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Abstract: Modulation of the cytokine milieu is one approach for vaccine development. 

However, therapy with pro-inflammatory cytokines, such as IL-12, is limited in practice 

due to adverse systemic effects. Spatially-restricted gene expression circumvents this 

problem by enabling localized amplification. Intracellular co-delivery of gold nanorods 

(AuNR) and a heat shock protein 70 (HSP70) promoter-driven expression vector enables 

gene expression in response to near infrared (NIR) light. AuNRs absorb the light, convert it 

into heat and thereby stimulate photothermal expression of the cytokine. As proof-of-concept, 

human HeLa and murine B16 cancer cells were transfected with a HSP70-Enhanced Green 

Fluorescent Protein (EGFP) plasmid and polyethylenimine (PEI)-conjugated AuNRs. 

Exposure to either 42 °C heat-shock or NIR light induced significant expression of the 

reporter gene. In vivo
 
NIR driven expression of the reporter gene was confirmed at 6 and 

24 h in mice bearing B16 melanoma tumors using in vivo imaging and flow-cytometric 

analysis. Overall, we demonstrate a novel opportunity for site-directed, heat-inducible 

expression of a gene based upon the NIR-absorbing properties of AuNRs and a HSP70 

promoter-driven expression vector. 
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1. Introduction 

In addition to malignant cells, tumors consist of non-transformed host cells, such as fibroblasts and 

immune cells, vascular tissue, cytokines, and the surrounding extracellular matrix. The tumor 

microenvironment is a complex interrelated system that plays an important role in malignant cell 

survival, growth, proliferation, and metastasis. Cancer treatments have historically only targeted the 

malignant cell itself, and as a result, they rarely prevent recurrence of disease or progression of 

metastasis [1]. The importance of the tumor microenvironment and the interactions between the 

different cell types and components has become increasingly recognized. The balance of cellular and 

cytokine interactions and signaling within this milieu has a major impact on whether the tumor mass 

regresses or grows, and whether the malignant cells remain localized or metastasize to distant sites. 

Effective eradication of malignant disease requires therapeutic strategies that focus on the whole tumor 

as well as metastatic tissue. 

Gold nanoparticles (AuNP) and nanorods (AuNR) have emerged as attractive nanomaterials for 

biological and biomedical applications because of their physical and chemical properties. The particles 

absorb and scatter visible and near-infrared (NIR) light upon excitation of their surface plasmon 

resonance (SPR) oscillation, which can be tuned over a wide spectral range by changing intrinsic 

particle parameters such as size and shape [2]. Rod-shaped gold particles have shown promise over 

spherical shaped AuNP due to fact that they display two separate SPR bands corresponding to their 

width and length, allowing their longitudinal plasmon bands to range from the visible (600 nm) to the 

near infrared (1100 nm and up) regions of the electromagnetic spectrum [3]. Their ability to absorb 

light in the near infrared region, and subsequent conversion of the applied energy into heat, has led to 

the use of AuNPs and AuNRs for hyperthermia-based applications, including cancer therapy. Photothermal 

ablation of solid tumors has been investigated in various preclinical models and is currently being 

evaluated in the clinic [4–6]. Nanoparticles can be delivered to the tumor either passively, accumulating 

in the tumor through the enhanced permeability and retention effect (EPR), or actively targeted to 

receptors on the tumor or tumor-associated vasculature [7–10]. The AuNR are easily functionalized 

with peptides, proteins, antibodies, or nucleic acids for targeting or for creating multifunctional 

platforms for therapeutic and diagnostic purposes [11,12]. Clinical advantages of using gold 

nanoparticles include easy synthesis, targeting capability, high biocompatibility, cost effectiveness, 

and easy clearance from the body [13,14]. They have an excellent track record of being well tolerated 

in humans and are currently in the process of obtaining FDA approval for clinical use [15,16]. 

Several strategies that allow control of both spatial and temporal expression of transgenes have been 

developed. Spatial resolution is often achieved by the use of tissue- or cell-specific promoters, or 

exploitation of the heat-shock response, a temperature-sensitive defense mechanism [17–19]. The  

heat-shock response is mediated by a transcription factor known as heat shock factor (HSF). HSF is 

synthesized constitutively, but remains dormant under normal conditions. In response to heat, HSF 

trimerizes and binds with high affinity to heat shock promoters containing specific binding elements, 
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leading to the transcription of heat-shock proteins [20]. Temporal resolution may be under the control 

of external cues, such as NIR laser light. Induction of heat shock promoter (HSP)-mediated gene 

expression by laser light is a promising approach for achieving temporal and spatial control of gene 

expression [21,22]. Other approaches beyond NIR light have considerable technical limitations related 

to their use of UV, short-wavelength visible (vis), and infrared (IR) laser light, due to poor penetration 

into biological tissue. Conversely, biological tissue is relatively transparent to light inside the diagnostic 

window of 700–1100 nm [23]. NIR laser light has been shown to penetrate 10 cm through breast tissue 

or 4 cm through deep muscle [24]. The ability of nanorods to absorb NIR light makes them particularly  

well-suited to biomedical applications since the absorbance of the surrounding tissue in this region is 

low, allowing for minimally invasive delivery of energy to tumor cells that have taken up the AuNR, 

without inducing damage to intervening and surrounding normal tissue. 

While cytokine and drug therapeutics are effective against cancer cells, they also cause systemic 

effects and damage to healthy tissue. To accurately regulate the levels of therapeutic gene expression 

to achieve enhanced efficacy and minimal toxicity, we are proposing to drive the expression of target 

genes using a heat-inducible promoter. Our proposed vector system consists of heat generating AuNRs 

and a therapeutic gene expression vector under the control of the human heat shock promoter 70 (HSP70). 

We hypothesize that exposure of pathological tissue to a near infrared (NIR) laser source will cause the 

AuNR to absorb the NIR light and convert it to heat, thus inducing spatially confined, photo-thermal 

expression of the target gene (Figure 1). Controlled gene expression within the tumor microenvironment 

could include expression of cytokines, such as IL-12 or interferon gamma, leading to tumor infiltration 

and activation of immune cells, including antigen presenting cells, natural killer (NK) cells, type 1 

helper T cells, and cytotoxic lymphocytes (CTL), resulting in immune targeting of the diseased cells. 

Alternatively, expression of immuno-suppressive molecules or cytokines, such as IL-10, could 

promote tissue transplantation, or suicide genes could lead to apoptosis of targeted cells. 

Wei et al. [25] demonstrated HSP70B-driven expression of 1L-12 using adenovirus. Mice with 

subcutaneous Hep3B tumors were given an intratumoral injection of adenovirus encoding both heat 

inducible IL-12 and constitutively expressed granulocyte macrophage colony stimulating factor  

(GM-CSF). Using external heating of the limb with a water bath, they demonstrated elevated IL-12 

levels during 3 separate heating events. While effective, this technique requires whole limb heating. 

We propose a method to achieve selective heating of diseased or immune cells using non-invasive NIR 

light and delivery of AuNR to cells of interest. 

Herein we describe an adjuvant method in which NIR induced hyperthermia is mediated by the 

cellular loading of nanorods and monitored by the expression of a HSP70 driven reporter within the 

same cell. Preliminary efficacy studies are presented in nude mice bearing orthotopic B16 melanoma 

tumors. Target tumor cells are transfected ex vivo with the reporter plasmid and AuNRs prior to 

transplantation and NIR exposure. We have optimized AuNR-loading into tumor cells and induction of 

gene expression using a NIR dose sufficient to induce GFP reporter expression, yet low enough to 

maintain cell viability. 
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Figure 1. Schematic showing near infrared (NIR)-driven hyperthermia mediated therapy. 

(1) AuNRs complexed with therapeutic HSP70B promoter-driven gene vectors will be 

injected into mice intratumorally or intravenously with targeting moieties; (2) NIR laser 

treatment of the tumor site will result in localized heating of the AuNR, which in turn will 

induce expression of the therapeutic gene; (3) The predicted end result is tumor growth 

inhibition and tumor mass reduction. The Light Sheer ET Lumenis FDA-approved NIR laser 

light source and machine specifications are shown to the right.  

 

2. Experimental 

2.1. Materials 

Gold nanorods (AuNR) conjugated to polyethyleneimine (PEI) were purchased from Nanopartz™ 

Inc., Loveland, CO. The 800 nm NIR light source was an FDA approved clinical diode laser device 

obtained from Lumenis, Inc. (Lightsheer ET, Lumenis, Inc., Santa Clara, CA, USA) with peak power 

of 1600 W, laser fluence 10–100 J/cm
2
 (Figure 1). B16F10-luc melanoma cells, stably transfected with 

the firefly luciferase gene, were purchased from Caliper (Perkin Elmer, Waltham, MA, USA). 

2.2. Cloning of HSP70 Promoter-Driven GFP Reporter 

The 400 bp minimal human HSP70B promoter fused with the EGFP gene, a kind gift from  

Dr. Chrit Moonen of Université Victor Ségalen, France, [26] was cloned into the pGL3 vector 

(Promega, Madison, WI, USA). The construct was confirmed by restriction digestion, and the reporter 

expression was verified through transfection of HeLa cells as described below. 

2.3. Verification of in Vitro GFP Expression in Cells and Uptake of AuNRs 

HeLa or B16 cells were transfected with HSP70-pGL3 using Lipofectamine LTX reagent 

(Invitrogen, Grand Island, NY, USA) at a ratio of 1:4 DNA:lipofectamine, and 24 h later the cells were 

either left at 37 °C or heat-shocked at 42.5 °C for 30 min. Lipofectamine LTX was chosen to avoid 

activation of the HSP promoter shown to occur with other transfection reagents [27]. The following 
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day, cells were analyzed for EGFP expression using a LSR Fortessa flow cytometer (Becton Dickinson), 

or by fluorescence microscopy using a Nikon A1 confocal microscope. 

B16F10-luc cells were plated in 96-well plates and AuNR were added at increasing concentrations. 

After 24 h, the cells were washed and lysed. The number of AuNR in each well was determined using 

UV/VIS spectroscopy. A standard curve was generated by adding serial dilutions of AuNR with 

known concentration to wells containing saline and cell lysate. 

2.4. In Vitro Optimization of NIR-Induced Expression 

To investigate the effect of NIR laser radiation on the induction of transgene expression, we loaded 

polyethyleneimine (PEI)-conjugated gold rods (10 nm transverse diameter with surface plasmon 

resonance (SPR) peak of 808 nm) with the HSP70-EGFP vector in the presence of Lipofectamine  

LTX and incubated HeLa cells with the complexes overnight. The following day, the cells were 

exposed to varying laser fluencies (25–75 J/cm
2
) at 10 or 20 pulses using the 800 nm Lumenis laser. 

Twenty four hours after NIR treatment, the cells were analyzed for EGFP expression and viability by 

flow cytometric analysis. 

2.5. Optimization of in Vivo NIR-Induced GFP Expression 

B16F10-luc melanoma cells were transiently transfected with the HSP70-EGFP plasmid using 

Lipofectamine LTX, followed 6 h later by addition of PEI-AuNRs at concentrations of 10
12

 overnight. 

Cells were injected subcutaneously into the flanks of nude mice. NIR irradiation at varying fluencies 

was applied to the nascent tumors. In vivo fluorescent and bioluminescent imaging (BLI) was 

performed at various time points to monitor EGFP and luciferase expression. Excised tumors were 

analyzed by flow cytometry or fluorescent microscopy for GFP expression. 

To verify that we could successfully observe heat-shock induced GFP expression in vivo, we first 

established, as a positive control, B16F10-luc cell lines carrying HSP70-EGFP and AuNPs exposed to 

heat-shock in vitro prior to being injected into the animal. Heat-shocked cells were exposed to 42 °C in 

a water bath for 30 min. Negative controls received a sham treatment at 37 °C. 

To verify in vivo NIR induced gene expression, B16 cells were transfected as above. 2 × 10
7
 tumor 

cells were injected into the flanks of nude mice the following day and treated with NIR laser within the 

first hour, initially using laser parameters established in vitro. The experiment was repeated a second 

time with lower cell numbers, fluencies and duty cycles. Expression of GFP and luciferase in the 

tumors at 6 and 24 h after injection was tested via in vivo imaging and flow-cytometric analysis. 

3. Results and Discussion 

3.1. Verification of Transfection and Uptake of AuNPs 

As shown in Figure 2, 60% of HSP70-EGFP transfected B16 cells showed an increase in EGFP 

expression following heat-shock compared to <1% of transfected cells without heat-shock. This 

negligible activity in the ―off‖ state confirms that gene expression from the HSP70 promoter is tightly 

regulated. Figure 2C shows high uptake of the PEI-coated AuNPs during incubation,  

with 20%-25% of AuNPs in solution ending up in the cells. 
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Figure 2. Transfection of HeLa cells with the HSP70- Enhanced Green Fluorescent Protein 

(EGFP) expression vector and quantitative measurement of AuNR uptake in vitro. (A) Cartoon 

of the expression vector; (B,C) HeLa cells were transfected with the vector using lipofectamine 

LTX reagent, and 24 h later the cells were either left at 37 °C or heat-shocked at 42.5 °C 

for 30 min. The following day, cells were analyzed for EGFP expression via flow 

cytometric analysis or fluorescence microscopy (B); B16-luc cells were plated in 96-well 

plates and AuNR were added at increasing concentrations. After 24 h, the cells were 

washed and lysed. The number of AuNR in each well was determined using UV/VIS 

spectroscopy (C); A standard curve was generated by adding known numbers of AuNR to 

wells, and a graph showing the number of particles present in the cells at 24 h vs. the 

number added at 0 h is presented. 

 

3.2. In Vitro Optimization of NIR-Driven Expression 

The results of the in vitro NIR optimization are shown in Figure 3. We found that the optimal dose 

to reach the highest level of EGFP expression with the lowest cell death/toxicity is achieved by using 

approximately 10
11

 AuNR and 10 pulses at 50 J/cm
2
, with a 30 ms pulse length. In general, cells are 

driven to increase production of EGFP with increased heating up to some threshold, at which point cell 

damage rapidly reduces expression and eventually viability. Heating efficiency increases as expected 

with increased loading of AuNPs (Figure 3A) and pulse numbers (Figure 3B). At a laser fluence  

of 25 J/cm
2
 relatively little gene expression occurs, with increases in fluence to 50 J/cm

2
 inducing 

increased expression and relatively high viability (approximately 80%). While gene expression was 

highest at 75 J/cm
2
, cell viability dropped to 44% and 37% at 6 h and 24 h, respectively. Increasing the 
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length of the pulses from 30 ms to 400 ms actually decreases the GFP expression (Figure 3C; right), 

demonstrating that peak power is more important than total power. In Figure 3C, the peak power is 

decreasing (the same energy, 50 J, is spread over a longer pulse), even though the total power is the 

same. In general, some loss of viability appears as a necessary price for high expression. 

Figure 3. Cell viability and GFP expression after in vitro NIR treatment. (A) B16-Luc cells 

(1 × 10
5
 per well in 24-well glass bottom plates) were incubated with HSP70-GFP and 

10
10

, 10
11

, or 10
12

 AuNR per well. The following day, the cells were treated with NIR laser  

with 10 pulses at 0, 25, 50, or 75 J/cm
2
 (B) B16-Luc cells were incubated overnight with or 

without 10
11

 AuNR per well and treated with NIR laser with 10 or 20 pulses. Cells were 

analyzed for GFP expression and viability by flow cytometery the following day; (C) 

Mean GFP fluorescence intensity (MFI) and percent viable cells (measured by uptake of 

propidium iodide) as a function of laser fluence (25, 50 and 75 J/cm
2
; left), time after NIR 

treatment (6 h or 24 h; left) and pulse duration (30, 100, or 400 ms; right). 
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3.3. In Vivo HSP-Promoter-Driven Expression 

Figure 4 shows animals inoculated with heat-shocked cells on the right and sham-heated cells on 

the left. Both sets of B16F10-luc cells show up well under BLI, but only the heated cells are detected 

under fluorescent imaging. The signal from the positive controls is strong enough to be detected 

through the skin of the in vivo by both the IVIS200 and Maestro imaging using FITC filters. 

Figure 4. In vivo validation studies. B16-luc cells were transfected with the HSP-GFP 

vector using lipofectamine LTX reagent (Invitrogen), and 24 h later the cells were either 

left at 37 °C or heat-shocked at 42.5 °C for 30 min in a water bath. The following day, cells 

were analyzed for EGFP expression via flow cytometry or fluorescence microscopy. 

Transfected B16 cells either exposed to heat-shock or kept at 37 °C were injected into 

flanks of nude mice and imaged at 6 h and 24 h for luciferase expression (using the IVIS 

imaging system) and GFP (using the IVIS and Maestro imaging systems). Mice were injected 

with D-Luciferin before imaging. The right leg of the mouse was injected with heat-shocked 

cells whereas the cells injected into the left leg were left untreated. 
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As shown in Figure 5, strong EGFP expression could be detected 6 hours after NIR treatment  

at both 40 J/cm
2
 and 50 J/cm

2
 laser at 30 ms pulse length. This was confirmed with FACS on  

the 40 J/cm
2
 and was confirmed to last at least 24 h in the 50 J/cm

2
 animal. The laser treatment at the 

higher power seemed to result in more physical damage to the skin of the animal. Bioluminescent 

imaging (BLI) was also used to monitor luciferase expression in the cells with IVIS200. Interestingly, 

the luciferase signal was intact on the non-treated left flanks in both mice, but suppressed on the NIR 

treated right flanks. This finding is in agreement with previous studies reporting that luciferase is 

highly sensitive to temperature, and thus can function as an indicator of a successful thermal  

treatment [28]. Further experiments indicated that detectable expression may be achieved with half the 

gold loading, and using 5 instead of 10 pulses, still at 40 J/cm
2
. Reducing the laser fluence to 30 J/cm

2
 

or below resulted in no observable expression. Treatment with laser of cells without AuNPs did not 

result in any increase in EGFP expression or loss of bioluminescence. 

Figure 5. In vivo imaging of luciferase and GFP expression after NIR laser treatment.  

(A) B16-luciferase cells were transfected with the HSP70-GFP vector 24 h before NIR 

treatment and AuNR (10
6
/cell) were added 12 h after transfection. Cells were washed 

before being harvested and 2 × 10
7
 cells were injected in each flank of two nude mice. 

Immediately following injection, the right flank of each mouse was treated with NIR laser 

for 10 pulses at 30 ms at either 40 or 50 J/cm
2
. The left flank was left non-treated. Mice 

were imaged at 6 h via IVIS and Maestro in vivo imaging systems. At 24 h after treatment, 

one mouse was imaged as just described, and the other mouse was sacrificed and the tumor 

analyzed for GFP expression via flow cytometry analysis (B). 
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4. Conclusions 

Although gene therapy has shown great promise both for cancer and infectious diseases, the major 

challenge lies in the development of safe and effective delivery systems that can lead to controlled 

expression of therapeutics. Despite the high transduction efficiency and long-term gene expression of 

viral vectors, the complexity of their manufacturing and in vivo safety issues remains hurdles to be 

overcome. We demonstrate a novel opportunity for site-directed, heat-inducible gene expression based 

upon the NIR-absorbing properties of AuNRs. We have optimized AuNR-loading into tumor cells and 

induction of gene expression using a NIR dose sufficient to induce GFP reporter expression, yet low 

enough to maintain cell viability. We have also confirmed induction of gene expression by NIR laser 

in an in vivo tumor model. 

Future studies will include delivery of therapeutic genes with heat sensitive promoters using viral 

nanoparticles (NPs) to prolong the presence of the gene in cells, permitting repeat heating cycles and 

temporal control of gene expression without the need for continuous gene delivery or ex vivo transfection 

of cells with the HSP70B promoter plasmid. Simultaneous accumulation of viral NPs and AuNRs or 

carbon-based NPs in the tumor will be achieved using either targeting ligands or by selective heating 

of the tumor through non-invasive tissue heating, such as radiofrequency (RF) wave induced 

hyperthermia which supports increased intratumoral blood flow and nanoparticle accumulation [29]. 

Tumor tissue is highly susceptible to selective RF-induced heating based on its unique biological 

composition [30], enabling the use of RF energy to drive gene expression or to promote tumor necrosis. 

Thus RF-driven hyperthermia is currently being explored as a mechanism for achieving both NP 

accumulation and for tumor ablation. While NIR light is ideal for treating melanoma or near-surface 

tumors, RF complements this technique by enabling deep tissue penetration. 
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