
Citation: Bamouh, Z.; Elarkam, A.;

Elmejdoub, S.; Hamdi, J.; Boumart, Z.;

Smith, G.; Suderman, M.; Teffera, M.;

Wesonga, H.; Wilson, S.; et al.

Evaluation of a Combined Live

Attenuated Vaccine against Lumpy

Skin Disease, Contagious Bovine

Pleuropneumonia and Rift Valley

Fever. Vaccines 2024, 12, 302.

https://doi.org/10.3390/

vaccines12030302

Academic Editor: Ravinder Kumar

Received: 16 January 2024

Revised: 5 February 2024

Accepted: 9 February 2024

Published: 13 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Evaluation of a Combined Live Attenuated Vaccine against
Lumpy Skin Disease, Contagious Bovine Pleuropneumonia and
Rift Valley Fever
Zohra Bamouh 1,* , Amal Elarkam 1, Soufiane Elmejdoub 1, Jihane Hamdi 1, Zineb Boumart 1, Greg Smith 2,
Matthew Suderman 2, Mahder Teffera 2, Hezron Wesonga 3 , Stephen Wilson 4, Douglas M. Watts 5,
Shawn Babiuk 2 , Brad Pickering 2 and Mehdi Elharrak 1

1 Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278,
Mohammedia 28810, Morocco; a.elarkam@mci-santeanimale.com (A.E.);
s.elmejdoub@mci-santeanimale.com (S.E.); jihaneh.hamdi@gmail.com (J.H.); z.boumart2@gmail.com (Z.B.);
m.elharrak@mci-santeanimale.com (M.E.)

2 National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E EM4,
Canada; matthew.suderman@inspection.gc.ca (M.S.); mahder.teffera@inpection.gc.ca (M.T.);
shawn.babiuk@inspection.gc.ca (S.B.); bradley.pickering@inspection.ca (B.P.)

3 Kenya Agricultural and Livestock Research Organization (KALRO), Kaptagat Rd., Loresho, P.O. Box 57811,
Nairobi 00200, Kenya; hezron.wesonga@gmail.com

4 GALVmed, Pentlands Science Park, Edinburgh EH26 0PZ, UK; steve.wilson@galvmed.org
5 Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; dwatts2@utep.edu
* Correspondence: z.bamouh@mci-santeanimale.com; Tel.: +212-662-19-89-42

Abstract: The use of effective vaccines is among the most important strategies for the prevention and
progressive control of transboundary infectious animal diseases. However, the use of vaccine is often
impeded by the cost, a lack of cold chains and other factors. In resource-limited countries in Africa,
one approach to improve coverage and reduce cost is to vaccinate against multiple diseases using
combined vaccines. Therefore, the objective of this study was to evaluate a combined vaccine for the
prevention and control of Lumpy Skin Disease (LSD), Contagious Bovine Pleuropneumonia (CBPP)
and Rift Valley fever (RVF). The LSD and CBPP were formulated as a combined vaccine, and the RVF
was formulated separately as live attenuated vaccines. These consisted of a Mycoplasma MmmSC
T1/44 strain that was propagated in Hayflick-modified medium, RVF virus vaccine, C13T strain
prepared in African green monkey cells (Vero), and the LSDV Neethling vaccine strain prepared in
primary testis cells. The vaccines were tested for safety via the subcutaneous route in both young
calves and pregnant heifers with no side effect, abortion or teratogenicity. The vaccination of calves
induced seroconversions for all three vaccines starting from day 7 post-vaccination (PV), with rates
of 50% for LSD, 70% for CBPP and 100% for RVF, or rates similar to those obtained with monovalent
vaccines. The challenge of cattle vaccinated with the LSD/CBPP and the RVF vaccine afforded full
protection against virulent strains of LSDV and RVFV. A satisfactory level of protection against a
CBPP challenge was observed, with 50% of protection at 6 months and 81% at 13 months PV. A mass
vaccination trial was performed in four regions of Burkina Faso that confirmed safety and specific
antibody responses induced by the vaccines. The multivalent LSD/CBPP+RVF vaccine provides
a novel and beneficial approach to the control of the three diseases through one intervention and,
therefore, reduces the cost and improves vaccination coverage.

Keywords: cattle; immunogenicity; efficacy; antibody; vaccine; lumpy skin disease; contagious
bovine pleuropneumonia; Rift Valley fever

1. Background

Cattle are critically important as daily sources of food, nutrition and income, and as a
source of nitrogen-rich manure for replenishing soils [1]. African cattle are treasured assets
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for an estimated 800 million livestock keepers across the continent, and they play a major
role in socioeconomic development and remain major socio-cultural assets in many African
societies [2,3]. In sub-Saharan countries, livestock production accounts for 25% of economic
activity and employs about 175 million people directly, with approximately 80% of these
animals held by small farm owners who depend on livestock for their livelihoods [4,5].
Livestock diseases negatively affect the national economy, and some of these diseases either
threaten or harm human health [6–9]. Contagious Bovine Pleuropneumonia (CBPP) is a
respiratory disease of cattle in Africa, which has serious economic and trade implications
across the word [10–12]. The control of CBPP is a challenge in Africa because governments
do not have the resources to compensate farmers using a stamping-out policy [13]. In
addition, other infectious diseases co-infect cattle and require frequent vaccination, thus
increasing the costs of control [14,15].

Vaccination remains one of the most important tools for the control of diseases [16–19].
CBPP has been eradicated from many countries mostly through the stamping-out strategy
or vaccination campaigns [13,20–23]. In contrast, LSD was eradicated in Eastern Europe
through vaccination [24]. Although many diseases can be controlled through vaccination
where vaccines are available, the vaccination campaign cost and cold-chain delivery impede
their widespread use, especially in isolated rural areas [19,25,26]. The right choice for Africa
is, therefore, to vaccinate against multiple diseases with combined vaccines to improve
coverage and to save cost [23,27–29].

A combined LSD/CBPP vaccine was developed to protect cattle against both diseases
with a single vaccination [30]. The vaccine was tested in cattle and found to be safe and
effective [30]. Rift Valley fever (RVF) is of particular concern because it is a viral disease
of livestock that poses a serious public health risk [31–34]. It is endemic in large parts of
Africa, occurring as epizootics/epidemics at irregular intervals [25,34,35]. An effective
way to establish solid herd immunity is through regular vaccination, but this is not widely
practiced due to irregular and long intervals between epizootic/epidemic periods [36–38].
The lack of a visible impact and associated costs during inter-epizootic/epidemic periods
is a deterrent in implementing RVF vaccination, exposing highly susceptible animals when
outbreaks emerge [16,39,40]. As an effort to overcome the obstacles for using an RVF
vaccine, the addition of the RVF vaccine along with the combination vaccine that farmers
regularly use (such as LSD or CBPP) could possibly build the necessary RVF herd immunity
to protect susceptible livestock against unexpected epizootics/epidemics [41].

Therefore, the objective of this study was to evaluate the safety, efficacy and duration
of immunity of a combined live attenuated LSD/CBPP+RVF vaccine for the prevention of
these diseases among cattle at a laboratory level and in a large-scale vaccination trial under
field conditions.

2. Materials and Methods
2.1. Live Pathogens Preparation

Live attenuated Mycoplasma MmmSC T1/44 strain (CIRAD AF262936) was prepared
as described by Safini et al., 2022 [30]. Briefly, Mycoplasma was cultured in Hayflick-
modified medium, supplemented by 10% of equine serum and incubated for 24 h at 37 ◦C
with agitation (100 rpm). The harvested bacterial suspension was inoculated at a ratio of
10% in a bioreactor containing the same media and incubated for 36 h at 37 ◦C, pH 7.2, with
agitation speed of 100 rpm.

Viral strain RVFV C13T was propagated on Vero cells (African green monkey kidney
cells, ATCC No. CCL-81) and LSDV Neethling (Pirbright Institute, Surrey, UK) vaccine
strain on primary testis cells. Cells were maintained in Dulbecco’s Modified Eagle’s
Medium (DMEM) (Thermo Fisher Scientific, New York, United States) with 10% irradi-
ated Fetal Bovine Serum (FBS) (Wisent bioproducts, Quebec, Canada). The medium was
removed from the cell confluence and replaced by a viral inoculum at 0.01 Multiplicity of
Infection (MOI). After 1 h of incubation at 37 ◦C, the inoculum was removed, replaced with
DMEM with 1% FBS and incubated for 5 days at 35 ◦C for LSDV and 3 days at 37 ◦C for
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RVFV until the cytopathogenic effect (CPE) became apparent. Samples were obtained to
determine infectivity titers, purity and identity using PCR for each virus.

2.2. Vaccine Preparation

The combined LSD/CBPP vaccine and the monovalent RVF vaccine was prepared sep-
arately by adding antigen suspensions to an equal volume of a stabilizer (4% peptone, 8% su-
crose and 2% glutamate) and then freeze-dried in an LSI lyodryer (Lyogroup.in, Hyderabad,
India) [30]. Vaccines were tested for sterility, identity, purity and infectious titers.

2.3. Animals’ Vaccination
2.3.1. Ethics

The animal experiments were conducted at MCI Santé Animale in accordance with Animal
Research Reporting of In Vivo Experiments (ARRIVE) guidelines (https://arriveguidelines.
org/ (accessed on 17 May 2019), and the handling of experimental animals was performed
as described in a protocol approved by MCI Santé Animale Ethic Committee for Animal
Experiment Protocol number MCI-R70A1076.

The animal experiments at the National Centre for Foreign Animal Disease were
conducted under the approval of the Canadian Science Center for Human and Animal
Health, Animal Care Committee, according to the guidelines of the Canadian Council on
Animal Care. Animals were housed in groups to allow for normal social interaction. The
Animal Technicians care staff were trained in daily animal handling; husbandry; recognition
of signs of pain, distress and disease; and the ethics of the use of animals in research.

2.3.2. Safety in Calves

Twenty-four Holstein cross breed calves, 4 months’ old, were housed in an insect-proof
building for two weeks to acclimatize and were fed a complete balanced diet and water ad
libitum. Calves were monitored daily for body temperature and general health conditions
prior to use in the experiments. Calves were randomly selected and were divided into
3 groups (G) of 8 animals each.

Group (GI) was vaccinated with LSD/CBPP+RVF vaccine with a dose of 104.5 Tissue
Culture Infectious Dose 50 (TCID50) for Lumpy Skin Disease virus (LSDV), 107 Colony
Changing Units (CCU50) for CBPP and 104TCID50 for Rift Valley fever virus (RVFV). The
vaccines were reconstituted in PBS and injected subcutaneously (SC) in the neck. GII
animals were vaccinated with overdoses of each vaccine, including a dose of 105.5 TCID50
for LSDV, 108 CCU50 for CBPP and 105 TCID50 for RVFV. Vaccination with each vaccine was
performed separately in the right side for LSD/CBPP vaccine and in the left side for RVF
vaccine. Calves of GIII were kept as unvaccinated controls. Animals were monitored daily
for two weeks post vaccination (pv) for the possible occurrence of local or general reactions.
Body temperature was recorded two days before vaccination and daily for 14 days pv
(dpv). The diameter of the local inflammation at the injection site was recorded daily for
2 weeks.

2.3.3. Vaccination of Pregnant Females

As RVF is an abortive disease, the vaccine was tested in two- to three-year-old preg-
nant Holstein cows at different stages of pregnancy (2 to 8 months), which included
10 vaccinated animals (Group IV) and 8 unvaccinated animals (Group V) as negative con-
trols (Table 1). The procedure for vaccinating pregnant cows was the same as described pre-
viously for LSD/CBPP+RVF vaccine with an overdose of 104.9TCID50 for LSDV, 108 CCU50
for CBPP and 105.5 TCID50 for RVFV. Pregnant cows were kept under observation until
calving and safety reproductive parameters (premature and full-term calving, abortion and
physiological condition at birth). Newborn calves were examined daily during two weeks
for general condition, presence of any malformation, body temperature and body weight.

https://arriveguidelines.org/
https://arriveguidelines.org/
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Table 1. Vaccination of 10 cows at different stages of pregnancy (combined LSD/CBPP+RVF at a dose
of 104.9 TCID50 for LSDV, 108 CCU50 for CBPP and 105.5 TCID50 for RVFV).

Stage of Gestation/Group 2M 3M 4M 5M 6M 7M 8M

GIV: 10 vaccinated cows 1 1 0 2 0 4 2

GV: 8 controls cows 1 1 1 1 1 3 0

2.4. Antibody Response following Vaccination

Fifteen cross-breed naïve Holstein calves, 4 to 6 months’ old, were randomly divided
into 2 groups of 10 (GVI) and 5 (GVII) animals. All animals tested negative for antibody
to the three vaccine pathogens using VNT and ELISA. Calves in GVI were injected with
the LSD/CBPP+RVF vaccine as described for the GI animals, and GVII animals were not
vaccinated. Blood samples for serological testing were collected in dry tubes via jugular
venipuncture at weekly intervals throughout 42 dpv and thereafter at monthly intervals for
3 months pv. Sera were tested for antibody response to LSDV and RVFV using VNT and to
CBPP using ELISA (IDEXX Ab Test, Montpellier, France). Serum samples were tested for
specific RVFV and LSDV antibodies using a VNT as described in the WOAH Terrestrial
Manual (Chapters 3.1.19 and 3.4.12). The VNT was performed by mixing equal volumes
of serial 1/3 dilutions of heat-inactivated sera samples with 100 TCID50 of live virus
(100 TCID50), and then inoculating aliquots of each dilution onto confluent monolayers of
cells, and cells were observed once daily for 7 days for CPE. To validate the concentration
of the viral dose, dilutions without sera were inoculated on cells and observed once daily
for 7 days for CPE. The neutralizing antibody titer was calculated according to the method
of Reed and Muench (1937) [42].

2.5. Vaccine Efficacy against RVFV and LSDV Challenges

The RVFV and LSDV challenge experiments were performed at the National Center
for Foreign Animal Disease (Winnipeg, MB, Canada). Twelve 5- to 7-month-old calves
seronegative to RVFV and LSDV were used in the experiments.

2.5.1. RVFV Challenge

On D0, eight calves were injected with LSD/CBPP+RVF vaccine as described for the GI
animals, and blood samples were obtained weekly for one month to test for VNT antibodies
against RVFV and LSDV. On D28, vaccinated calves along with two unvaccinated animals
were challenged by the intranasal route with 107 pfu of the virulent strain of RVFV (Ken06).
Animals were monitored for 21 days post infection (pi) for body temperature, clinical
signs, neutralizing antibody and viral RNA in blood and nasal swabs using a quantitative
real-time reverse transcriptase–polymerase chain reaction (RT-PCR) assay. Clinical scores
based on signs of disease, body temperature, eating and drinking habits, disposition and
stool consistency were used to evaluate the severity of clinical signs and to allow for
a comparison between vaccinated and control animals. A total cumulative score was
calculated based on the assessed clinical signs per animal per day.

2.5.2. LSDV Challenge

On D49 (D21 post RVFV infection), the same 10 challenged calves (8 vaccinated and
2 control), along with two other naïve calves, were each challenged via the intravenous
route with one ml of 106 pfu of the virulent strain of LSDV (Neethling). The animals were
then monitored for three weeks to record body temperature and clinical signs, and to test
serum samples for specific neutralizing antibodies and for viral DNA in the blood and
nasal swabs using quantitative real-time PCR as previously described [43]. Three weeks pi,
all calves were euthanized and examined for evidence of LSDV lesions. A clinical scoring
was established based on general conditions, number and location of nodules, food uptake
and lymph node swelling.
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2.6. CBPP Challenge

The CBPP challenge was carried out at 6 months pv and at 13 months pv. The challenge
experiments were subcontracted to Kenya Agricultural & Livestock Research Organization
(KALRO), Nairobi, Kenya. Sixty 2- to 3-year-old naïve male cattle were purchased from a
CBPP-free area in Kenya. The animals were already acclimatized and shown to be free of
clinical signs of disease. The animals were randomized into 6 groups of 10 cattle each and
then vaccinated with LSD/CBPP+RVF and commercial CBPP vaccines (Contavax), with
saline used as a control (Table 2). Blood samples were obtained from the animals on D0, D14
and D28 pv, and then animals were subsequently challenged as reported in Table 2. The
challenge was performed using a nebulizer model involving an aerosol-based intranasal
technique where the cattle were infected via aerosols containing live Mmm (Afadé strain of
CBPP) at 109 Colony Forming Unit (CFU)/mL for 3 min, mimicking the infection of cattle
in the field. This method provided a greater-than-80% efficiency in establishing infection in
negative control cattle.

Table 2. Number of cattle randomized into 6 groups of 10 cattle each for vaccination with respective
vaccines and challenges of the vaccinated animals and controls with the virulent strain of CBPP.

Group Vaccine No. of Cattle Challenge Phase pv

1 LSD/CBPP+RVF 10 6 months

2 LSD/CBPP+RVF 10 13 months

3 Commercial CBPP vaccine (Contavax) 10 3 months

4 Commercial CBPP vaccine (Contavax) 10 13 months

5 Saline 10 6 months

6 Saline 10 13 months

Challenged animals were monitored daily for clinical signs, body temperature and
mortality. Blood was obtained from all animals on D7 before a challenge, and then on D14
and 28 pi. Necropsy was carried out 28 days pi and whenever an animal died during the
study. Tissue sampling was performed by skilled veterinary pathologists to assess gross
pathomorphological lesions, especially in the lung. Such lesions were measured and scored,
and the severity was recorded. Sequestration, encapsulation, consolidation, fibrinous as
well as fibrous adhesions, and their distribution between animals were noted.

The size of lung lesions was recorded in diameter, and lung pathology was scored
according to the modified Hudson and Turner system (1963), in which the score was a combi-
nation of the size/type of the lesion and the isolation of the Mmm from tissues [44]. Lesions
were also further described by whether there was a presence of fibrous/fibrinous adhesions,
consolidation (hepatization) or sequestration, and this also informed the score. A lesion size
< 5 was scored 1, lesions over 5 and under 20 were scored 2, and lesions > 20 were scored
3. In addition, if Mmm was isolated from the sample, a score of 2 was added to the total
lesion score. Protection was calculated from the lesion indices of the control and vaccinated
animals, again, according to Hudson and Turner, using the formula (NV – V) × 100/NV,
where NV was the pathology index of the non-vaccinated group, and V is the pathology
index of the vaccinated group.

2.7. Field Study

The LSD/CBPP+RVF vaccine was tested under field conditions to verify the safety
and immunogenicity in cattle. The trial was conducted in four different provinces of
Burkina Faso (Table 3). A total of 999 vaccinated cattle were distributed according to
age: half-young (<1 year of age) and half adult (>1 year of age). The vaccinated cattle
were observed for 42 dpv to detect a possible occurrence of abnormal local or general
reactions. Blood samples were obtained from randomly sampled animals on D0 (before
vaccination), D30 and D42 pv and tested for CBPP and RVF antibodies using ELISA (Idvet
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Innovative Diagnostics) using the immunoperoxidase monolayer assay (IPMA) for LSD
antibodies as described by Haegeman et al. (2020) [45] (Table 3). Briefly, confluent 96-well
plates containing Madin-Darby Bovine Kidney (MDBK) cells infected with 100 TCID50 of
LSDV strain Neethling (LSDV-IPMA) were drained, dried after 3 days of incubation at
37 ◦C and frozen at −80 ◦C overnight. The cells were then fixed. The test samples were
diluted 1:50 and 1:300 in blocking buffer, and each dilution was added in duplicate to
the wells (50 µL/well) and incubated for 1 h at 37 ◦C. After emptying and washing the
wells, horseradish peroxidase-conjugated antibody was added to each well. Plates were
incubated at 37 ◦C for 1 h. After a final wash, substrate solution was added to each well
to visualize the reaction. The mixture was incubated for 15 min at room temperature.
The staining was stopped by removing the substrate and adding the Na-acetate buffer.
Finally, the staining was analyzed using an inverted contrast microscope. In addition to the
samples, one LSDV-positive and one LSDV-negative serum were added to each plate as
controls and comparison points.

Table 3. Number of cattle and province involved in the field vaccine trial of the LSD/CBPP and RVF
vaccines and number of cattle sampled in each phase on D0, D30 and D42 post vaccination.

Province Climatic Zone Number of
Vaccinated Animals

Blood Sample/Phase

D0 D30 D42

Ziro Sudanese 200 19 19 19

Tuy Sudanese 200 20 20 20

Sanmatenga Sub-Sahel 450 47 43 44

Bazéga North Soudanese 149 27 24 29

Total 999 113 106 112

3. Results
3.1. Safety in Calves

After the vaccination of each of the two groups of calves with the LSD/CBPP+RVF vac-
cine, the general body conditions remained normal during the observation period, and no
cutaneous or respiratory symptoms were observed. Moderate hyperthermia was recorded
in the vaccinated animals between 3 and 5 dpv (Figure 1). Limited local inflammations
were recorded in 3/8 of vaccinated calves in GI and 4/8 of calves in GII (overdose) that
evolve favorably. No cases of Neethling disease were observed in any vaccinated calves.
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3.2. Safety in Pregnant Females

Among the vaccinated (with the LSD/CBPP and RVF vaccines) and unvaccinated
pregnant cows, all animals remained healthy and did not show any signs of abortion or
any abnormal reactions. All pregnant cows gave birth to healthy newborns calves with no
malformation. During the follow-up period (14 days post parturition), the general health
status of newborns was satisfactory for both vaccinated and unvaccinated cows (GIV and
GV). No significant difference (p ≥ 0.05) was observed between the mean body weight and
temperature of the newborns from the vaccinated and the control cows.

3.3. Immunogenicity Response

A neutralizing antibody against LSDV was detected in 2/10 calves on 7 dpv, and
6 of 10 calves seroconverted by 21 dpv. At 3 months pv, three calves remained positive
(Table 4). The post-vaccination response to CBPP, as determined using ELISA, showed that
one calf had seroconverted at 7 dpv, and 7 calves seroconverted by day 21 pv (Table 4). All
animals seroconverted to the RVF vaccine between 7 and 28 dpv (Table 4 and Figure 2). No
seroconversions were detected among the unvaccinated calves.

Table 4. Number of antibody and ELISA-positive calves after vaccination of 10 calves with
LSD/CBPP+RVF vaccine. The 10 animals were tested using VNT (LSDV and RVFV) and
ELISA (CBPP).

Post Vaccination D0 D7 D14 D21 D28 D42 2M 3M

LSDV 0 2 3 6 5 5 4 3

CBPP 0 1 5 7 7 4 4 3

RVFV 0 1 5 9 10 10 10 10

Vaccines 2024, 12, x FOR PEER REVIEW  8  of  20 
 

 

 

Figure 2. Average LSDV and RVFV antibody titers (VNT) and percentage of  inhibition for CBPP 

(ELISA) in 10 calves of GVI vaccinated with LSD/CBPP+RVF vaccine and 5 unvaccinated animals of 

GVII. VNT titer >1.00 in log (equivalent to a serum dilution of 1/10) was considered positive for RVF. 

Percentage of inhibition > to 50% was considered positive for CBPP. D: Days; M: Months. 

3.4. Efficacy of the Vaccine 

3.4.1. Challenging Calves with RVFV 

Unvaccinated calves challenged with virulent RVFV showed evident hyperthermia 

between day 3 and day 5 pi reaching 41.4 °C. Nasal swabs were positive for viral RNA 

through real-time RT-PCR between D2 and D4 (Ct: 31.6) in one animal and from D1 to 

D10 (Ct: 33.3) in the other animal. Viremia was detected between D2 and D7 pi (peak at 

D3, Ct: 19.7) through both virus isolation and real-time RT-PCR as reported in Table 5. 

Table 5. RVFV viral RNA detected in sera of 8 vaccinated (all are negative for RNA, only in unvac-

cinated animals) and 2 unvaccinated calves through real-time RT-PCR after challenge. 

Group  Calves 
Days Post Challenge with RVFV 

1  2  3  4  7  10  14  21 

Vaccinated 

307  0  0  0  0  0  0  0  0 

310  0  0  0  0  0  0  0  0 

311  0  0  0  0  0  0  0  0 

2076  0  0  0  0  0  0  0  0 

2453  0  0  0  0  0  0  0  0 

2454  0  0  0  0  0  0  0  0 

2456  0  0  0  0  0  0  0  0 

2457  0  0  0  0  0  0  0  0 

Unvaccinated 
306  0  30.0  23.8  25.8  39.0  0  0  0 

2086  0  27.3  19.7  26.7  38.0  0  0  37.0 

In vaccinated calves, no clinical signs were reported during the observation period 

(Figure 3). Nasal swabs were negative after 2 dpi. In a few cases, there was some weak 

signal at 1 dpi, although this was either residual inoculum or beyond the limit of detection 

for the assay and was considered negative. No virus was  isolated from any of the vac-

cinated animals. Vaccinated calves did not develop any detectable viremia through virus 

Figure 2. Average LSDV and RVFV antibody titers (VNT) and percentage of inhibition for CBPP
(ELISA) in 10 calves of GVI vaccinated with LSD/CBPP+RVF vaccine and 5 unvaccinated animals of
GVII. VNT titer >1.00 in log (equivalent to a serum dilution of 1/10) was considered positive for RVF.
Percentage of inhibition > to 50% was considered positive for CBPP. D: Days; M: Months.

3.4. Efficacy of the Vaccine
3.4.1. Challenging Calves with RVFV

Unvaccinated calves challenged with virulent RVFV showed evident hyperthermia
between day 3 and day 5 pi reaching 41.4 ◦C. Nasal swabs were positive for viral RNA
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through real-time RT-PCR between D2 and D4 (Ct: 31.6) in one animal and from D1 to D10
(Ct: 33.3) in the other animal. Viremia was detected between D2 and D7 pi (peak at D3, Ct:
19.7) through both virus isolation and real-time RT-PCR as reported in Table 5.

Table 5. RVFV viral RNA detected in sera of 8 vaccinated (all are negative for RNA, only in unvacci-
nated animals) and 2 unvaccinated calves through real-time RT-PCR after challenge.

Group Calves
Days Post Challenge with RVFV

1 2 3 4 7 10 14 21

Vaccinated

307 0 0 0 0 0 0 0 0

310 0 0 0 0 0 0 0 0

311 0 0 0 0 0 0 0 0

2076 0 0 0 0 0 0 0 0

2453 0 0 0 0 0 0 0 0

2454 0 0 0 0 0 0 0 0

2456 0 0 0 0 0 0 0 0

2457 0 0 0 0 0 0 0 0

Unvaccinated
306 0 30.0 23.8 25.8 39.0 0 0 0

2086 0 27.3 19.7 26.7 38.0 0 0 37.0

In vaccinated calves, no clinical signs were reported during the observation period
(Figure 3). Nasal swabs were negative after 2 dpi. In a few cases, there was some weak
signal at 1 dpi, although this was either residual inoculum or beyond the limit of detection
for the assay and was considered negative. No virus was isolated from any of the vacci-
nated animals. Vaccinated calves did not develop any detectable viremia through virus
isolation or real-time RT-PCR, indicating that the vaccine was effective and prevented virus
replication in the animals (Table 5).
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Figure 3. Clinical signs following RVFV challenge of 8 vaccinated and 2 unvaccinated calves.

All RVF-vaccinated calves seroconverted to RVFV via VNT, and after being challenged,
they developed an increase in neutralizing antibodies on day 14, with a decline on D47 pi
(Figure 4).

3.4.2. Challenging Calves with LSDV

The four unvaccinated challenged calves exhibited fever (>40 ◦C) between D7 and
D15 pi, reaching a temperature of 41.4 ◦C. Also, animals developed clinical signs of disease
consisting of depression, reduced appetite and skin lumps, appearing 7 pi, which developed
into skin lesions lasting until the end of the experiment (Figure 5). The animals shed viral
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DNA through real-time PCR in nasal swabs between D9 and D21 pi (Ct: 24–34), and viremia
was detected through real-time PCR between 7 and 18 dpi (Ct: 30–35) (Table 6).
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Table 6. LSDV viral DNA detected in nasal swabs of 8 vaccinated and 4 unvaccinated calves through
real-time PCR following challenge with virulent LSDV.

Group Calves
Days Post Challenge with LSDV

1 2 3 4 7 10 14 21

Vaccinated

307 - - - - - - - -

310 - - - - - - - -

311 - - - - - - - -
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Table 6. Cont.

Group Calves
Days Post Challenge with LSDV

Vaccinated

1 2 3 4 7 10 14 21

2076 - - - - - - - -

2453 - - - - - - - -

2454 - - - - - - - -

2456 - - - - - - - -

2457 - - - - - - - -

Unvaccinated

2458 - - - 33 34 32 31 30

246-3 - - - - 27 31 33 -

306 - - 28 27 24 32 30 29

2086 - - - 32 29 26 32 34

Clinical signs consisting of a mild depression and reduced appetite on 8 and 9 dpi were
observed in some vaccinated calves, which were resolved by 10 dpi (Figure 5). All calves
developed neutralizing antibodies, thus demonstrating that the animals were infected with
LSDV (Figure 6). None of the animals developed a detectable viremia or viral shedding
based on the testing of the nasal swabs using PCR, thus indicating that the vaccine was
effective in preventing virus replication (Table 6).
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Figure 6. Mean neutralizing antibody titers among 8 vaccinated and 4 unvaccinated calves following
LSDV challenge.

3.4.3. Challenging Calves with CBPP
CBPP Challenge at 6 Months pv

Regarding the challenge of the 10 unvaccinated control animals with CBPP, four
animals developed moderate hyperthermia for 6 days, and lesions were observed in the
lung of nine animals, eight of which were of high severity (Table 7). Among the animals
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vaccinated with the commercial vaccine, six developed hyperthermia during a 12-day
period, and lesions were observed in the same six animals; four were severe. In animals
vaccinated with the combined vaccine, two animals presented hyperthermia for a 6-day
period, and moderate lesions were present in four animals, with severe lesions present in
two of them (Table 7).

Table 7. Number of days of fever and lung lesions in cattle after CBPP challenge. A total of 10 cattle
per group in each challenge phase.

Challenge 6 Months Challenge 13 Months

Group Hyperthermia
Duration (Days)

Number of Animals
Presenting Lesions

Severity
Lesions

Hyperthermia
Duration (Days)

Number of Animals
Presenting Lesions

Severity
Lesions

Saline 6 9 8 15 7 7

Commercial 12 6 4 18 10 5

Multivalent
LSD/CBPP+RVF 6 6 2 8 2 1

CBPP Challenge at 13 Months pv

Regarding the challenge of the unvaccinated animals with CBPP, 5 of 10 exhibited
hyperthermia for 15 days, and 7/10 showed lesions of maximum severity. Among the
challenged commercial vaccine group, 5 of 10 animals developed hyperthermia for 18 days.
All animals of this group showed lesions in the lung; half of them were of high severity
comparable with the unvaccinated control vaccine (Table 7).

Regarding the challenge of the 10 vaccinated calves with the combined LSD/CBPP+RVF
vaccine, only 2 of them presented lesions and showed hyperthermia for 8 days. The lung
lesions were severe in one animal and moderate in the second. The other eight animals did
not develop a temperature or lesions (Table 7).

Using the pathology score, all unvaccinated challenged cattle were infected (Table 8).
The protection rate in animals vaccinated with the combined vaccine and challenged had a
protection rate of 50% at 6 months pv and 81% at 13 months pv (Table 8). In contrast, the
protection rate for animals that received the commercial vaccine and challenged had a 38%
protection rate at 3 months and 0% at 13 months.

Table 8. Calculation of protection efficacy for each group of cattle challenged with CBPP strain. A
total of 10 cattle per group in each challenge phase.

Protective Efficacy Calculations 6 Months Protective Efficacy Calculations 13 Months

Group Mean Total
Score

Vaccination/Control
Ratio

Efficacy:
(1-Ratio) % Protection Mean Total

Score
Vaccination/Control

Ratio
Efficacy:
(1-Ratio) % Protection

Saline 6.6 1 0 0% 4.2 1 0 0%

Commercial
vaccine 4.1 0.62 0.38 38% 4.2 1 0 0%

Multivalent
LSD/CBPP+RVF 3.3 0.5 0.5 50% 0.8 0.2 0.8 81%

3.5. Field Study

The combined LSD/CBPP+RVF vaccine was tested in cattle in a large-scale field study
under natural conditions, and no abnormal reactions were observed among the vaccinated
animals. Since the three diseases are enzootic in Africa, some of the animals used in the
trial had antibodies as evidence of a previous infection on the vaccination day as shown in
Table 9. However, after vaccination, there was a significant increase in the percentage of
antibody-positive animals for the three vaccine pathogens.
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Table 9. Percentage of antibody-positive cattle vaccinated with combined LSD/CBPP+RVF vaccine
during a large-scale field trial; sera samples were obtained from the cattle on days 0, 30 and 42 and
tested using ELISA for CBPP/RVFV and IPMA-LSDV antibodies.

Percentage of Positive Animals

Valence/Phase pv D0 D30 D42

LSDV
41.5% 50.0% 43.7%

(47/113) (53/106) (49/112)

CBPP
19.4% 43.3% 44.6%

(22/113) (46/106) (50/112)

RVFV
21.2% 56.6% 41.0%

(24/113) (60/106) (46/112)

4. Discussion

LSD, CBPP and RVF are enzootic diseases in large parts of the African continent that are
economically important in the cattle production chain, causing high mortality, abortion and
severe damage to hides [12,15,46,47]. Vaccination is the most appropriate tool to prevent
infectious diseases, especially LSD and RVF, which are vector-borne diseases [19,39,48,49].
Multivalent vaccines present major benefits including low vaccination costs, higher vac-
cination coverage rate and less stress on the animals [28,30,50]. In addition, the inclusion
of RVF will allow for vaccination against a disease considered as neglected in spite of its
impact on public and animal health [46].

The formulation of two or more live attenuated pathogens as a multivalent vaccine can
be a challenge since microorganism may interfere with and dominate the replication site [51].
This interference has been highlighted in previous experimental works on capripoxvirus
and RVF [52]. Capripoxvirus infections are very common in large parts of Africa, Asia and
the Middle East, and they affect both cattle and small ruminants [47,53]. These same animal
populations are challenged by RVFV infection [54]. To address this possible interference,
this study was conducted to evaluate the safety and potency of a combined LSD/CBPP and
monovalent RVF freeze-dried vaccines to be injected separately and simultaneously into
the same animals. Indeed, multivalent vaccines based on live attenuated microorganism
are very rare in production animals [55,56]. In the market, live vaccines containing more
than three organisms are absent, but this new LSD/CBPP+RVF formulation will allow for
the vaccination of animals against three important diseases in one intervention. To our
knowledge, this combination has never been tested before, although a bivalent LSD/CBPP
vaccine has previously been tested with successful results and offers significant value to
small-scale livestock keepers as a single administration [30].

In the present study, the LSD/CBPP+RVF vaccine was tested at the laboratory level
for safety in young and pregnant females, antibody response to vaccination and efficacy
through the challenge of the vaccinated animals with virulent pathogens. In addition, the
vaccine was tested on a large number of animals in an area where these disease pathogens
are enzootic [54,57]. The vaccine was completely safe, and vaccinated calves remained
healthy with no excessive local swelling at the injection sites. In this trial, no abnormal local
swelling that can be induced by CBPP, or LSD-like nodules that can attributed to Neethling
vaccine strain commonly called Neethling disease, was observed [21,58,59]. These results
confirmed the safety of the vaccine despite the limited number of animals tested at the
laboratory level. RVFV is known to cause abortions in pregnant females, and any live
attenuated vaccines should be safe for pregnant animals especially during the first stage of
pregnancy [60,61]. In this experiment, no abortions or teratogenic effects were observed
on the newborn calves, confirming that the vaccine has no negative effect on reproductive
performance. This safety was confirmed in the field after the vaccination of cattle under
different breeding conditions and health status.

The potency of the CBPP/LSD+RVF vaccine was evaluated based on the antibody
response and protection against the challenge of the vaccinated animals with virulent
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pathogens. The antibody responses to the LSD vaccination was in accordance with ob-
servations obtained for the monovalent LSD vaccines, with the seroconversion rate being
between 34% and 65%, as reported by Hamdi et al., 2020, Milovanović et al., 2019, and
Samojlović et al., 2019 [17,62,63]. Concerning CBPP, the ELISA test was used to assess the
antibody response as recommended by WOAH because of the higher sensitivity (96%) and
specificity (97%) as compared to Complement Fixation Test (CFT) with sensitivity between
64% and 98% [10,13,64–67]. However, the antibody response assessed using ELISA or
CFT did not correlate with protection and could not replace using a challenge [13]. In this
experiment, antibody response reached 7/10 animals at 3 to 4 weeks pv as compared to
100% of seroconversion in the study conducted by Safini et al. 2021 [30]. However, the rate
was higher compared to the rate reported by Nkando et al., 2012 (14–17% at 3 months pv),
and Mwirigi et al., 2016 (37.5%), using monovalent live attenuated T1/ 44 vaccines [68,69].
Considering the RVFV antibody response in vaccinated animals, the results are in accor-
dance with other studies that showed 100% seroconversion within 4 weeks pv [70–72]. This
level of antibody suggests a full protection of vaccinated animals against RVFV, as several
studies have shown that neutralizing antibodies was correlated with protection [60,73–75].

All unvaccinated animals, when challenged with the virulent strain of LSDV, showed
typical symptoms of disease, which is not common for LSDV infections. The same challenge
virus was previously used and resulted in variability in clinical signs of disease in suscepti-
ble cattle [76]. Meanwhile, 100% infection among control animals is rarely observed when
challenged with LSDV; thus, 50 to 60% of infection in challenged unvaccinated controls
may be sufficient to validate the protective efficacy test [77–79]. Based upon previously
published data, it can be concluded that the challenge test using the intravenous route was
successful and that this challenge model is robust and can be used to compare the different
vaccines. The vaccinated animals showed full protection from the challenge at 7 weeks pv,
which indicated that the required immunity may exceed one year pv. As reported in the
study of Haegeman et al., 2023, the LSD attenuated live vaccine elicited a strong immune
response and protection for up to 18 months [80]. In this study, all vaccinated animals were
resistant to the challenge, and only two seroconverted, which indicated that cell-mediated
immunity played a dominant role in capripoxvirus as reported by several authors [81,82].

Several factors were considered in the choice of an infection model for this challenge
trial. In the absence of suitable laboratory animal models and in vitro methods, the vaccine
conferred protection to CBPP was evaluated through the challenge of vaccinated cattle [83].
Existing challenge animal models for CBPP exhibited results ranging from no clinical
disease to a wide spectrum of pathological lesions [26,84–86]. A common feature of these
models was intubation that was required to reproduce the disease; it is necessary to use a
large number of animals [83]. In-contact infection models were not considered a practicable
alternative because it is difficult to synchronize the timing of individual infections and the
observation of clinical signs. In addition, this model intrinsically contains more variations
and requires a large number of animals [23,83]. Given the range of disease severity with
this method, the development of a robust and reproducible challenge model for CBPP is
clearly a priority [83,87].

In this study, the challenge test for infecting cattle with CBPP employed a nebulizer
model, a method found (unpublished data) to provide a greater-than-80% efficiency in
establishing infection in negative control cattle. The classical Hudson and Turner score
was used to measure the protection rate, as it has frequently been used to ensure valid
comparisons with former vaccine trials [88]. The performed test was valid since all unvac-
cinated challenged cattle were infected with a mean pathology score of 6.6 at 6 months
and 4.2 at 13 months pv, scores suggesting a high intensity of the challenge and that the
protection rates observed were very robust, as it is unlikely that animals in the field will
be confronted with such a harsh challenge. The protection observed in vaccinated cattle
challenged at 13 months was 81% higher than that observed at 6 months pv (50%). These
results are in agreement with those of Wesonga et al., 2000, who reported an increase in
protection from 59% at 3 months to 78.2% at 15 months [23]. Although efficacy rates were
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low at 6 months pv (50%), they were consistent with the results of previous studies that
showed monovalent CBPP vaccines to elicit protection rates between 30% and 60% [18,89].
These rates were also within the WOAH recommendation (40–60%) for CBPP vaccines [10].
By testing two live vaccines through a challenge at 3 and 16 months, Nkando et al., 2012,
reported a protection rate of 52–77% at 3 months pv and 56–62% at 16 months pv [68].
As reported, the monovalent vaccine requires booster vaccinations to achieve a 80–95%
protection rate [23,58].

The development of reliable challenge models for arbovirus diseases like RVFV is
challenging because needle inoculation does not mimic natural infection via insect vec-
tors [90]. The common model for RVFV is pregnant ewe because abortions are a hallmark
among livestock [91]. However, pregnancy synchronization in ewes and the limited high
biosecurity and biocontainment of animal spaces makes this model difficult to use. In
previous RVF challenge models, the SC route has been used, and this method provides
fever and viremia in inoculated animals [90,92]. In this study, the intra-nasal route was
used to challenge cattle, as tested in previous studies, and it elicited viremia and fever
sufficient to evaluate vaccines [93]. Using this challenge model, all vaccinated animals were
protected, and the unvaccinated animals developed a fever, viral shedding and a viremia.
This confirms that there was a positive correlation between protection and neutralizing
antibodies [60,94].

The multivalent LSD/CBPP+RVF vaccine was tested in a sufficient number of animals
under field conditions, with no adverse effects pv. The seroconversion rate increased after
vaccination for the three diseases, despite being low for CBPP and RVFV, as compared
to laboratory results, probably because the animals were taken at random and antibody
response monitoring was not carried out in the same animals. A field study was conducted
with the inactivated LSD vaccine and showed that 70% of the animals developed neutral-
izing antibodies when VNT was used [62]. Other studies have reported seroconversions
of 85.15% of animals vaccinated with LSD live attenuated vaccine on day 30 pv [95]. Re-
garding CBPP, there is a need to have tests that can provide sensitive and specific outcomes
in the field [13]. Concerning RVF, a field study using RVF C13T vaccine was conducted
in Tanzania and showed a seroconversion rate of 57.1% in vaccinated cattle on day 30 pv
compared to the rate of 56.6% observed in our study [96]. This observation is in contrast to
the findings from studies in Kenya that reported that vaccinating cattle with RVFV C13T
failed to develop RVFV IgM antibody [71], as well as a study in Senegal that found a very
low proportion of IgM seropositivity among vaccinated sheep and goats [97].

5. Conclusions

This study is the first report on the evaluation of a vaccine consisting of the com-
bination of three live pathogens, including Mycoplasma CBPP T1 44 attenuated strain,
LSD Neethling attenuated strain and RVF C13 T strain. The findings revealed that the
simultaneous vaccination of the animals with the combined vaccine afforded protection
to cattle against challenge by virulent etiological agents of the three diseases. Only one
vaccination was sufficient to induce at least 12 months of protection, as demonstrated in
this study via the protection of cattle against CBPP at 13 months pv and via the protective
antibody responses to RVF and LSD diseases.

This LSD/CBPP+RVF vaccine will benefit many countries in Africa and the Middle
East where the three diseases coexist because one vaccination will afford protection against
three highly important diseases of cattle. The vaccine is safe and efficacious, and it will
reduce the vaccination cost, improve vaccination coverage and enable the implementation
of regular RVF vaccination.
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