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Abstract: In our previous study, fusion (F) or glyco (G) protein coding sequence of respiratory
syncytial virus (RSV) was inserted at the P/M junction of the measles AIK-C vector (MVAIK),
and the recombinant measles virus induced protective immune responses. In the present study,
the ectodomains of measles fusion (F) and hemagglutinin (HA) proteins were replaced with those of
RSV F and G proteins, and a chimeric MV/RSV vaccine was developed. It expressed F and G proteins
of RSV and induced cytopathic effect (CPE) in epithelial cell lines (Vero, A549, and HEp-2 cells),
but not in lymphoid cell lines (B95a, Jurkat, and U937 cells). A chimeric MV/RSV grew similarly
to AIK-C with no virus growth at 39 ◦C. It induced NT antibodies against RSV in cotton rats three
weeks after immunization through intramuscular route and enhanced response was observed after
the second dose at eight weeks. After the RSV challenge with 106 PFU, significantly lower virus
(101.4±0.1 PFU of RSV) was recovered from lung tissue in the chimeric MV/RSV vaccine group than
in the MVAIK control group with 104.6±0.2 PFU (p < 0.001) and no obvious inflammatory pathological
finding was noted. The strategy of ectodomain replacement in the measles virus vector is expected to
lead to the development of safe and effective vaccines for other enveloped viruses.

Keywords: measles AIK-C; respiratory syncytial virus (RSV); ectodomain; recombinant chimeric virus

1. Introduction

Respiratory syncytial virus (RSV) is a negative sense single-stranded RNA virus be-
longing to the subfamily Pneumovirinae. RSV is a common infectious agent causing respi-
ratory illness [1–3]. It causes serious lower respiratory infections (pneumonia, bronchiolitis,
and pneumonitis) among young infants with congenital heart diseases, low birth weight,
congenital abnormality, Down’s syndrome, and immunodeficiency. Approximately 70% of
children are infected with RSV by one year of age and almost all by two years of age [4].
Repeated infections are observed because of poor immune responses in the younger gener-
ation; respiratory symptoms are mitigated in older children. Since RSV is such a common
pathogen, the WHO estimated 33 million patients with serious RSV infection per year,
3 million hospitalizations, and 60,000 deaths in children <5 years globally [5].

Humanized monoclonal antibody medicines are used prophylactically, but their clini-
cal usage is limited for high-risk children. They should be administered monthly, which is
an enormous medical financial burden [6]. Therefore, preventive vaccines are expected.
Although many pipelines for vaccine development have been investigated, there is no
vaccine currently available for clinical use. In the 1960s, formalin-inactivated RSV (FI-RSV)
vaccines were administered to young infants, but serious lower respiratory illness de-
veloped after natural infection among 31 FI-RSV recipients. Among them, 80% were
hospitalized and two died. Autopsy findings showed marked infiltration of mononuclear
cells, eosinophils, and polymorphonuclear cells. Extensive research on animal models
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has been reported along with explanatory theories: it induced only binding antibodies
in serum without neutralizing activity, there was no secretory IgA response, and there
were skewed Th2-dominant immune responses with allergic reactions. These should be
considered in the development of an RSV vaccine [7–10].

Several approaches have been adopted to develop RSV vaccines [11–13]. Conven-
tional serial passage in mammalian cells at a lower temperature did not establish a live
attenuated vaccine candidate. More recently, attenuating mutations have been inserted
into vaccine candidates using reverse genetics, but suitable candidates have not yet been
developed [14]. RSV consists of two envelope proteins, fusion (F) and glyco (G) proteins,
considered targets for neutralization, and nucleo (N) protein for cytotoxic T lymphocytes
(CTL) [11–13]. Chimeric bovine/human parainfluenza virus expressing RSV F protein
progressed to a phase I trial, but was suspended because of poor immune responses against
RSV, and the insertion position of the RSV F gene was reconsidered [15,16]. We developed
the measles vaccine AIK-C strain that expressed the F (MVAIK/RS/F), G (MVAIK/RS/G),
and N proteins (MVAIK/RS/N). A higher and prolonged neutralization test (NT) anti-
body was observed in cotton rats immunized with MVAIK/RS/F and higher levels of
CTL in those immunized with MVAIK/RS/N [17–19]. Cotton rats immunized with these
recombinant vaccines were protected from RSV challenge. They were constructed by the
insertion of coding regions for each protein at the P/M junction of the infectious cDNA
of the AIK-C vaccine strain. Using this construction strategy, we developed recombinant
measles vaccines expressing prM+E protein of Japanese encephalitis [20] and influenza
hemagglutinin (HA) protein, and they induced protective immune responses [21].

Measles virus is classified in the subfamily Paramyxovirinae and has two functional
envelope proteins, F and HA. The RSV and measles viruses belong to the same family,
Paramyxoviridae, and have similar genome structures to those of F and G/HA genes.
Conventional approaches failed to develop RSV vaccine candidates that had the tempera-
ture sensitivity (ts) phenotype. The AIK-C measles vaccine has unique ts characteristics
contributing to attenuation mechanisms and MVAIK constructed by reverse genetics also
has the ts phenotype [22]. MVAIK/RS/F or MVAIK/RS/G has measles envelope proteins
of F and HA and their efficacy may be influenced by pre-existing antibodies. In the present
study, the chimeric RSV vaccine candidate was constructed based on the AIK-C measles
virus, replacing the ectodomains of the F and HA proteins of the measles virus with those
of the F and G proteins of RSV. The chimeric measles and RSV vaccine (MV/RSV) was
characterized and we investigated the immune response.

2. Materials and Methods
2.1. Virus Strains and Cells

The AIK-C strain for vaccine seed was used for reverse genetics. Wild-type strain
of RSV subgroup A isolated in 2004 was propagated in HEp-2 cells from the patient.
Long strain was used for the neutralization test (NT) against RSV. 293T, A549, and HEp-2
cells were maintained in Eagle’s MEM (Sigma–Aldrich, Dorset, UK) supplemented with
10% fetal bovine serum (FBS). Vero cells were maintained in Eagle’s MEM supplemented
with 5% FBS. B95a, Jurkat, and U937 cells were maintained in RPMI-1640 medium
(Sigma-Aldrich, Dorset, UK) supplemented with 10% FBS. These culture media were
supplemented with 4 mM L-glutamine, 10,000 IU/mL penicillin, and 10,000 µg/mL strepto-
mycin. All cells were cultured at 37 ◦C in 5% CO2. Vero, 293T, and B95a cells were provided
by Kitasato Daiichi Sankyo Vaccine, and the other cells were purchased from ATCC.

2.2. Construction of Recombinant Chimeric AIK-C (MV/RSV)

Backbone of MVAIK was constructed from the AIK-C vaccine strain developed in
our laboratory, which has been used as the recommended form of immunization in Japan
since 1977 as it has the ts phenotype [22]. A schematic diagram of the strategy used for the
construction of MV/RSV cDNA plasmid is shown in Figure 1. The expression plasmids
of RSV F and G proteins were constructed in our previous study [17]. To replace the
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ectodomains of measles F and HA proteins with those of RSV F and G proteins, expression
plasmids of the chimeric MV/RSV/F and MV/RSV/G proteins were constructed using
transition primer sets. Transition primers were designed to switch at the border between
transmembrane (TM) and ectodomain regions considering the sequential hydrophobic
amino acids. TM and cytoplasmic (CT) regions are maintained and the construction strategy
is shown in detail in Figures S1 and S2. The chimeric MV/RSV/G protein sequence was
introduced into the part of MVAIK cDNA at Sal I (genome position 3364) and Spe I (genome
position 9175). The chimeric MV/RSV/F protein sequence was inserted at Nar I (genome
position 4922) and Pac I (genome position 7238). Full-length infectious chimeric cDNA,
with RSV F and G ectodomains with measles TM and CT, was constructed based on an
MVAIK cDNA clone.
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Figure 1. Construction strategy. Gene of the measles virus is shown in black and that of RSV in gray.
The ectodomains of measles F and HA protein genomes were replaced with those of RSV F and G
protein genomes. They were fused to the respective TM–CT region of the measles virus. The chimeric
infectious cDNA (MV/RSV) was constructed and details are in Supplemental Figures S1 and S2.

Next, 293T cells were infected with MVA T7 Pol expressing T7 RNA polymerase and
pMV/RSV was transfected together with helper plasmids encoding the N, phospho (P),
and large (L) proteins of the AIK-C using Trans IT-LT1 Reagent (Mirus Bio Corporation,
Madison, WI, USA). The medium was replaced with fresh MEM supplied with 5% FBS
after incubation for 3 h. The 293T cells were detached after a 2-day culture and co-cultured
with Vero cells [17–21].

2.3. Virus Culture and Purification

To examine the viral growth at different temperatures, Vero cells were infected with
MVAIK, MV/RSV, and RSV (m.o.i. = 0.1) and the plates were placed at different temper-
atures of 33, 35, 37, and 39 ◦C in 5% CO2. The culture fluids were obtained on days 1, 3,
5, and 7 of culture, and infective titers were examined and expressed as TCID50/mL in
Vero cells.

Vero cells were infected with MVAIK and HEp-2 were infected with MV/RSV and
RSV wild-type isolate. Culture fluid was collected and fractionated through sucrose
discontinuous gradient ultra-centrifugation of 30%, 45%, and 60%. Purified virus particle
fraction was obtained between 45% and 60% sucrose.
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2.4. Immunostaining

Vero cells were infected with MVAIK, MV/RSV, and RSV at m.o.i. of 0.1 in 24-well
plates and cultured for three days at 33 ◦C. Vero cells were fixed with 1% glutaraldehyde for
30 min and subjected to indirect immunostaining. Infected cells were incubated with mon-
oclonal antibodies against RSV G (HyTest, Turku, Finland) for 1 h at 37 ◦C. The cells were
washed extensively with PBS (-) with 0.05% Tween 20 (PBST) and stained with a secondary
antibody against anti-mouse IgG conjugated with FITC (Proteinteck, Rosemont, IL, USA).
As for the detection of the RSV F protein, a monoclonal antibody against RSV F protein
(Abcam, Cambridge, UK) and an anti-mouse IgG conjugated with FITC (Proteinteck, IL,
USA) were used. Vero cells were also incubated with a mouse monoclonal antibody against
MV HA protein (kindly supplied by Dr. Sato, National Institute of Infectious Diseases,
Tokyo, Japan) and followed by a secondary antibody against mouse IgG conjugated with
rhodamine raised in goat (Rockland Immunochemicals, Gilbertsville, PA, USA). The ex-
pression of measles N protein was stained with a monoclonal antibody against measles N
protein (Abcam, Cambridge, UK) and a secondary antibody conjugated with Alexa Fluor
568 (Invitrogen, Carlsbad, CA, USA).

HEp-2 cells were infected with purified MV/RSV, RSV wild-type, and MVAIK and
stained using a goat polyclonal antibody against RSV (Abcam Cambridge, England, UK),
an anti-goat IgG antibody conjugated with horseradish peroxidase (Santa Cruz Biotech-
nology, Inc., Dallas, TX, USA), and a DAB Stain (Nacalai Tesque, Inc., Kyoto, Japan).
Microscopic images were taken using EVOS FL light microscope (Life technologies, Waltham,
MA, USA).

2.5. Viral Tropism

To investigate the cell tropism, Vero, A549, and HEp-2 cells were infected with MVAIK,
MV/RSV, and RSV (m.o.i. = 0.1). B95a, Jurkat, and U937 cells were also infected in a similar
way. Microscopic images to assess the appearance of the cytopathic effect (CPE) were taken
using a Life Technologies EVOS XL Core light microscope (Life technologies, USA).

2.6. Immunization and RSV Challenge in Cotton Rats

Six-week-old inbred female cotton rats (Sigmodon hispidus) were used. Three cotton
rats for each group were immunized with 1 × 105 TCID50 of MVAIK and MV/RSV intra-
muscularly (i.m.) or intranasally (i.n.). Serum samples were obtained immediately before
and 1, 3, 5, 8, 9, 12, and 15 weeks after immunization. The immunization experiment
was performed in duplicate. They were re-immunized at 8 weeks after the first dose and
were challenged with RSV four weeks after reimmunization (12 weeks after the first dose).
Briefly, cotton rats were anesthetized and challenged with 106 PFU/0.5 mL of RSV/Long
through intranasal administration. They were sacrificed four days after the challenge and
lung tissues were obtained. Lung samples were divided into two portions, one for patho-
logical examination and another for recovering the infectious viral particles. Experimental
protocol was approved by the Committee of Experimental Animal Study of the Kitasato
Institute for Life Sciences (No. 16-026, 17-027, and 18-030).

Tissues were homogenized and 0.1 mL volume of serial 10-fold dilutions of homog-
enized samples were placed on HEp-2 cells and were then overlaid with MEM 5% FBS
and 0.5% agar. Plaque numbers were counted after incubation for six days at 37 ◦C and
infectivity was expressed as the number of plaques adjusted to 50 mg of lung tissue.

Lungs were inflated with 4% formalin and submerged in formalin for overnight fixa-
tion. The fixed tissue was embedded in paraffin, sectioned, and stained with hematoxylin–
eosin. Microscopic figures were taken at more than 6 different sites in each group and were
evaluated in a blind manner.

2.7. Serology

Neutralization tests against RSV were performed with a 50% plaque reduction assay
using Long strain as previously reported. In brief, serum samples were serially diluted
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4-fold starting from 1:10 dilution and mixed with an equal volume of approximately
100 PFU of challenge virus for 1 h at 37 ◦C. Serial mixtures were placed on the monolayer
of HEp-2 cells in a 24-well plate, and the cells were overlaid with MEM containing 0.5%
agar. After 7-day incubation period, the cells were fixed with glutaraldehyde and the
agar was removed. Plaque numbers were counted after staining with neutral red and NT
antibody titers were calculated as the reciprocal of the serum dilutions that showed a 50%
reduction in plaque numbers as previously reported [17,18].

Particle agglutination (PA) titers were assayed using a detection kit (Serodia®-Measles,
Fuji Rebio, Tokyo, Japan). Serial 2-fold dilutions were mixed with gelatin particles coated
with measles antigen starting at 1:10 dilution. PA titers were defined as the reciprocal of
the highest dilutions of agglutination [23].

2.8. Statistical Analysis

Statistical analysis was performed by Welch’s t-test for infectious virus recovery after
an RSV challenge test.

3. Results
3.1. Virus Growth

Vero cells were infected with MVAIK (empty vector), chimeric MV/RSV, and RSV/Long.
Similar growth rates were obtained for the three viruses with peak infectivity on day 5 after
infection (Figure 2A). Virus growth was compared at different temperatures, and culture
fluids were obtained on day 5 of infection. Infective titers are shown in Figure 2B. Highest
infectivity of RSV/Long was observed at 33 ◦C and approximately similar 104-5 TCID
50 was observed at 35 ◦C and 37 ◦C. Although RSV/Long showed similar virus infec-
tivity at 39 ◦C, no virus growth was noted for MVAIK and chimeric MV/RSV at 39 ◦C,
demonstrating original temperature sensitivity (ts phenotype).
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Figure 2. Virus growth of MVAIK, MV/RSV, and RSV/Long and comparison of virus growth at
different temperatures. (A) Vero cells were infected with MVAIK, MV/RSV, and RSV/Long and
culture fluids were harvested at 1, 3, 5, and 7 days after infection. Vertical lines show the mean ± error
bar of three experiments. (B) Virus infectivity on day 5 of infection at different temperatures of 33, 35,
37, and 39 ◦C. Vertical columns show the infective virus titer of mean + error bar of three experiments.

3.2. Expression of Envelope Proteins

The expression of envelope proteins was examined in Vero cells infected with MVAIK,
MV/RSV, and RSV/Long. The results of immunostaining are shown in Figure 3. Measles N
and HA proteins were expressed in Vero cells infected with MVAIK, but not in those infected
with RSV/Long. MV/RSV was constructed using an MVAIK vector whose ectodomains of
the F and HA of measles were replaced with those of the RSV F and G protein. Vero cells
infected with MV/RSV showed the expression of RSV F, G, and measles N proteins, but not
measles HA. The appropriate expression of the exchanged envelope proteins was con-
firmed, but cell fusion of chimeric MV/RSV is not demonstrable in Vero cells.
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Figure 3. Immunostaining of Vero cells infected with MVAIK, MV/RSV, and RSV. Monoclonal
antibodies against RSV F or G protein and secondary antibody against mouse IgG conjugated with
FITC were used for the detection of RSV F or G protein. Monoclonal antibody against MV HA protein
and secondary antibody against mouse IgG conjugated with rhodamine were used for the detection
of MV HA. The expression of measles N protein was stained with monoclonal antibody against
measles N protein and secondary antibody conjugated with Alexa Fluor 568.

MV/RSV, RSV wild-type, and MVAIK were purified through sucrose ultra-centrifugation.
Western blotting of purified MVAIK, MV/RSV, and RSV was examined, and staining with
monoclonal antibody was performed against RSV F protein. RSV F protein band was
detected in the lanes of electrophoresis of purified RSV and MV/RSV, but not in that of
MVAIK (Figure 4A and Figure S3). Purified MV/RSV induced CPE in HEp-2 cells similar
to RSV infection. RSV protein was expressed in HEp-2 cells infected with purified MV/RSV
and RSV, but not MVAIK (Figure 4B).
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Figure 4. Expression of RSV F protein on MV/RSV chimera virus particle. Western blotting of the
RSV, MV/RSV, and MVAIK was examined using monoclonal antibody against RSV F protein (A).
HEp-2 cells were infected with RSV, purified MV/RSV, and MVAIK and fixed 2 days after infection
using polyclonal antibodies against RSV and HRT conjugated secondary antibody against goat IgG.
Microscopic image was taken ×20 by Life Technologies EVOS. White bars represent 200 µm (B).
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3.3. Different Cellular Tropism

The measles vaccine virus infects both epithelial and lymphoid cells, but RSV only
infects respiratory epithelial cells. Vero is a monkey kidney cell line, A549 is derived from
alveolar cells, and HEp-2 cells come from head and neck cancer cells. They were infected
with MVAIK, MV/RSV, and RSV/Long and CPE were observed in these cells (Figure 5).
B95a, Jurkat, and U937 cells, representative of lymphoid cells, were infected, but only
MVAIK induced CPE in these cell lines. It is noted that MV/RSV had the same cell tropism
as RSV.
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Figure 5. Appearance of CPEs in Vero, A 549, HEp-2, B95a, Jurkat, and U937 cells infected with
MVAIK, MV/RSV, and RSV/Long. Vero, A 549, HEp-2, B95a, Jurkat, and U937 cells were infected
with MVAIK, MV/RSV, and RSV. The cells were fixed and CPE was observed. Arrows indicate the
appearance of cell fusion. Scale bar of 100 µm is shown.

3.4. Immunogenicity of MV/RSV

Cotton rats were immunized with MVAIK and MV/RSV and reimmunized at 8 weeks
after the first dose. Serial serum samples were obtained until 15 weeks after the first dose
and the results of the serum antibody against measles and RSV are shown in Figure 6.
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Measles PA antibodies were only detected in cotton rats immunized with MVAIK and no
detectable measles antibody was noted in those immunized with MV/RSV through i.m.
and i.n. routes.
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Figure 6. Immunization schedule and antibody responses against measles and RSV. Three cotton
rats were immunized with MVAIK and MV/RSV through intra-nasal (i.n.) and intra-muscular (i.m.)
routes and were reimmunized at 8 weeks after the first dose. They were challenged with 1 × 106

PFU of the RSV/Long strain 4 weeks after reimmunization. Lung tissues were obtained 4 days after
the challenge. Measles PA antibody and RSV NT titers were examined. Immunization experiment
was performed in duplicate.

The NT antibody against RSV/Long strain is shown in Figure 6. Detectable NT
antibody against RSV was developed 3 weeks after the first dose and the reimmunization
enhanced the production of NT antibodies in cotton rats immunized with MV/RSV through
i.m. administration, but not through the i.n. route.

3.5. Protective Effect of MV/RSV

Cotton rats were immunized with MV/RSV through i.m. and i.n. routes and MVAIK
through i.m. They were challenged with 106 PFU of RSV 4 weeks after reimmunization.
Lung tissues were obtained four days after the challenge. Recovery of infectious RSV
was examined and the results are shown in Figure 7. Likewise, 104.3±0.2 PFU of RSV
was recovered from 50 mg of lung tissues obtained from cotton rats immunized with
MV/RSV through the i.n. route, and similar results were obtained after immunization
with MVAIK and non-immunized rats. Extremely low levels of 101.4±0.1 PFU of RSV were
detected from lung tissue obtained from those immunized with MV/RSV through the i.m.
route (p < 0.001).
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Figure 7. Recovery of the infectious virus in the lung tissue homogenates and the pathological
findings of lung tissues. Infectivity is expressed per 50 mg lung tissue with error bars. Formalin-
embedded lung tissues were sectioned and stained with HE. Arrows show the pathological find-
ings and scale bars represent 100 µm. The red dotted line indicates detection limit of recovery of
infectious RSV.

Histopathological findings are shown in the lower panel of Figure 7. No significant
pathological finding was noted in cotton rats immunized with chimeric MV/RSV through
the i.m. route, like the normal cotton rat. However, destruction of alveolar structures and
inflammatory responses were demonstrated in those immunized with MV/RSV through
the i.n. route, MVAIK, and non-immunized control: infiltration of inflammatory cells in the
peri-bronchus, thickening of the alveolar wall, and swelling of bronchial epithelial cells.

4. Discussion

Live vaccines have several merits to prevent infection and serious illness, but no live
vaccine against RSV has been developed [11–13]. Therefore, several recombinant virus
vaccines have been investigated using vaccinia, adeno, sendai, influenza, and measles
viruses [24–28]. In our laboratory, recombinant measles vaccines based on an infectious
cDNA clone of AIK-C were developed, expressing RSV F, G, and N proteins, peM+E of
Japanese encephalitis virus, and HA protein of influenza virus [17–21,29]. Heterologous
envelope protein coding sequences were inserted at the P/M junction. They induced
protective immune responses with the development of a neutralizing antibody and CTL.

Immune responses were influenced by pre-immunization antibody levels in a clinical
study using the AIK-C vaccine [30]. Low levels of measles antibody did not influence
the immunogenicity of measles vaccines, but higher levels of measles antibody reduced
the virus growth, resulting in poor immune responses. The pre-immunization measles
immune status influenced the efficacy of recombinant vaccine candidates. Especially
for RSV, live recombinant vaccine candidates should be administered to young infants
before measles vaccination. Serious RSV infection occurs at <6 months and live RSV
vaccine candidates should be administered around this time [13]. Vaccine efficacy of
measles virus-vectored vaccine candidates may vary depending on maternal-conferred
immunity or vaccine-acquired immunity at >1 year of age. Reisinger et al. [31] reported
that the immunogenicity of measles-vectored chikungunya virus vaccine MV-CHIK was
not influenced by pre-existing immunity, but the immunization cohort consisted of adults
18–55 years old with relatively low antibodies. Low levels of pre-immunization antibodies
did not impede the development of immune response.

In the present study, the chimeric MV/RSV virus was developed and replaced the
ectodomains of F and HA proteins of measles with those of RSV F and G proteins and
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showed the same cellular tropism as RSV. Virus growth was also investigated and MV/RSV
recombinant virus failed to grow at 39 ◦C, which likened the ts phenotype to that of AIK-C.
AIK-C has a unique characteristic of the ts phenotype; Pro at position 439 of the phospho
(P) protein is responsible for the ts phenotype [22]. MVAIK constructed by reverse genetics
from the AIK-C vaccine seed did not grow at 38 ◦C, indicating the stricter ts phenotype [22].
The body temperature of cotton rats is approximately 38 ◦C. In our previous study using
cotton rats, no virus growth was observed when they were immunized with MVAIK and
AIK-C vaccines through the i.n. route [32]. Through the i.m. route, the measles genome or
infectious virus was detected in the thymus and regional lymph nodes in cotton rats [32].
RSV primarily infects the upper respiratory tract and immunization through the i.n. route
is a more practically effective procedure. No detectable NT antibody against RSV was
induced through the i.n. route because of their ts phenotype in the cotton rat model with
high body temperature.

Tissue or cellular tropism is defined by viral envelope proteins and virus growth
depends on RNA polymerase activity of N, P, and L proteins. Virus particle formation of
the measles virus depends on the M protein and its interaction with the CT of HA and F
envelope proteins. The transmembrane (TM) region of the envelope proteins of F and HA
acts as an anchor to trap them at the cell membrane [33,34]. In the construction strategy,
measles N, P, M, and L proteins are the backbone of AIK-C vaccine strain and TM and
CT regions are retained. The ectodomains of RSV F and G were fused to respective TM
and CT regions of F and HA proteins, acting as the chimeric virus particles. RSV F protein
fused to the measles TM–CT domain and was present on the cell membrane of purified
MV/RSV particles, which induced CPE in HEp-2 cells as well as RSV. It induced protective
NT antibodies.

Comparative clinical trials showed that the standard potency of the AIK-C strain vac-
cine induced a stronger serological response than the other high potency measles vaccines
and was expected to be used for infants <9 months in developing countries [30,35–37].
These biological characteristics are clinically beneficial for the development of an AIK-C
vector-based vaccine for young infants.

5. Conclusions

In our present study, ectodomains of measles F and HA proteins were appropriately
replaced with RSV F and G proteins, which were expressed on the surface of chimeric
MV/RSV particles and infected cells. This result showed the same cellular tropism as
RSV and the same ts phenotype as the parental AIK-C measles vaccine. The chimeric
MV/RSV induced protective immune responses. This construction strategy of exchanging
ectodomains with a heterologous virus envelope may be applicable for the development
of enveloped virus vaccines such as RSV, mumps, Nipah, human metapneumovirus in
the same member of family Paramyxoviridae, and COVID-19, which is now of noticeable
concern regarding public health.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1:
Construction strategy for RSV F ectodomain fused to TM-CT domain of measles AIK-C strain,
Figure S2: Construction strategy for RSV G ectodomain fused to TM-CT domain of measles AIK-C,
Figure S3: Western blotting analysis.
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Abbreviations

CPE cytopathic effect
CT cytoplasmic
CTL cytotoxic T lymphocytes
F fusion
FI-RSV formalin inactivated RSV
G glyco
HA hemagglutinin
i.m. intramuscularly
i.n. intranasally
L large
N nucleo
NT neutralizing test
P phosphor
PA Particle agglutination
RSV respiratory syncytial virus
TM transmembrane
ts temperature sensitivity
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