

Supplementary Materials Optical Analysis of the Internal Void Structure in Polymer Membranes for Gas Separation

Chiara Muzzi, Alessio Fuoco, Marcello Monteleone, Elisa Esposito, Johannes C. Jansen and Elena Tocci*

6 Institute on Membrane Technology (CNR-ITM), Via P. Bucci, 17/C, 87036 Rende (CS), Italy;

7 c.muzzi@itm.cnr.it (C.M.); a.fuoco@itm.cnr.it (A.F.); m.monteleone@itm.cnr.it (M.M.); e.esposito@itm.cnr.it

- 8 (E.E.); jc.jansen@itm.cnr.it (J.C.J.)
- 9 * Correspondence: e.tocci@itm.cnr.it; Tel.: +39-0984-492038
- 10

11 Model preparation of PIM-1

12 PIM-1 was created with BIOVIA software [1] as a 30-monomers long polymer. The structure was 13 equilibrated via Biovia Forcite's module tool, with COMPASS force-field, force-field assigned 14 charges, Atom bases summation methods, 22.5Å cutoff and 1Å spline. 50 simulation boxes were filled 15 with 3 chains of PIM-1 and 400 Argon atoms at temperature of 298K and a density of 1.5g cm-3 (with 16 a ramp density starting from 0.1 g cm-3), Amorphous Cell tool in BIOVIA was used to perform the 17 calculation. Argon atoms were inserted as spacers to allow a uniform growth of polymeric chains in 18 the boxes and avoid harsh differences in morphology, i.e. very dense and/or partially empty regions 19 within the box. Two boxes were selected and further equilibrated from a preliminary test of their 20 morphology. The initial boxes dimensions were about (43x43x43) Å. Some cycles of Argon atoms 21 deleting and downscaling were performed until all Argon atoms were deleted and density reached 22 about 1.1 g cm-3. The sample was allowed to move through a NVT (with constant number of atoms, 23 constant volume and constant temperature) dynamics for 1ns at 600K and 0.5ns at 400K. Finally, an 24 NPT (with constant number of atoms, constant pressure and constant temperature) dynamics of 5ns 25 at 289K was performed. At this stage the sample did not shown any mayor variation in its density 26 that reached the equilibrium value of 1.082g cm-3 (the experimental density of PIM-1 is 1.069 g cm-27 3).

28

	PIM-1 [2]	PIM-2 [3]	PIM-NH2 [4]	PEEK- WC	TM- PEEK	DM- PEEK	Hyflon AD60	Hyflon AD80				
D $[cm^2/s \cdot 10^{-8}]$												
He1	7120	5150	5170	2	-		2630					
H_2	5760	3870	3970				1500					
O2	452	297	223	2.15[6]	3.31[6]	1.96[6]	103					
CO ₂	199	152	39.3	0.75[6]	1.22[6]	0.64[6]	64.7	82[7]				
N_2	165	114	59.8	0.62[6]	0.52[6]	0.30[6]	49.3					
CH_4	70	42.3	17.9	0.10[6]	0.14[6]	0.06[6]	11.6	10.65[7]				
S [cm ³ STP /cm ³ bar]												
He	0.19	0.20	0.174				0.10					
H_2	0.61	0.59	0.579				0.09					
O2	3.54	3.20	3.02	0.33[6]	0.35[6]	0.33[6]	0.51					
CO_2	48	32.5	36.1	2.74[6]	3.36[6]	3.05[6]	1.95	1.5[7]				
N_2	3.52	3.03	2.88	0.23[6]	0.27[6]	0.24[6]	0.40					
CH ₄	13.7	11.5	12.7	0.64[6]	0.97[6]	0.82[6]	1.32	0.74[7]				
P [Barrer]												
He	1830	1400	1200				339	430[7]				
H_2	4710	3020	3070	11.7[8]	21.5[8]	10.3[8]	169	210[7]				
O2	2140	1270	895	0.95[8]	1.55[8]	0.87[8]	69.1	67[9]				
CO_2	12800	6600	1890	2.73[8]	5.44[8]	2.6[8]	166	150[7]				
N_2	773	460	230				26.2	24[7]				
CH4	1280	650	303				20.1	12[9]				

Table 1, Ex	perimental diffusivities	s, solubilities and	permeabilities of	of the investigated	l materials
	cpermicinal annuorvine.	s, solubilities and	permeabilities	n ine miveouguiee	i materiaio

30

29

¹Atoms are ordered according to their diameters, using T-M [10] values (He 1.78Å, H² 2.14

31 Å, O₂ 2.89 Å, CO₂ 3.02 Å, N₂ 3.04 Å and CH₄ 3.18 Å).

32 References

- 33 1. Dassault Systèmes BIOVIA; Materials Studio; Accelrys Software Inc., 2013;
- Williams, R.; Burt, Luke.A.; Esposito, E.; Jansen, J.C.; Tocci, E.; Rizzuto, C.; Lanč, M.; Carta, M.; McKeown,
 Neil.B. A highly rigid and gas selective methanopentacene-based polymer of intrinsic microporosity
 derived from Tröger's base polymerization. *J. Mater. Chem. A* 2018, *6*, 5661–5667, doi:10.1039/C8TA00509E.
- Fuoco, A.; Satilmis, B.; Uyar, T.; Monteleone, M.; Esposito, E.; Muzzi, C.; Tocci, E.; Longo, M.; De Santo,
 M.P.; Lanč, M.; et al. Comparison of pure and mixed gas permeation of the highly fluorinated polymer of
 intrinsic microporosity PIM-2 under dry and humid conditions: Experiment and modelling. *J. Membr. Sci.* 2020, 594, 117460, doi:10.1016/j.memsci.2019.117460.
- Mason, C.R.; Maynard-Atem, L.; Heard, K.W.J.; Satilmis, B.; Budd, P.M.; Friess, K.; Lanč, M.; Bernardo, P.;
 Clarizia, G.; Jansen, J.C. Enhancement of CO 2 Affinity in a Polymer of Intrinsic Microporosity by Amine
 Modification. *Macromolecules* 2014, 47, 1021–1029, doi:10.1021/ma401869p.
- Macchione, M.; Jansen, J.C.; De Luca, G.; Tocci, E.; Longeri, M.; Drioli, E. Experimental analysis and
 simulation of the gas transport in dense Hyflon® AD60X membranes: Influence of residual solvent. *Polymer*2007, 48, 2619–2635, doi:10.1016/j.polymer.2007.02.068.
- 47 6. Wang, Z.; Chen, T.; Xu, J. Gas Transport Properties of Novel Cardo Poly(aryl ether ketone)s with Pendant
 48 Alkyl Groups. *Macromolecules* 2000, *33*, 5672–5679, doi:10.1021/ma9921807.
- Yavari, M.; Fang, M.; Nguyen, H.; Merkel, T.C.; Lin, H.; Okamoto, Y. Dioxolane-Based Perfluoropolymers
 with Superior Membrane Gas Separation Properties. *Macromolecules* 2018, 51, 2489–2497,
 doi:10.1021/acs.macromol.8b00273.
- Xu, J.; Wang, Z.; Chen, T. Gas Separation Properties of Modified Poly(ether ketone[sulfone]) with Phthalic
 Side Group. In *Polymer Membranes for Gas and Vapor Separation*; ACS Symposium Series; American Chemical
 Society, 1999; Vol. 733, pp. 269–276 ISBN 978-0-8412-3605-9.

Membranes **2020**, *10*, x FOR PEER REVIEW

- Arcella, V.; Colaianna, P.; Maccone, P.; Sanguineti, A.; Gordano, A.; Clarizia, G.; Drioli, E. A study on a
 perfluoropolymer purification and its application to membrane formation. *J. Membr. Sci.* 1999, 163, 203–
 209, doi:10.1016/S0376-7388(99)00184-2.
- Teplyakov, V.; Meares, P. Correlation aspects of the selective gas permeabilities of polymeric materials and
 membranes. *Gas Sep. Purif.* 1990, 4, 66–74, doi:10.1016/0950-4214(90)80030-O.

60