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Abstract: Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in children
and older adults. An effective vaccine must elicit neutralizing antibodies targeting the RSV fusion
(F) protein, which exists in two major conformations, pre-fusion (pre-F) and post-fusion (post-F).
Although 50% of the surface is shared, pre-F contains highly neutralization-sensitive antigenic
sites not present on post-F. Recent advancement of several subunit F-based vaccine trials has
spurred interest in quantifying and understanding the protective potential of antibodies directed to
individual antigenic sites. Monoclonal antibody competition ELISAs are being used to measure these
endpoints, but the impact of F conformation and competition from antibodies binding to adjacent
antigenic sites has not been thoroughly investigated. Since this information is critical for interpreting
clinical trial outcomes and defining serological correlates of protection, we optimized assays to
evaluate D25-competing antibodies (DCA) to antigenic site Ø on pre-F, and compared readouts of
palivizumab-competing antibodies (PCA) to site II on both pre-F and post-F. We show that antibodies
to adjacent antigenic sites can contribute to DCA and PCA readouts, and that cross-competition from
non-targeted sites is especially confounding when PCA is measured using a post-F substrate. While
measuring DCA and PCA levels may be useful to delineate the role of antibodies targeting the apex
and side of the F protein, respectively, the assay limitations and caveats should be considered when
conducting immune monitoring during vaccine trials and defining correlates of protection.

Keywords: respiratory syncytial virus; monoclonal antibody competition; palivizumab competition
assay; protein conformation; ELISA; immune correlates of protection

1. Introduction

Respiratory syncytial virus (RSV) can cause severe acute lower respiratory infections (ALRI),
resulting in 55,000 to 199,000 deaths globally per year in children under the age of five [1]. In adults
age 65 years or older, RSV proves to be a substantial health burden responsible for 8% of ALRI-related
deaths in US hospitals [2]. Despite five decades of vaccine development effort, no RSV vaccine
is available. The primary goal of an RSV vaccine is to prevent severe disease in those at greatest
risk—infants under 6 months of age and older adults [3]. Many vaccines tested in these populations
have proven unsuccessful, revealing challenges and raising concerns for developing an RSV vaccine for
these vulnerable populations [4–6]. In addition, the lack of a definitive correlate of protection against
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infection or severe disease complicates efforts to evaluate vaccine efficacy without including large
numbers of subjects in late-phase clinical trials [7]. Despite the complicated history and challenges
of RSV vaccination, there are numerous promising vaccine candidates under clinical evaluation that
either directly target infants and the elderly or aim to protect infants through immunization of pregnant
women or older children [8–10]. Defining serological readouts that best correlate with protection from
disease will be a critical advance toward developing and advancing the most efficacious RSV vaccines.

RSV neutralizing activity has often been correlated with protection in infants, and antibody alone
is capable of mediating protection from severe disease [7]. While the envelope of RSV contains two
major surface glycoproteins (the fusion protein F and the attachment glycoprotein G), the relative
conservation of the F protein makes it an attractive target for active vaccination and passive antibody
administration [11]. Palivizumab (Synagis), a monoclonal antibody (mAb) that recognizes the F
protein, has significantly reduced hospitalization in high-risk infants when administered as monthly
prophylaxis [12,13]. There are two major conformations of the F protein, the active pre-fusion form
(pre-F) and the post-fusion form (post-F) adopted after triggering [14–16]. Antigenic sites on the F
protein have been defined, first through mAb competition and structural studies of F-mAb complexes
followed by dividing the surface of pre-F into six non-overlapping structural domains [17–20]. The side
of post-F displays four antigenic sites designated as antigenic sites I, II, III, and IV [18]. Unique
antigenic sites on the apex of pre-F, designated sites Ø and V, bind antibodies with substantially
better neutralization potency than site II-directed palivizumab [21–26]. In addition to displaying the
pre-F exclusive sites Ø and V, the side of pre-F has similar structural topology to post-F, retaining
antigenic sites I-IV. While antibodies that target sites II and IV bind similarly to pre-F and post-F,
antibodies to sites III and I preferentially bind pre-F and post-F, respectively [18]. Determination
of the pre-F structure has informed advances in passive immunoprophylaxis and a site Ø directed
antibody, D25, is being clinically evaluated with half-life extending mutations as a replacement for
palivizumab [27]. Additionally, stabilizing mutations have been introduced into the F protein to
preserve the major viral sites of vulnerability, offering an optimal antigen for active vaccination [28].
As F-based vaccine candidates continue in clinical evaluation, it has become increasingly important
to consider immunological readouts and what they tell us about both natural and vaccine-elicited
immunity to RSV.

Neutralization assays have long been the gold standard for measuring functional antibody
responses following vaccination. Similarly, standard ELISA assays are used to demonstrate an
increase in F-binding antibodies. However, these two readouts have provided discordant results
following vaccination with post-F antigens. In several trials, the increase in binding antibody far
exceeded the improvement in neutralizing activity [29,30], indicating that while immunogenic, post-F
vaccines elicit primarily non- or weakly- neutralizing antibodies. Both the neutralization assay
and ELISA measure responses to F as a whole and lack the refinement necessary to distinguish
antibody specificity to different antigenic sites or preference for pre-or post-F conformation. Based
on the efficacy of palivizumab administered to high-risk infants, assays have also been developed
to measure the induction of responses that compete with palivizumab for binding to the F
protein. Because palivizumab can protect from disease, it is logical to assume that antibodies that
compete with palivizumab should have protective capabilities, and therefore, palivizumab-competing
antibody (PCA) concentrations in serum could serve as a surrogate for neutralization. As a result,
readouts of PCA levels in serum are routinely included as a measure of vaccine-elicited immunity.
However, most of these PCA levels have been measured using a post-F or structurally-undefined
antigen [31–35]. Given our current understanding of the biology of the F protein and the advancement
of several pre-F vaccine candidates, it is likely that this is an inadequate and potentially misleading
immunological readout.
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While the PCA measured using post-F or structurally-undefined F protein has become a standard
immunological readout for vaccine studies, its utility for pre-F vaccines or as a correlate of protection
has yet to be determined. Both pre-F and post-F contain the palivizumab-binding helix-turn-helix
epitope within antigenic site II [14,15,36], but it is unclear to what extent the relationship with adjacent
antigenic sites and presentation context of this motif affect the readout of a PCA assay. Additionally,
whether pre-F or post-F is used as a substrate, the PCA assay fails to provide any information
about antibody responses to the neutralization-sensitive antigenic sites Ø and V present exclusively
on pre-F, which is an important immunological readout for pre-F-based vaccine trials. To address
these limitations, we sought to (1) evaluate the impact of protein conformation on PCA readouts
and (2) develop an assay to quantify D25-competing antibody (DCA) levels in polyclonal sera. We
optimized three ELISA assays to measure serum levels of pre-F DCA, pre-F PCA, and post-F PCA. We
then used a panel of site-specific mAbs to evaluate the contribution of antibodies targeting adjacent
sites to the readouts from each assay. Finally, we measured mAb-competing antibody levels in
non-human primates (NHP) immunized with different conformations of the F protein to illustrate
how immune history complicates interpretation of mAb competition assays. Our comprehensive
approach to dissecting the impact of F conformation in mAb competition assays implicates protein
conformation as a critical determinant of assay readouts and provides a basis to improve the assessment
of RSV F vaccines.

2. Materials and Methods

2.1. Human Sera

Sera from 58 healthy subjects between the ages of 18 and 65 were obtained with informed consent
from subjects enrolled in the observational study VRC 200, A Multicenter Specimen Collection Protocol
to Obtain Human Biological Samples for Research Studies (ClinicalTrials.gov identifier: NCT00067054).
Subjects were randomly selected for testing with no restrictions on age or gender.

2.2. Protein Expression and Characterization

Pre-F and post-F proteins were produced from previously characterized constructs of DS-Cav1 [28]
and RSV FdFP [15] by transient transfection of Expi293F cells. Expressed proteins contained
a C-terminal hexa-histidine tag and Strep-tag for purification by affinity chromatography over
Ni-nitrilotriacetic acid (NTA) (GE Healthcare, Pittsburgh, PA, USA) and Strep-Tactin resin
(IBA Lifesciences, Göttingen, Germany) followed by a fast protein liquid chromatography superose
column (Bio-Rad, Richmond, CA, USA) to isolate trimeric protein. All F proteins were tested for
antigenicity and conformation by assessing binding to a panel of monoclonal antibodies targeting
known antigenic sites on pre-F or post-F (D25 and 5C4: site Ø, Motavizumab: site II, AM14:
quaternary).

2.3. Expression and Purification of Antibodies and Antigen Binding Fragments (Fabs)

Antibodies were expressed by transfection of heavy and light chain plasmids together into
Expi293F cells grown in suspension at 37 ◦C. Six days later, culture supernatants were harvested
and passed through Protein A agarose (ThermoFisher, Atlanta, GA, USA), and bound antibodies
were washed with PBS prior to elution with IgG elution buffer (ThermoFisher) into 1 M Tris-HCl
(pH 8.0). Fabs were made by digesting antibodies overnight with Lys-C (New England Biolabs,
Beverly, MA, USA) or Papain (Pierce Fab Preparation Kit, ThermoFisher) following manufacturer’s
instructions. Fc fragments were removed with Protein A (ThermoFisher) or Protein G Sepharose Fast
Flow (GE Healthcare) agarose, and successful digestion of antibodies was confirmed using 4–12%
Bis-Tris SDS-Page gels (Invitrogen, Carlsbad, CA, USA).

ClinicalTrials.gov
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2.4. Monoclonal Antibody Competition ELISA

Competition ELISA assays were optimized for coating conditions and biotinylated antibody
concentrations to maximize their dynamic range and keep similar coating concentrations for the two
PCA assays. D25 and palivizumab were biotinylated with an EZ-Link-Sulfo-NHS-LC-biotinylation
kit (ThermoFisher) following manufacturer’s instructions. Coating and biotinylated antibody
concentrations selected for each assay, respectively, were: 4 µg/mL and 2 µg/mL for the pre-F DCA
assay, 500 ng/mL and 2 µg/mL for the pre-F PCA assay, 250 ng/mL and 100 ng/mL for the post-F PCA
assay. Internal polyclonal serum controls were included in every run to check for consistency between
assays. Plates were coated overnight at 4 ◦C with F protein in PBS. The following morning, 200 µL of
5% milk + PBS were used to block the plates for 1 h. In between each step, plates were washed 3× with
PBS-T. Two-fold serial dilutions of sera (50 µL, starting at a 1:5 dilution) were performed in duplicate
and added to the ELISA plate for a 15-min incubation before adding 50 µL of biotinylated monoclonal
antibody and an additional one-hour incubation. Standard curves were generated using unbiotinylated
D25 or palivizumab for each competition assay (2- fold dilutions starting at 25 µg/mL for pre-F DCA
assay, 200 µg/mL for pre-F PCA assay, and 25 µg/mL for the post-F PCA assay). After washing, 100
µL of Streptavidin-HRP (1:2000; ThermoFisher) was added to the plates and incubated for one hour.
The plates were developed using 100 µL of KPL SureBlue (SeraCare, Milford, MA, USA) for 7 min,
and the reaction was stopped with 100 µL of sulfuric acid (0.501M). Plates were read at 450 nm and
650 nm on a SpectraMax Paradigm plate reader. For analysis, a 4-parameter nonlinear regression was
performed to determine the concentration of unbiotinylated D25 or palivizumab monoclonal antibody
necessary to achieve IC50. The concentrations of D25- and palivizumab- competing antibody within
experimental samples were interpolated from the absorbance value at which experimental samples
achieved 50% inhibition. The lower limit of quantitation was 4 µg/mL for the pre-F DCA assay, 24
µg/mL for the pre-F PCA assay, and 5 µg/mL for the post-F PCA assay. Sera with unmeasurable
levels of competing antibody were assigned a value half the lower limit of quantitation.

2.5. Neutralization Assays

Neutralization assays were performed as previously described [37]. Briefly, HEp-2 cells were
seeded at a density of 2.4 × 104 cells/well in 384-well black optical bottom plates from ThermoFisher
(Cat#142761). Serial 2-fold dilutions were performed on samples, either NHP sera or monoclonal
antibodies, in a final volume of 40 µL. The starting dilution was 1:10 for sera and 1:10, 1:200, or 1:500
for the monoclonal antibodies. An equal volume of recombinant mKate-RSV subtype A (strain A2) was
added to the diluted samples and incubated at 37 ◦C for 1 h [38]. After incubation, 50 µL of each diluted
sample-virus mixture was added to the HEp-2 cells and incubated for 37 ◦C for 24 h. Fluorescence
endpoints were recorded at 24 h using excitation at 588 nm and emission at 635 nm (SpectraMax
M2e, Molecular Devices, San Jose, CA, USA). The IC50 titer for each sample was determined using a
four-parameter non-linear regression curve fit with GraphPad Prism version 7 (GraphPad Software
Inc., San Diego, CA, USA), which was then used to calculate the IC50 concentration of each monoclonal
antibody or NHP sera.

2.6. KD Determination

Avi-tagged pre-F and post-F (purified as described above) were biotinylated using the
BirA Biotin-Protein Ligase Standard Reaction Kit (Avidity, Aurora, CO, USA). Biotinylation and
conformation were confirmed using a FortéBio Octet HTX instrument (Molecular Devices, Fremont,
CA, USA) by immobilizing biotinylated pre-F and post-F on streptavidin (SA) sensors and testing
their binding to a panel of site-specific monoclonal RSV F antibodies (D25 and 5C4: site Ø, ADI-15640:
site I, Motavizumab: site II, MPE8: site III, ADI-15569: site V, AM14: quaternary). All biosensors
were hydrated in PBS prior to use, and pre-F and post-F proteins were immobilized on SA biosensors
through conjugated biotin. After briefly dipping in assay buffer (1% BSA in PBS), the biosensors were
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dipped in a 3-fold dilution series of Fab for 5 min. Biosensors were then dipped in assay buffer to
allow Fab to dissociate from F for 10 min. All assay steps were performed at 30 ◦C with agitation set at
1000 rpm in the Octet HTX instrument (Molecular Devices). Correction to subtract non-specific baseline
drift was carried out by subtracting the measurements recorded for a bare sensor. Data analysis and
curve fitting were carried out using Octet analysis software (version 9.0). Experimental data were
fitted with the binding equations describing a 1:1 interaction. Global analyses of the complete data
sets assuming binding was reversible (full dissociation) were carried out using nonlinear least-squares
fitting, allowing a single set of binding parameters to be obtained simultaneously for all concentrations
used in each experiment. Fabs with a maximum response unit of less than 0.1 nm were excluded from
KD calculation.

2.7. NHP Immunizations

All animal experiments were reviewed and approved by the Animal Care and Use Committee of
the Vaccine Research Center, NIAID, NIH, and all animals were housed and cared for in accordance
with local, state, federal, and institute policies in an American Association for Accreditation of
Laboratory Animal Care (AAALAC)-accredited facility at the NIH. Macaca mulatta animals of Indian
origin weighing 8.76–14.68 kg were intramuscularly injected with immunogens at week 0, week 4, and
week 26. The frozen RSV F variant immunogen proteins were thawed on ice and mixed with poly I:C
with 50 µg/animal injections taking place within one hour of immunogen: adjuvant preparation.

2.8. Statistical Analysis

Correlation between pre-F and post-F PCA levels in addition to DCA and PCA readouts
to neutralization were determined by Spearman correlation analysis. All t-tests comparisons of
non-human primate DCA, PCA, and neutralization readouts were done using Microsoft Excel.

3. Results

3.1. Optimization of mAb Competition Assays to Measure Site-specific Antibody Responses

Since the PCA assay has not been standardized across laboratories, we independently developed
three mAb competition assays by optimizing the concentration of antigen coated on the plate and of the
biotinylated detection antibody. First, we coated plates with increasing concentrations of purified pre-F
or post-F and performed serial two-fold dilutions of biotinylated D25 (pre-F only) and palivizumab
(both pre-F and post-F) antibodies. Antigen coating concentrations that offered sufficient dynamic
range were selected: 4 µg/mL for pre-F DCA assay, 500 ng/mL for pre-F PCA assay, 250 ng/mL
for post-F PCA assay. Next, we determined concentrations of biotinylated mAb that achieved 90%
saturation of the signal to be used in competition assays: 2 µg/mL for pre-F DCA and pre-F PCA
assays and 0.1 µg/mL for post-F PCA assay (Figure 1a). Unbiotinylated D25 and palivizumab were
then serially diluted to generate standard curves and determine the concentration of mAb necessary to
achieve a 50% inhibition (IC50) of the signal (Figure 1b). While the IC50 of the unbiotinylated form of the
competing antibody between runs is generally consistent for each competition assay, it was necessary
to include this control to establish the IC50 for each run. The IC50 provided by unbiotinylated mAb
generated with each run was then used to interpolate µg/mL of DCA or PCA in experimental samples.
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Figure 1. Development of monoclonal antibody (mAb) competition assays. (a) Serial dilutions of
biotinylated D25 or palivizumab detection antibodies were tested for binding to pre-fusion (pre-F) or
post-fusion (post-F) coated overnight on plates at the indicated concentrations. The samples highlighted
in red indicate the coating concentration that was selected for each assay. Sub-saturating concentrations
of detection antibodies were determined, and final assay conditions selected for each assay were: pre-F
DCA: 4 µg coating, 2 µg/mL D25, pre-F PCA: 500 ng coating, 2 µg/mL palivizumab, post-F PCA:
250 ng coating, 0.1 µg/mL palivizumab. Lines with identical symbols indicate technical replicates.
(b) Serial dilutions of unbiotinylated D25 and palivizumab were used in each assay to generate a full
standard curve and determine the IC50 of antibody identical to the detection reagent (dotted line).
The concentrations of D25-competing antibody (DCA) and palivizumab-competing antibody (PCA)
within experimental samples were then interpolated from the absorbance value at which experimental
samples achieved 50% inhibition. Lines with identical symbols are technical replicates.

3.2. Quantifying Site-Specific Antibody Concentrations in Healthy Human Sera

To assess RSV F antibody levels in naturally infected humans, we determined the concentration
of DCA and PCA for 58 randomly-selected healthy adults between the ages of 18–65. Serial dilutions
of sera were added to plates coated with pre-F or post-F before the addition of the biotinylated D25 or
palivizumab. The concentration of serum required to block 50% of biotinylated D25 or palivizumab
was calculated and multiplied by the IC50 of unbiotinylated D25 or palivizumab to establish DCA and
PCA levels for each sample. Based on an initial serum dilution of 1:10 and the IC50 of unbiotinylated
mAb, the limit of quantitation was set as 4 µg/mL for the pre-F DCA assay, 24 µg/mL for the pre-F
PCA assay, and 5 µg/mL for the post-F PCA assay. Samples falling below these limits of quantitation
were assigned values of 2 µg/mL, 12 µg/mL, and 2.5 µg/mL, respectively. Measurements of pre-F
PCA were limited by the relatively high IC50 of unbiotinylated palivizumab in this assay (average of
2.07 µg/mL over five runs, Figure 1b) and an inability to extrapolate quantitation beyond the original
serum dilution. This restriction on quantitation allowed for determination of pre-F PCA in only 15
of the 58 subjects tested (26%), while pre-F DCA and post-F PCA levels could be determined for
88% and 52% of subjects, respectively. While the mAb competition assays did not directly correlate
with neutralization activity in this set of normal human subjects, the pre-F DCA assay was the best
predictor of neutralization (r = 0.487, p = 0.0003) (Figure 2a). The number of subjects below the limit of
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quantitation for the pre-F PCA and post-F PCA assays limited the ability to correlate these readouts
to neutralization (Figure 2b,c). For subjects with measurable PCA in both the pre-F and post-F assay,
the µg/mL readouts correlated well (r = 0.793, p = 0.0007, Figure 2d). These data suggest that for
polyclonal sera from antigen-experienced adults, similar readouts are obtained when using RSV F in
either of its conformations as a substrate for the mAb competition ELISA.

1 
 

 

 

 
Figure 2. Quantitation of site-specific antibody concentrations and their correlation to neutralization in
healthy human sera. (a–c) Pre-F DCA (r = 0.487, p = 0.0003) (a), pre-F PCA (r = −0.335, p = 0.221) (b),
and post-F PCA (r = 0.126, p = 0.508) (c) levels were quantified and plotted against neutralization titers
in 58 healthy human subjects. Dotted lines indicate the limit of quantitation for each assay (pre-F DCA:
4 µg/mL, pre-F PCA: 24 µg/mL, post-F PCA: 5 µg/mL). Samples falling below the limit of quantitation
were set at a value of half the limit of quantitation. Number of undetectable subjects are indicated.
(d) Correlation of pre-F PCA and post-F PCA concentrations in the 15 subjects where both could be
quantitated (r = 0.793, p = 0.0007). All results were reported as the average of technical duplicates for
each sample.

3.3. Antibodies to Adjacent Sites Contribute to Readouts of Mab Competing Antibody

The elucidation of major antigenic sites on RSV pre-F and the delineation of surfaces shared on
pre-F and post-F have contributed to several studies mapping the serological response to RSV F in
antigen-experienced adults and children [21,25,26,39] and infants after their first RSV infection [40–43].
Despite these efforts, the impact of RSV F conformation on mAb competition readouts has not been fully
explored. To determine how structural differences between pre-F and post-F could alter the binding
profiles of mAbs targeting the same antigenic site and assess how antibodies to adjacent sites contribute
to mAb competition assay readouts, we expressed an investigational panel of 39 mAbs, selecting several
antibodies with reported specificity to each of the six defined antigenic sites (Ø-V) with available
published sequences [13,14,21,23,24,40,44–47]. After expression, the neutralizing activity (IC50) of
each full-length Ig was determined using a fluorescence reporter-based neutralization assay (Table 1).
We additionally generated antigen-binding fragments (Fabs) of the antibodies to determine the affinity
(KD) of each for purified pre-F and post-F using biolayer interferometry. The Fab of each antibody
in the panel demonstrated an expected binding profile to trimeric pre-F and post-F immobilized on
the Octet sensors (Table 1). Antibodies to sites Ø and V exhibited superior neutralization and bound
to pre-F but not post-F. Antigenic site I-targeting antibodies, including the canonical site I-binding
131-2A antibody, were the least potent neutralizers and preferentially or exclusively bound post-F.
Conversely, antibodies with a reported specificity to site III preferentially or exclusively bound pre-F.
There was less conformational bias among antibodies with specificity to sites II and IV, which exhibited
varying degrees of neutralization and most bound both pre-F and post-F. Of note, palivizumab and its
successor, motavizumab, demonstrated somewhat better affinity for post-F than pre-F. Overall, while
our investigational panel of antibodies was limited to several for each antigenic site, the profile of
antibodies selected is reflective of the profile established through mapping and functional profiling of
the polyclonal response to RSV in humans [21,40].
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Table 1. Neutralization and KD profile of monoclonal antibodies.

mAb
Reported
Antigenic

Site
PMID Neutralization

(IC50 ng/mL)
Pre-F KD
(Molar)

Post-F KD
(Molar)

Pre-F
DCA
Assay

Pre-F
PCA

Assay

Post-F
PCA

Assay

>25% Competition

D25 ∅ 20023635 8.3 1.43 × 10−11 nb X

5C4 ∅ 23618766 4.3 2.73 × 10−8 nb X

AM22 ∅ 20023635 5.1 1.92 × 10−10 nb X

ADI−18916 ∅ 28111638 5.4 1.06 × 10−9 nb X

ADI-18891 ∅ 28111638 7.4 3.50 × 10−9 nb X

4D7 I 27764150 nn nb 2.20 × 10−9

131-2A I 2459412 nn nb 1.69 × 10−9

ADI-15640 I 28111638 180.6 9.53 × 10−9 2.15 × 10−8 X

ADI-15600 I 28111638 nn nb 2.20 × 10−10 X

ADI-18981 I 28111638 nn nb 3.72 × 10−10

ADI-14457 I 28111638 108.1 1.42 × 10−9 4.33 × 10−9 X

ADI-14468 I 28111638 115.2 1.18 × 10−7 8.99 × 10−10 X

ADI-14476 I 28111638 nn nb 4.06 × 10−8

Palivizumab II 9359721 158.6 3.59 × 10−8 9.63 × 10−9 X X

Motavizumab II 17362988 32.9 1.52 × 10−9 8.25 × 10−10 X X

ADI-15601 II 28111638 65.6 2.86 × 10−10 1.11 × 10−10 X X

ADI-18968 II 28111638 398.9 1.34 × 10−7 5.85 × 10−8 X

ADI-18909 II 28111638 55.1 3.12 × 10−7 2.59 × 10−7 X

ADI-18937 II 28111638 14.8 3.20 × 10−9 1.27 × 10−8 X X

MPE8 III 23955151 13.2 1.15 × 10−11 nb

ADI-15623 III 28111638 18.8 2.95 × 10−10 nb

ADI-18952 III 28111638 479.8 3.44 × 10−8 1.30 × 10−9 X X

ADI-18897 III 28111638 53.6 nb 3.94 × 10−10 X

ADI-15663 III 28111638 6.1 1.40 × 0−9 nb

ADI-15649 III 28111638 25.5 4.48 × 10−9 nb

ADI-18908 III 28111638 24.8 1.27 × 10−10 nb

ADI-14346 III 29396163 9.1 5.26 × 10−10 nb

ADI-14333 III 29396163 43.4 1.10 × 10−9 nb

101F IV 17872524 94.8 1.45 × 10−8 1.49 × 10−8

ADI-15641 IV 28111638 50.0 1.26 × 10−10 3.74 × 10−10

ADI-18998 IV 28111638 14.3 3.43 × 10−10 nb

ADI-14443 IV 28111638 31.4 2.06 × 10−10 3.51 × 10−10 X

ADI-15660 IV 28111638 nn 1.97 × 10−8 8.90 × 10−11

ADI-15643 IV 28111638 24.1 1.37 × 10−9 nb

ADI-15661 V 28111638 4.1 3.81 × 10−8 nb X

ADI-18903 V 28111638 20.3 4.46 × 10−10 nb X

ADI-15569 V 28111638 19.3 1.27 × 10−9 nb X

ADI-15568 V 28111638 13.3 2.98 × 10−10 nb X

ADI-14451 V 28111638 12.1 3.58 × 10−10 nb X

nn indicates no measurable neutralization of infection. A ratio of kd/ka determined from a 1:1 binding model was
used to calculate the KD. nb indicates a non-binder. Antibodies with greater than 25% competition (giving readouts
below ODmax × 0.75) in the pre-F DCA, pre-F PCA, or post-F PCA assays are indicated with an “X”.

Due to the relative size of RSV F to monoclonal antibodies, antibodies binding to one site can
interfere with antibodies binding to an adjacent site and could contribute to the readout of mAb
competing antibody in polyclonal sera (Figure 3a). To test this hypothesis, we queried the panel of
39 mAbs in the pre-F DCA and both pre-F and post-F PCA assays (Figure 3b–d, Table 1). As expected,
antibodies specific to antigenic sites I, II, III, and IV did not compete with D25 in the DCA assay, while
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all antibodies specific for site Ø did compete. In addition, site V-directed antibodies demonstrated
substantial competition with D25, demonstrating that antibodies binding at or near the apex can
block antibodies to site Ø (Figure 3b). As a result of extensive competition from antibodies targeting
neighboring site V, the DCA assay provides a broader readout of antibodies targeting the highly
neutralization-sensitive apex of pre-F and is not exclusively a measure of site Ø-specific antibodies.
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Figure 3. Antibodies targeting adjacent antigenic sites compete with D25 and palivizumab in mAb
competition assays. (a) One antigen-binding fragment (Fab) of the full-length human IgG1 structure
(Protein Data Bank ID: 1IGT) was aligned with the Fab from the complex of pre-F with D25 (red, site Ø),
pre-F with motavizumab (yellow, site II), or post-F with motavizumab (yellow, site II) to highlight the
relative size of the full-length immunoglobulins (Ig) to pre-F and post-F. (b–d) A panel of site-specific
monoclonal antibodies (detailed in Table 1) was tested for competition in the pre-F DCA (b), pre-F
PCA (c), and post-F PCA (d) assay. All of the antibodies in the panel specific to sites Ø and V competed
with D25 in the DCA assay (b). One site III and multiple site II antibodies competed with palivizumab
for binding to pre-F (c). Multiple antibodies binding antigenic sites I, II, III, and IV competed with
palivizumab for binding to post-F (d). Antibodies that exceeded 25% competition of the biotinylated
antibody are reported as competing in Table 1.
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Next, we assessed the ability of mAbs to block binding of palivizumab to both pre-F and post-F.
Despite the presence of sites Ø and V on pre-F, antibodies targeting these sites did not compete
with palivizumab in the pre-F PCA assay nor did the antibodies targeting sites I or IV (Figure 3c,
Table 1). One of the nine antibodies specific for site III provided competition that exceeded 25% at
high concentrations. Not all antibodies with previously mapped specificity to site II were capable
of competing with palivizumab in this assay (Figure 3c). Conversely, when post-F was used as a
substrate for the PCA assay, all site II-directed antibodies were found to compete with palivizumab.
Interestingly, half of the antibodies directed to site I, and some antibodies specific for sites III and
IV competed at least 25% of palivizumab binding to post-F but did not compete with palivizumab
on the pre-F PCA assay (Figure 3d). These findings demonstrate that the post-F PCA assay not only
detects site II-specific antibodies but also antibodies that bind adjacent sites, and that the specificities
of antibodies that compete is dependent on the conformation of the F protein.

3.4. Vaccine Immunogen Conformation Alters the Relationship of DCA and PCA Readouts to Neutralization

F-based vaccine candidates currently in clinical trials use pre-F, post-F, or structurally-undefined
protein [8,28,48], and the primary application of the DCA and PCA assays are as a readout from clinical
studies. To determine how vaccination with pre-F or post-F may influence pre-F DCA, pre-F PCA, and
post-F PCA readouts, we analyzed sera from NHP immunized with pre-F or post-F. Indian rhesus
macaques were immunized with 50 µg of either pre-F or post-F protein on weeks 0 and 4 and week
10 neutralizing activity was previously reported [28]. Due to overall lower neutralizing antibody in
the post-F immunized animals, both groups received 50 µg of pre-F for the third immunization on
week 26 (Figure 4a). DCA and PCA levels were measured at study week 10 (six weeks post-second
immunization with pre-F or post-F) and at study week 28 (two weeks after a third immunization
with pre-F, Figure 4a). At week 10, NHP that received two immunizations with post-F (group 2)
had undetectable DCA—since site Ø is not present on post-F—while all animals that received two
immunizations with pre-F (group 1) had quantifiable levels (p = 0.0002). After a final immunization
with pre-F, DCA levels in both groups were not significantly different (Figure 4b). The limit of detection
in the pre-F PCA assay precluded quantification for all but one immunized NHP at week 10. Pre-F
PCA levels could be quantified at week 28 for both groups and were significantly higher in group
two animals (p = 0.003, Figure 4c). Despite the lower limit of quantification, week 10 post-F PCA
levels could not be quantified for group one NHP and were measurable only in the sera of group
two animals (p = 0.005). Group two maintained significantly higher post-F PCA levels after the final
pre-F immunization was given (p = 0.00003, Figure 4d). As a whole, our PCA data suggest that post-F
immunogens favor the elicitation of antibodies binding the surfaces shared between pre-F and post-F.

We next asked how mAb competing antibody readouts related to neutralizing activity in the
same sera, which was significantly higher in group one than in group two at both week 10 and
week 28 (p = 0.01 and p = 0.002, respectively, Figure 4e). While the trends were similar, DCA was
an imperfect predictor of neutralizing activity, as DCA levels in week 28 sera did not corroborate
the significant difference in neutralizing activity between groups (Figure 4b,e). Interestingly, pre-F
only-immunized animals had undetectable or significantly lower levels of pre-F PCA and post-F PCA
despite having significantly higher neutralizing activity (Figure 4c–e). Sera from group two animals
offered a similar discordance—significantly lower levels of neutralizing antibody with higher readouts
of pre-F and post-F PCA. While neither measure correlated well with neutralization, pre-F PCA and
post-F PCA levels correlated well with each other (r = 0.952, p = 0.001, Figure 4f). While these findings
from immunized animals may highlight biases that are not apparent in naturally-infected humans,
they demonstrate that immune history may alter the relationship of PCA and DCA to neutralization,
cautioning against using these measures as surrogates for neutralization.
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Figure 4. RSV F immune history affects readouts from mAb competition assays. (a) Immunization
schema and serum collection timepoints for rhesus macaques immunized with 50 µg/animal of RSV F
variant immunogen proteins adjuvanted with poly I:C. (b–d) Serum levels of pre-F DCA (b), pre-F PCA
(c), and post-F PCA (d) at weeks 10 and 28. The horizontal dotted lines indicate the limit of quantitation
for each assay. (e) Neutralization activity of sera collected at weeks 10 and 28. (f) Correlation of PCA
readouts from group one and group two animals two weeks after the third immunization (r = 0.952,
p = 0.001). All results are the average of technical duplicates performed for each sample.

4. Discussion

Assays continue to be developed to enhance our understanding of the human serological
response to RSV F. Given the number of F-based vaccines in the clinical pipeline, it is critical to
understand the biology of them and consequently how to interpret the readouts of these assays to
better define immune correlates of protection and improve approaches for each of the major vaccine
target populations—pregnant women, children, and the elderly. While the antigenic sites on the surface
of F are well characterized and the site-specificity of many antibodies has been determined, how steric
hindrance complicates measurements of serum antibodies competing with palivizumab and D25
monoclonal antibodies has not been investigated. Here, we optimized assays to quantify antibodies
that compete for pre-F binding with the site Ø-directed mAb D25 and compared measurements of
antibodies that compete with the site II-directed palivizumab for pre-F and post-F binding. Our
comparison of how a panel of monoclonal antibodies competes with D25 and palivizumab in these
assays and our demonstration of how these readouts can vary based on immunological history offer
caveats and insights for how these readouts should be used in the context of clinical trial analysis.

The threshold for quantifying PCA in the serum of antigen-experienced subjects presents
a limitation to understanding how these parameters are impacted by vaccination. Previous
studies using post-F as an ELISA substrate for PCA measurements have shown that a significant
fraction of acutely-infected and convalescent subjects demonstrate PCA levels below the limit of
detection [31,32,49]. Our results using post-F as a substrate are consistent with these findings, as we
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were only able to quantify post-F PCA in 52% of 58 randomly-selected subjects aged 18–65. Due
to the sensitivity of the pre-F PCA assay, the inability to measure this endpoint in the majority of
normal subjects may present an obstacle to understanding its utility or could potentially bias data
when assessing only subjects with a quantifiable pre-F PCA readout. Post-F PCA and pre-F PCA in
subjects where both can be quantitated are correlative, yet even a relatively small panel of monoclonal
antibodies clearly delineate how these readouts are impacted by protein conformation and have
implications for their utility as a readout of “functional” antibody. Our data show that antibodies
to every defined antigenic site on post-F can influence measurements of post-F PCA, and while the
pre-F PCA assay provides a more specific readout of site II-directed antibodies, it fails to detect all
mAbs previously classified as site II-directed antibodies. Larger studies including both normal and
immunized subjects would be necessary to determine how pre-F and post-F PCA results differentially
relate to neutralization readouts. Both the conformation of the F protein in each immunogen and the
context in which it is presented could affect the relationship of these metrics to neutralization.

The existence of non-neutralizing antibodies that bind site II is well-documented, and it has been
cautioned that their contribution to PCA readouts should be considered [21,39]. This variability in the
neutralizing potency of site II-directed antibodies alone should elicit hesitancy to consider a PCA value
as a measure of “palivizumab-like antibody” or as a surrogate for neutralization. More confounding is
our observation that antibodies that bind antigenic site I, preferentially displayed by post-F, could also
contribute substantially to this readout. While the prototypic site I-directed antibody 131-2A did not
compete in the post-F PCA, four of eight (50%) of our site I-binned antibodies inhibited palivizumab
binding by at least 25%. The majority of antibodies targeting site I have little to no neutralizing
potential and are unable to bind pre-F [21]. The ability of post-F-containing immunogens to elicit
site I-directed antibodies that may contribute to the post-F PCA offers additional warning about the
consideration of the PCA as a functional readout. These findings may also account for discordance
between measured increases in neutralization versus PCA values following post-F immunization [30].
The undiscriminating nature of the post-F PCA assay makes it difficult to define a level that serves as a
clear correlate or surrogate of protection.

Our conclusions contradict a published report claiming that F conformation does not appear
to have a measurable impact on PCA assay results [49]. However, these prior studies did not
include the use of purified pre-F and instead used cell-based assays where the presence of both
pre-F and post-F could preclude the identification of distinctions between assays. The binding of
131-2A antibody to the cell-based protein used suggests this is the case, as 131-2A does not bind to
pre-F [49]. Given that the immunological history of antigen-experienced adult subjects is relatively
similar, marked by repeated exposure and infection by live RSV decorated with both pre-F and
post-F [50,51], it is not entirely surprising that these metrics might correlate. Yet, this baseline profile
of F-directed antibodies could change substantially after immunization with antigens with constrained
structural topology. Comparing pre-F PCA and post-F PCA results for sera from NHP selectively
immunized with different conformations of F serves to demonstrate that the relation of these readouts
to neutralization is dependent on immunological history, which may be altered profoundly in a
vaccine-experienced population.

Not unexpectedly, all of the mAbs selected to represent the response to antigenic sites Ø and
V exhibited the capability to compete with D25. The proximity of these sites on the pre-F apex
suggest that the majority of site V antibodies are likely contributors to DCA readouts. In contrast
to the antigenic sites shared by both conformations of F, antibodies binding these apex-displayed
pre-F-exclusive sites uniformly display favorable neutralization profiles [21]. The DCA assay we
developed is an improvement over other described DCA assays in that a µg/mL value could
be determined for the majority of human serum samples tested [33,52]. Several studies have
demonstrated that pre-F-binding antibodies are the largest contributor to the serological response to F
in infected and convalescent humans [21,37,53,54]. The ability to measure improvement in DCA in
the majority of clinical trial subjects could make this a critical metric of vaccine response and a more
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well-defined correlate of protection given the more consistent potency of competing antibodies. Of
note, the conformation-dependence of this assay dictates that post-F immunogens or antigens that
preferentially-display post-F antigenic sites will inevitably fail to elicit an appreciable boost in DCA,
limiting the usefulness of this readout in those studies.

PCA and DCA results are more complex than initially anticipated. Both the conformation of the F
protein itself and nature of vaccine immunogens factor into their usefulness as a readout of vaccine
responsiveness. In line with other metrics, only empirical testing of larger numbers of samples and
improved precision of measurements will reveal their utility. The current vaccine landscape, ripe with
pre-F immunogens in a variety of formats, provides several opportunities to do so. Due to the overall
variety in F-based immunogens, no mAb competition assay is likely to provide a “one size fits all”
metric that replaces a well-standardized neutralization assay.

5. Conclusions

In conclusion, mAb competition assays are routinely used in RSV clinical trial analysis because
of their potential to predict protection from infection or disease. We demonstrate that RSV F mAb
competition assays are not site-specific, but offer a more general readout of apex- or side- binding
antibody levels in sera. Moreover, PCA and DCA readouts are conformation-sensitive, and depending
on immunological history, may not correlate with neutralization. Understanding the limitations and
complexity of each mAb competition assay is critical to interpreting the usefulness of these readouts.
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