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Abstract: Natural Killer (NK) cells are becoming an ever more promising tool to design new anti-
tumor strategies. However, two major issues are still a challenge to obtain versatile and effective
NK-based therapies: the way to maximize the persistency of powerful NK effectors in the patient,
and the way to overcome the multiple escape mechanisms that keep away or suppress NK cells at
the tumor site. In this regard, targeting the hypoxia-inducible factors (HIFs), which is important for
both tumor progression and immune suppression, may be an opportunity. Especially, in the context
of the ongoing studies focused on more effective NK-based therapeutic products.
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1. NK Cells as Anti-Tumor Effectors

The continuous studies on NK cells have enormously amplified the knowledge on
their development, body distribution, and functions, laying the bases for their effective use
in immunotherapy against tumors. It is well defined that human NK cells can kill tumor tar-
gets by the use of major activating surface receptors (i.e., NKp46, NKp30, NKp44, NKG2D,
DNAM1), which recognize antigens overexpressed by tumor cells, and avoid attacking nor-
mal cells by means of inhibitory receptors (KIRs, NKG2A, and LILRB1) recognizing HLA
class I molecules (whose expression is indeed often downregulated in tumor cells) [1,2]. It is
also quite well known that, during cell-to-cell contact, the different receptor types could be
engaged, coordinatively with the LFA1 adhesion molecules, to form inhibitory or cytotoxic
immunological synapses, the latter resulting in the delivery of perforins and pro-apoptotic
granzymes into the tumor target cell [3]. The need for a tight control of the NK cell cy-
totoxicity has led, in humans, to the generation of a quite complex pattern of inhibitory
receptors each endowed with peculiar specificity: NKG2A and LILRB1 (also known as ILT2
or LIR1) recognizing respectively HLA-E, and (predominantly) HLA-G molecules, and
each member of the quite large family of KIRs recognizing a different group of HLA class I
alleles [2,4,5]. To further complicate matters, NK cells also express activating homologues
of HLA-specific receptors (i.e., NKG2C and activating KIRs), which are involved in the
response against virally infected cells. The HLA-specific receptors (both inhibitory and
activating) are not homogeneously expressed on the whole NK cell population of each
individual, rather they are dispersed, giving rise to a complex repertoire. Perturbations
of such a repertoire could be associated with certain viral infections (in particular CMV)
indicating possible expansion and persistence of virus-responsive “memory-like” (also
defined as “adaptive”) NK cells in seropositive individuals [6–8]. Strikingly, in adaptive
NK cells predominates the CD16-mediated activating pathway leading to effective target
cell killing via ADCC [7,8]. Therefore, adaptive NK cells may be particularly suitable to
complement the curative effects of therapeutic abs to tumor Ags. Nevertheless, these NK
cells may also have a direct anti-tumor effect, independent of the targeting abs. Indeed,
adaptive NKG2C+ NK cells have been shown to expand specifically in response to CMV
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reactivation in recipients of hematopoietic cell transplants (HCT) and to play a role in the
control of leukemia relapse [9].

By virtue of the partial HLA class I mismatch between donor and recipient in hap-
loidentical HCT or NK cell transfer, it is possible that a fraction of donor-derived NK cells
could express inhibitory KIRs not recognizing any recipient’s HLA class I molecule [10].
These cells do not appear to cause serious negative effects in the recipient, probably because
most normal cells poorly express the ligands for activating NK receptors and therefore
are hardly attacked by NK cells even in the absence of inhibitory signals. Instead, a ma-
jor problem for an effective use of donor-derived NK cells in immunotherapy may be
to maintain the immunological competence of allogeneic NK cells in the recipient. NK
cells generally acquire their cytotoxic capabilities through a process of “education” [11],
which proceeds alongside the latter phases of maturation. These phases are marked by
the acquisition of NKG2A expression first, and then, by the replacement of NKG2A with
the more potent inhibitors, KIRs. The education process enables NK cells to increase their
cytotoxic potential proportionally to the strength of the inhibitory signals received by
recognition of “self HLA class I”. Therefore, NK cells expressing KIRs not recognizing
self HLA molecules will not acquire cytotoxicity, while those expressing NKG2A will
show intermediate cytotoxic potential, and those expressing KIR specific for “self” will
show maximal cytotoxic potential. NK cells are thought to be educated in secondary
lymphoid tissues, where NK cell maturation occurs [12], but the process may also take
place in the periphery. Intriguingly, further studies in mice have suggested that, actually,
mature NK cells can continuously adapt their function to the environmental changes of
“self” [13–15]. Based on this observation, we can infer that in humans, allogeneic NK
cells, once transferred into the patients, may reduce their cytotoxicity in response to the
diminished signaling of KIRs (which fail to recognize recipient’s HLA class I alleles); even
though, a recent study has proposed that the recognition of self HLA molecules “in cis”
(i.e., receptor/ligand interaction on the same cell) can contribute to maintain education [16].
A different situation may occur in NK cells developing after haploidentical hematopoietic
stem cell transplantation (HSCT) in patients with high-risk leukemias. In this case, allo-
geneic NK cells may be fully competent, as educated by the HLA class I alleles expressed
by the donor’s transplanted hematopoietic cells that populate the recipient [10]. Another
problem to maintain immunological competence is related to the tendency of NK cells (and
also T cells, actually) to respond to prolonged activation due to chronic stimuli (such as
the exposure to tumor cells and cytokines), by expressing inhibitory checkpoint receptors:
TIGIT, TIM-3, and PD-1 [17–19]. The ligands for these receptors can also be expressed by
tumor cells; therefore, targeting the checkpoint receptor/ligand pairs with specific abs
represents a current strategy to unleash the patient’s anti-tumor immune responses.

It is noteworthy that most studies on NK cell-based immunotherapy have so far
been carried on hematologic malignancies, while fewer attempts have been made with
patients with solid tumors. This depends in part on the different therapeutic strategies
currently in use for hematologic and solid malignancies, the latter often involving surgery,
but it is also related to additional issues regarding the interactions of NK cells with the
peculiar microenvironment distinctive of solid tumors. Indeed, at the tumor site several
mechanisms are induced to limit the recruitment of NK cells and also to locally suppress
their functions [20]. Many of these mechanisms are related to the abnormal recruitment
or induction of suppressive immune cell populations (Tregs, Myeloid Derived suppressor
Cells (MDSC), and Tumor Associated Macrophages (TAM)) and alteration of stromal cells
(tumor-associated fibroblasts) and of the extracellular matrix (ECM), and appear to be
orchestrated by tumor cells. However, it should be considered that the physical changes
due to the uncontrolled growth of the tumor tissue, leading to the generation of a hypoxic
status, play a pivotal role.
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2. Role of HIF in the Orchestration of the Host/Tumor Interface

Reduction of O2 tension frequently characterizes expanding tumor tissues and strongly
influences the local microenvironment, playing an important role in the orchestration of
the host/tumor interface and, ultimately, in the tumor progression. HIF-1α protein (and its
isoforms, HIF-2α and HIF-3α) represents the master regulator of the response to hypoxia in
both normal and tumor tissues [21]. In O2 rich compartments, this protein is in large part
degraded and eliminated from the cytoplasm of the cells, whereas, under low O2 tension
it accumulates and is then translocated to the nucleus, where it complexes with HIF-1β
to govern the transcription of many hypoxia-related genes bearing “hypoxia-response
regulatory elements”.

Several processes, involved in the tumor development, growth, invasion of surround-
ing tissues, and metastatic spread, can be influenced or supported by hypoxia via HIF
proteins [21,22]. Thus, for example, hypoxia stimulates angiogenesis via VEGF induction,
modifies cellular metabolism, and may also improve survival of tumor cells by increas-
ing their tendency to skew from apoptosis to autophagy. Moreover, hypoxia favors the
epithelial-to-mesenchymal transition (EMT), an epigenetic process of cellular modifica-
tion that, when applied to tumor cells, it can promote their switch to less differentiated
forms, with reduced anchorage capabilities, increased stemness, and increased resistance
to radiotherapy and drugs.

Hypoxia also influences the function of immune cells therefore affecting the host
immune response to the tumor. For example, under hypoxic conditions, dendritic cells
(DCs) upregulate pro-inflammatory cytokines and chemokines, but also undergo defective
maturation with reduced ability to induce proper Th1 activation [23,24]. Acidification of
the tumor microenvironment (TME), due to hypoxia-related metabolic changes, suppresses
T and NK cells [25,26]. Moreover, hypoxia induces various suppressive factors, including
TGF-β, IDO, and PGE2 [27]. Finally, HIF1α can favor Tregs [28] and, indirectly, MDSC and
TAM accumulation [29,30].

Different studies have been done also on NK cells, showing how hypoxia could signif-
icantly dampen the efficacy of this important arm of the anti-tumor immunity. Hypoxia-
induced HIF-1α in osteosarcoma cells has been shown to downregulate the expression of
MICA [31], a ligand of the activating receptor NKG2D. By converse, hypoxia can upreg-
ulate the expression of PD-L1 and HLA-G [32,33], which are part of different checkpoint
receptor-ligand pairs (PD-L1/PD-1, HLA-G/LILRB1, HLA-G/LILRB2, HLA-G/KIR2DL4)
inhibiting both NK and T cell activity. Another mechanism to escape NK cell attack is
represented by the hypoxia-induced autophagy. By this process, tumor cells can inactivate
granzyme B proapoptotic molecules that are delivered into their cytoplasm by NK cells
during cell-to-cell contact [34]. In general, the hypoxic microenvironment suppresses NK
cells in different ways. For example, hypoxic TME induces mitochondrial fragmenta-
tion of tumor infiltrating NK cells, limiting their cytotoxicity and anti-tumor activity [35].
Moreover, the accumulation of Tregs, MDSC, immature DC, and suppressive factors affect
NK cells [20]. In this regard, microvescicles released by hypoxic tumor cells have been
shown to deliver to NK cells TGF-β and miRNA-23a, which can reduce the expression of
NKG2D and of the lytic granule-associated CD107a molecule, respectively [36]. miRNA23a
has also been shown to inhibit cathepsin C expression, resulting in granzyme B activity
reduction [37]. In addition, HIF typically up-regulate expression of ecto-5′-nucleotidase
(CD73) broadly in the cells of the TME, including stromal cells, tumor cells, endothelial
cells, Tregs, and DC. CD73 hydrolyzes AMP to adenosine, which acts on NK cells by
inhibiting cytotoxicity and cytokine expression [38]. Strikingly, also the recruitment of NK
cells into the tumor nests can be inhibited by hypoxia via HIF-1α. Indeed, targeting HIF-1α
in a melanoma mouse model resulted in increased cytotoxic NK and T cell infiltration in
the tumor, which showed increments in CCL2 and CCL5 chemokines [39]. Nevertheless,
even more importantly, hypoxia also has a direct effect on NK cells, possibly affecting
their metabolism and function [26]. Indeed, HIF-1 can orchestrate the expression of genes
involved in the energy production, favoring the process of glycolysis and inhibiting ox-
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idative phosphorylation (OXPHOS) [40,41]. At steady state NK cells show relatively low
glycolysis and OXPHOS rates, which, however, are significantly increased upon cytokine
exposure, to support enhanced cytotoxicity and IFN-γ production [42]. Similarly, adaptive
NK cells appear to maintain higher rates of glycolysis and OXPHOS [43]. Therefore, in both
cytokine-induced and adaptive NK cells, hypoxia may impact metabolism reprogramming,
resulting in reduced OXPHOS and increased glycolysis (poorly efficient when uncoupled
to OXPHOS). By contrast, educated NK cells may be only marginally affected. Indeed, their
metabolic advantage on uneducated cells would depend on higher GLUT1 glucose receptor
expression and higher glycolysis, rather than on OXPHOS [44]. Metabolic alterations can
contribute in part to the hypoxia related modulation of different NK cell functions. It has
been demonstrated that, under low O2 tension, NK cells change their mode to respond to
cytokines, such as IL-2 or IL-15 [45,46]. For example, they lose their ability to upregulate
the expression of key activating receptors involved in target cell recognition, failing to
improve their tumor cell killing capabilities [45]. They also reduce the release of cytokines
and chemokines (IFN-γ, GM-CSF, CCL3, and CCL5) in response to the combined stimulus
of IL15+IL18, or improve the ability to migrate in response to specific chemokines, such as
CCL19, CCL21, and CXCL12 [41]. Remarkably, this latter effect appears to be restricted to
the CD56brightCD16dim NK cell subset, suggesting that this NK cell population could more
easily infiltrate hypoxic tissues expressing such chemokines. The transcriptomic analysis
of NK cells exposed to low O2 tension reveals a profound modification of many biological
processes, spanning from those related to metabolism to those involved in more specific
functions, including cytokine release and regulation of cytolytic response [41,46]. The
large number of hypoxia-modulated genes (HMGs) and the Gene Set Enrichment Analysis
indicates an actual adaptation of NK cells to hypoxia, with the involvement of HIF-1α and
HIF-2α [41]. This latter point is further confirmed by an important study showing how the
specific inhibition of HIF-1α expression on NK cells can deeply change their behavior in the
tumor hypoxic environment. Ni et al., using a mouse model with the conditional deletion
of HIF-1α in NK cells, elegantly demonstrated that lack of HIF-1α renders certain NK cells
capable of producing IFN-γ in response to IL-18 in the tumor hypoxic environment and
that these HIF-1α−/− NK cells can infiltrate and control the tumor in vivo [47].

3. HIF Inhibitors and NK Cells

On the whole, the studies on hypoxia in the TME indicate HIF molecules, in particular
HIF-1α, as key players for both the tumor progression and the escape from the NK cell
attack (and more widely, from the immune mediated control of the tumor). Therefore,
several therapeutic agents targeting HIF molecules have been considered, and are currently
analyzed in phase II/III clinical trials [21]. Such agents include molecules that can inhibit
HIF protein synthesis or mRNA expression, induce non-functional HIF dimers, or induce
HIF degradation. Clinical studies suggest some benefit for some of these molecules,
encouraging their further evaluation as single agents or in combined therapies. In this
regard, it is desirable that effective new strategies, combining HIF-inhibitors to NK-based
immunotherapy, could be conceived soon. In this case, however, several questions should
be examined in the attempt to maximize the therapeutic success, especially considering
the growing complexity of the NK cell biology revealed by more recent studies (Figure 1).
One point may be which NK cell subset could benefit more from the HIF inhibition. In
this regard, the study by Ni et al. suggests a certain variability within mice NK cells in
the response to the lack of HIF, indeed, only a fraction of tumor infiltrating HIF−/− NK
cells were activated in the studied model. In humans, it could be interesting to assess
whether the HIF response could vary in NK cells depending on their stage of terminal
differentiation (i.e., characterized by different expression levels of CD56, CD16, NKG2A,
KIR, and CD57), on their educational status, or even on their residency in different body
compartments. Regarding this latter point, it should be considered that different organs
also include tissue-resident NK cells with distinctive functions, such as uterine NK cells,
which are mostly involved in supporting embryo development, or liver NK cells, facing
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viral infections via TRAIL [48]. The O2 tension significantly varies in different organs
and tissues [49]; therefore, HIF response may variably affect specialized functions of
resident NK cells. Another intriguing question may regard the so-called adaptive NK
cells, which are characterized by peculiar phenotype and transcriptional profile and may
differently respond to HIF-inducible pathways [8]. It is also important to consider how
NK cells are stimulated or prepared for NK-based therapies [10], as it is still poorly known
whether preliminary or prolonged activation may change their response to hypoxia. Thus,
stimulation of NK cells with IL-2 or IL-15 before infusion, or the subsequent administration
of IL-2, IL-15, or the IL-15 superagonist ALT-803 [50] to sustain NK cell activation in the
patients, may differently influence the possible effects of HIF inhibitors. It is also unknown
the effect of hypoxia on the Cytokine Induced Memory-Like (CIML) NK cells, which are
prepared from peripheral blood NK cells after brief stimulation in vitro with a cytokine
cocktail of IL-15, IL-12, and IL-18. By studies in vitro and in animal models, CIML-NK
cells have been demonstrated to be long-lived and to promptly respond to stimuli, and
are now being evaluated in clinics [51,52]. Therefore, their potential use in combination
with HIF inhibitors may be contemplated in future studies. Other NK cell preparations
that should be evaluated for the possible effects of HIF inhibitors are represented by
those derived from umbilical cord blood (UCB) primary NK cells or their precursors
(which are already studied in clinics), and from the “induced Pluripotent Stem Cells”
(iPSC), both representing promising “off-the-shelf” products for immunotherapy [53,54].
iPSCs are induced from somatic cells that are transfected with reprogramming factors
and then cloned, expanded, and stored in biobanks to be used for the generation of
the desired differentiated somatic cells, including NK cells. Compared to traditional
NK cell products, the iPS-NK may present the advantage to provide higher numbers of
cells (which are required for therapeutic protocols) and to be more homogeneous and
genetically editable [55]. Of note, both UCB and iPSC represent reliable platforms for the
engineering of NK cells to generate Chimeric Ag Receptor (CAR)-NK cells. Intriguingly, the
manipulation of CAR-NK cells may consider targeting HIF-1a in order to get empowered
effector cells. Finally, a further question regards the possible combination of HIF inhibitors
with additional boosts that can redirect NK cells to target tumor cells. This is the case
of therapeutic abs to tumor Ag, which can induce ADCC, or bi- and tri-specific Killer
Engagers (BiKE and TRiKE), engineered molecules simultaneously targeting tumor Ag,
engaging CD16 on NK cells, and (in the case of TRiKE) presenting IL-15 to support NK
cell persistence and expansion [10,56]. Both ADCC and BiKE/TRiKE stimulation are
mediated by CD16, which has been shown to be poorly affected by hypoxia [45]. In this
case, HIF inhibitors may have only marginal effects; however, new promising NK engagers
have been designed to trigger different activating receptors—such as NKp46, NKp30, and
NKG2D [57]—which, on the contrary, have been shown to be significantly suppressed in
hypoxic conditions.

In conclusion, NK-based immunotherapy is a rapidly evolving area of research, which
is prevalently focused on the way to obtain NK cell products that are ever more powerful
and precise in targeting tumors. These cells should also respond to requirements of
durability in the patient, have easy availability, and be capable of facing the suppressive
mechanisms mounted by tumor tissues. In this latter aspect, the study of how to circumvent
the effects of hypoxia, and specifically of its master regulator HIF complex, may offer future
therapeutic synergies.
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