the accumulation and
biochemical deactivation of excess quantities of cadmium and other potentially harmful cations [229,230].
Small organic molecules, such as formate ions and glycine molecules, can also be incorporated in
apatites [202,203]. It has been shown that amorphous granular aggregates forming in mitochondria
include glycoproteins in their structure [231].

5. Summary and Conclusions

The solubility calculations for calcium and magnesium salts, including carbonates and
phosphates, led to the identification of four salts that may form in the mitochondrial matrix:
monohydrocalcite, nesquehonite, carbonated apatite and babierrite. Further analysis of inhibition
properties of several inorganic and organic ions present in the mitochondrial matrix led to
a conclusion, that non-stoichiometric magnesium-rich carbonated apatite precipitates in the matrix
under physiological conditions.

The formation of crystalline apatites is inhibited by the presence of magnesium ions, ATP, ADP and
citrates. Therefore, amorphous and low-crystalline carbonated apatite is precipitated. Low crystallinity
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of the precipitated material can be attributed to numerous ionic substitutions in the apatite structure.
The general chemical formula of this salt can be expressed as:

(Ca,Mg)10−x(PO4)6−x(HPO4,CO3)x(OH,
1
2

CO3,Cl)2−x with 0 < x < 2. (7)

Numerous ions and molecules can also be incorporated in the structure of apatite, which leads to
a further decrease of the crystallinity of precipitated material. The ability to incorporate hydrogen
peroxide and decompose it to molecular oxygen might have an auxiliary role in the response to
oxidative stress.

Precipitation and dissolution of carbonated apatite inside the matrix, affects the mitochondrial
ionic concentrations, and therefore indirectly influences the action of several protein entities in the
inner mitochondrial membrane including e.g., ATP synthase, phosphate translocase, calcium uniporter
(MCU), mitoKATP and mitoKCa channels as well as the K+/H+, Na+/H+ and Ca2+/3Na+ exchangers.

When the oxidative phosphorylation chain is active, the membrane potential on the inner
mitochondrial membrane is highly negative, which causes the influx of calcium to the matrix
through MCU and leads to the precipitation of carbonated apatite. The dominant forms of
carbonic and phosphoric acid in the mitochondrial pH range are HCO3

− and HPO4
2−, respectively.

Hence, precipitation of carbonated apatite leads to the production of protons, e.g.,:

10Ca2+ + HCO3
− + 6HPO4

2−
→ Ca10(PO4)6CO3 + 7H+

(10 − x)Ca2+ + xHCO3
− + (6 − x)HPO4

2− + (2 − x)H2O↔
Ca10−x(PO4)6−x(CO3)x(OH)2−x + (8 − x)H+

(8)

These protons are then pumped outside the mitochondrial matrix by the oxidative phosphorylation
chain, which allows the production of ATP.

In anaerobic conditions, i.e., during hypoxia, the oxidative phosphorylation chain stops. Hypoxia
can be caused e.g., by ischemia (low blood flow) or carbonate monoxide poisoning (oxygen in
hemoglobin replaced by CO). There are three phases of ATP production during ischemia [232]. At first,
up to 16 min ATP is produced due to glycolysis cytoplasm acidifies but there is no increase in sodium
(5 mM) or calcium concentration (140 nM) in the cytoplasm, i.e., Na-K-ATPase of the cytoplasmic
membrane is fully active. In the second phase, as hypothesised by Dołowy [30], during hypoxia, the
proton motive force is replaced by the calcium-motive force caused by the dissolution of calcium
phosphates, efflux of calcium ions and alkalization of the matrix due to the following processes:

Ca10(PO4)6CO3 + 7H2O→ 10Ca2+
↑ + CO2↑ + 6HPO4

2− + 8OH−

Ca10−x(PO4)6−x(CO3)x(OH)2−x + 6H2O→ (10 − x)Ca2+
↑ + xCO2↑ + (6 − x)HPO4

2− + 8OH−
(9)

where ↑ represents ions or molecules leaving the mitochondrial matrix. Phosphate ions forming due
to the dissolution of carbonated apatite and lower ATP/ADP ratio are the two factors responsible for
lowering the free energy of the ATP synthesis, hence allowing its production in hypoxic conditions.
During the second phase which lasts up to 30 min, sodium concentration in the cytoplasm is slowly
rising to 30 mM and calcium concentration to 500 nM level. The mitochondrion can survive, as long as
it can keep the pH of the matrix constant by the precipitation and dissolution of carbonated apatite.
Then during the third phase, when all available salt dissolves, further influx of protons leads to the
acidification of the matrix, hence lowering the proton motive force below the level necessary for ATP
production. When matrix acidifies Na/H and K/H exchangers cannot prevent influx of osmotically
active cations into the matrix and mitochondria swells. Low ATP levels in the cytoplasm lead to
opening of the mitoKATP channel. Upon reperfusion sharp increase in mitochondrial electric potential
leads to further influx of osmotically active cations into the mitochondrial matrix and formation of the
permeability transition pore [233,234].
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The build-up of amorphous carbonated apatite should increase the maximum time of hypoxia
that the cell can survive. It explains the increased life-time observed in the heart cells preconditioned
by short increases of the calcium concentration [235,236]. Calcium preconditioning increases the
cytoplasmic calcium ion concentration. Therefore Ca2+ from the cytoplasm is more rapidly transported
into the matrix, which leads to the precipitation of carbonated apatite. A better understanding of the
relationship between calcium storage and the mechanisms of ischemic preconditioning may lead to the
development of new stroke-protective drugs.
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189–198. [PubMed]

53. Zoeteweij, J.P.; van de Water, B.; de Bont, H.J.; Nagelkerke, J.F. Mitochondrial K+ as modulator of
Ca2+-dependent cytotoxicity in hepatocytes. Novel application of the K+-sensitive dye PBFI (K+-binding
benzofuran isophthalate) to assess free mitochondrial K+ concentrations. Biochem. J. 1994, 299, 539–543.
[CrossRef] [PubMed]

54. Costa, A.D.T.; Quinlan, C.L.; Andrukhiv, A.; West, I.C.; Jabůrek, M.; Garlid, K.D. The direct physiological
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