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Abstract: H5N1 highly pathogenic avian influenza virus (HPAIV) infections pose a significant threat
to human health, with a mortality rate of around 50%. Limited global approval of H5N1 HPAIV
vaccines, excluding China, prompted the need to address safety concerns related to MDCK cell
tumorigenicity. Our objective was to improve vaccine safety by minimizing residual DNA and
host cell protein (HCP). We developed a downstream processing method for the cell-based H5N1
HPAIV vaccine, employing CaptoTM Core 700, a multimodal resin, for polishing. Hydrophobic-
interaction chromatography (HIC) with polypropylene glycol as a functional group facilitated the
reversible binding of virus particles for capture. Following the two-step chromatographic process,
virus recovery reached 68.16%. Additionally, HCP and DNA levels were reduced to 2112.60 ng/mL
and 6.4 ng/mL, respectively. Western blot, high–performance liquid chromatography (HPLC), and
transmission electron microscopy (TEM) confirmed the presence of the required antigen with a
spherical shape and appropriate particle size. Overall, our presented two-step downstream process
demonstrates potential as an efficient and cost-effective platform technology for cell-based influenza
(H5N1 HPAIV) vaccines.

Keywords: downstream purification process; H5N1; HPAIV; MDCK cells; CaptoTM Core 700;
hydrophobic chromatography

1. Introductions

In 2023, the United States faced a severe avian influenza outbreak, marking one of
the most significant incidents in the nation’s history. The H5N1 highly pathogenic avian
influenza virus (HPAIV), responsible for this outbreak, led to the culling of more than
58 million poultry. The Centers for Disease Control and Prevention (CDC) reported an
almost 100% mortality rate among avians infected with H5N1 highly pathogenic avian
influenza virus (HPAIV), with most succumbing to the virus within 48 h [1]. From 2003
to 2018, the World Health Organization (WHO) documented 860 confirmed human cases
of H5N1 HPAIV globally. Of these cases, 454 proved fatal, resulting in a death rate
exceeding 50% [2]. During the 2009 H1N1 influenza pandemic, human infections with
the H5N1 HPAIV were also reported, raising concerns about a potential new influenza
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pandemic caused by H5N1 HPAIV [3]. In contrast to seasonal influenza, characterized
by mild respiratory symptoms, H5N1 HPAIV infection in humans manifests as a swiftly
progressing and severe illness, leading to elevated rates of morbidity and mortality [2,4].
To address the immediate risk and potential health threats associated with H5N1 HPAIV,
the development of a vaccine stands as a crucial preventive measure.

The majority of current vaccines are produced using chicken embryos, leading to a
prolonged egg-based production process with uncertain yields. During avian influenza
outbreaks, the availability of chicken embryos is constrained, hindering comprehensive
responses. Additionally, these vaccines may contain high levels of residual ovalbumin,
contributing to severe allergic reactions [5]. In contrast, cell-based production of avian
influenza presents several advantages, including a strong antigenic match, potential for
large-scale manufacturing, shorter production times, automated monitoring, and a reduced
risk of allergic reactions [6]. Consequently, the WHO recommends shifting from the
traditional use of chicken embryos to mammalian cells as a substrate for influenza virus
cultures in vaccine development [7]. Mammalian cells, such as MDCK and Vero cells,
are utilized for generating influenza vaccines. Among these, MDCK cells are recognized
as the most advantageous cellular substrate due to their exceptional efficacy in infecting
influenza viruses, rapid proliferation, and reduced susceptibility to mutation [8,9]. It is
worth mentioning that the MDCK cell line represents a new cell substrate for a robust
influenza vaccine production in a fully defined process [10–12].

The traditional process of producing influenza vaccine from chicken embryos involves
clarification, ultrafiltration, and sucrose zone centrifugation [13,14]. Nevertheless, this ap-
proach falls short in removing host cell residues, specifically residual protein and residual
DNA, which are crucial impurities in cell culture. In virus purification, gel filtration (GF)
chromatography is widely employed to purify most viruses due to the distinct differences
in molecular weight, density, and charge properties between virus molecules and impuri-
ties [15]. GF chromatography is significantly faster, more consistent, and easier to automate
compared to the conventional method [16]. Presently, gel filtration chromatography using
traditional Sepharose series gels is the predominant method for purifying influenza viruses.
To address safety concerns associated with tumorigenesis in passaged cell lines, host cell
residual DNA is effectively eliminated through nuclease digestion and ion exchange chro-
matography [17]. The innovative CaptoTM Core 700 composite packing features an inert
shell without any functionality and a core with an octylamine ligand, providing molecular
exclusion and ion adsorption capabilities. This design makes it an optimal choice for the
removal of host cell proteins and nucleases [18,19]. Compared to conventional gel packing,
this method offers several advantages, including a larger sample volume, higher flow rate,
and reduced loading height. These benefits facilitate a more straightforward scaling-up pro-
cess while efficiently eliminating host cell residual proteins [20]. CaptoTM Core700 (Cytiva,
Uppsala, Sweden) was used to purify rabies virus produced in Vero cells grown in serum-
free medium, and the results showed that the antigen recovery yield was 84%, the DNA
and HCP concentrations were 7.25 ± 1 pg/mL and 1784.4 ± 100 ng/mL, respectively [21].
In addition, for the purification of the cell culture-derived Orf virus, a complete cellular
protein removal and a host cell DNA depletion of up to 82% was possible for the steric
exclusion membranes and the Capto™ Core 700 combination [22]. Hydrophobic-interaction
chromatography (HIC) is commonly used as a supplementary or complementary method to
anion-exchange chromatography (AEC), cation-exchange chromatography (CEC), and GF
chromatography [23]. This entails chromatographic separation operations at elevated salt
concentrations, employing hydrophobic resins and hydrophilic salts to control the polarity
and surface tension of the mobile phase. Depending on the hydrophobic micro-regions on
the molecular surfaces of the separated components, the hydrophobic residues exposed
after (reversible) denaturation, or the strength of the interaction between the hydrophobic
residues on the molecular surfaces exposed in high salt environments and the hydrophobic
ligands of the stationary phases, the components with weakest to strongest hydrophobic
interactions can be separated by using the eluent with the ionic strengths ranging from high
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to low in a sequential manner [24]. This enables the separation of biomolecules, relying on
distinctions in the hydrophobicity of the protein molecule surface [24–26]. The combination
of the CaptoTM Core 700 composite mode medium and hydrophobic interaction resin for
purifying and isolating cell-based H5N1 HPAIV in vaccine development and preparation
is an underexplored area in the current literature [27–29].

This study aimed to investigate a method for the downstream purification of a cell-
based H5N1 HPAIV vaccine. The purification of H5N1 HPAIV involved the combination
of the composite model medium CaptoTM Core 700 with HIC parameters such as sam-
ple volume, sample flow rate, column bed height, and functional group species for the
two-step chromatography process using the CaptoTM Core 700 composite model medium
and hydrophobic interaction were systematically screened and optimized. The subse-
quent analysis focused on evaluating residual host cell proteins and DNA, along with the
hemagglutinin content of the purified samples. By detecting these elements in the purified
samples, the study aimed to assess the impact of CaptoTM Core 700 and hydrophobic
interaction two-step chromatography on the isolation and purification of H5N1 HPAIV
from cellular matrices, as well as the purity of the final samples. The overarching goal of
the study was to introduce a novel concept for advancing cell-based H5N1 HPAIV vaccines
and lay the foundation for subsequent large-scale vaccine production.

2. Materials and Methods
2.1. Cells and Strains

The MDCK cell line was maintained by the Viral Vaccine Research and Develop-
ment 2 unit at WIBP (Wuhan Institute of Biological Products). The H5N1 HPAIV vaccine
strain NIBRG-14, recommended by the WHO, was procured from the National Institute of
Biologics and Bioproducts Control (NIBSC), Hertfordshire, UK.

2.2. Virus Harvesting and Pretreatment

The H5N1 HPAIV strain was cultured in MDCK cells for 72 h in the bioreactor
(MOI = 0.001). Following cultivation, the viral fluids were collected, clarified, and con-
centrated through ultrafiltration. The concentrated material was then stored at 4 ◦C for
subsequent purification.

2.3. CaptoTM Core 700 Chromatography
2.3.1. Bed Height

Column bed heights of 16 cm, 25 cm, and 34 cm were chosen for column loading.
The linear flow rate was maintained at 100 cm/h, utilizing a phosphate buffer (PB) system
comprising 150 mmol/L NaCl and 50 mmol/L PB at a pH of 7.5. Flow–through peaks from
each group were individually collected. Subsequent analysis involved measuring total protein,
hemagglutinin, residual protein, and residual DNA contents of the host cells. This allowed for
a comparison of the impact of various column bed heights on the purification efficacy.

2.3.2. Linear Flow Rates

The column bed height was set at 16 cm, and the buffer solution consisted of 150 mmol/L
NaCl + 50 mmol/L PB at pH 7.5. Linear flow rates of 50, 100, and 200 cm/h were chosen.
Flow–through peaks from each group were collected and analyzed to assess the impact of
different linear flow rates on purification effectiveness. The comparison involved evaluating
total protein content, hemagglutinin content, residual host cell protein, and residual DNA
content to understand the effects of varying linear flow rates on the purification process.

2.3.3. Sample Volume

The column bed height was 16 cm, with a linear flow rate of 100 cm/h, and the
sampling buffer consisted of 150 mmol/L NaCl + 50 mmol/L PB at a pH of 7.5. Various
bed volume (BV) ratios (25%, 50%, 100%, and 175%) were employed. Flow-through peaks
from each group were collected and subjected to testing for total protein, hemagglutinin,
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residual host cell protein, and residual DNA content. The aim was to compare the effects of
different volume ratios on the purification efficiency under constant linear flow conditions.
Detailed parameter information can be found in Table 1.

Table 1. Parametric variables (column bed height, linear flow rate, and sample volume) were adjusted
to assess their effect on the purification of CaptoTM Core 700.

Parameters Variables

Bed Heights (cm)
16
25
34

Linear flow rates (cm/h)
50

100
200

Sample volume (%BV)

25
50

100
175

2.4. Hydrophobic Chromatography

An appropriate volume of virus liquid, post preliminary purification using CaptoTM

Core 700, was chosen for further purification through hydrophobic interaction chromatog-
raphy. The process involved a flow rate of 100 cm/h, a pH of 7.5, and an uploading buffer
of 20 mmol/LPB + 1 mol/L (NH4)2SO4. Subsequently, equilibration and purification were
carried out using a Polar MC-HIC hydrophobic column, sequentially employing bonded
phenyl and butyl groups, and regeneration steps between each use. After equilibration,
the sample underwent purification using bonded phenyl and butyl, respectively, on the
regenerated Polar MC-HIC hydrophobic column. Elution was performed with a gradient
ranging from 1.0 to 0 mol/L (NH4)2SO4 over 10 bed volumes (BV). The column was then
washed with water injection and 0.5 mol/L NaOH. The elution peaks were collected, and
subsequent analysis involved measuring total protein content, hemagglutinin content, resid-
ual host cell protein, and residual DNA content. This comparison aimed to evaluate the
purification effectiveness of hydrophobic chromatographic packing with different ligands.

2.5. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western
Blot Analysis

Western blot analysis involves the separation of mixed protein samples via polyacry-
lamide gel electrophoresis (PAGE), blotting them with a special siphon or electric field
device so they bind specifically to the corresponding primary antibody, which then binds
to an enzyme or isotope-labelled secondary antibody, and finally, detecting the protein
components specific to the target gene expression via substrate chromatography or ra-
dioautography [30]. For a more in-depth assessment of the purification efficacy at each
chromatographic step, samples of purified H5N1 HPAIV-type viral fluids were subjected
to separation on 8% SDS-PAGE. The separated components were subsequently transferred
onto NC blotting membranes, which were then blocked with 5% BSA for 2 h at room
temperature. The primary antibody, derived from standard sheep antiserum (No. 07/148
(NIBSC)), was prepared at a concentration of 1:5000 and incubated at 4 ◦C overnight. Fol-
lowing this, the secondary antibody, donkey anti-sheep IgG H&L (HRP) D110174-0100,
was applied at a concentration of 1:5000 and incubated at room temperature for 2 h. The
detection was carried out using a Horseradish catalase DAB color kit (Sangon Biotech,
Shanghai, China).

2.6. HPLC Analysis

HPLC analysis, based on the principles of liquid chromatography, was employed to
visually assess the separation of hemagglutinin (HA) at each chromatographic step. A
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suitable quantity of purified H5N1 HPAIV liquid was utilized for HPLC analysis. The
separation was conducted using a Monomix MC-SEC column (300 mm × 7.8 mm, 10 µm,
1000A. Suzhou Sepax Technologies, Inc. Suzhou, China) equipped with a diode array
detector (DAD). The mobile phase comprised acetonitrile-water (45:55), with a flow rate of
1.0 mL/min. The injection volume was 10 µL, and detection was performed at a wavelength
of 280 nm. The column temperature was maintained at 25 ◦C throughout the analysis.

2.7. Transmission Electron Microscopy (TEM) Inspection

The characterization of purified viral samples was performed through a TEM assay
using a JEM-1400 instrument from Hitachi (JEOL Ltd. Tokyo, Japan), operating at an
accelerating voltage of 80 kV. Approximately 50 µL of purified H5N1 HPAIV was deposited
onto a carbon-stabilized, poly (methylvinyl acetate)-coated 200-mesh copper grid. After
allowing for adherence, the samples on the grid were stained with 2% phosphotungstic
acid for 1 min, followed by TEM characterization to visualize and analyze the structural
features of the purified virus.

2.8. Total Protein Content Assay

The quantification of total protein content in the purified virus products, following
treatment with various chromatographic media, was conducted using the second method
outlined in Part III of the General Principles of the Chinese Pharmacopoeia (2020 edition),
specifically method 0731, known as the Lowry’s method.

2.9. Host Cell Residual DNA Detection

For extracting residual host DNA from the samples, the host cell residual DNA sample
pretreatment kit (magnetic bead method) was employed. Subsequently, the residual DNA
content of the samples was detected using the qPCR fluorescent probe method, which
detects changes in the amount of amplified product in each cycle of PCR amplification in
real time according to the fluctuation of fluorescence signal for quantitative analysis. The
extraction process and DNA detection followed the instructions outlined in the MDCK
Residual DNA Detection Kit (SK030209M100, Huzhou Shenke Biotechnology Co., Ltd.
Huzhou, China), utilizing qPCR and a fluorescence probe for accurate measurement.

2.10. Host Cell Residual Protein Detection

The Folin-reagent method (Lowry method) was applied for the determination of host
cell residual protein in the purified product. The phosphomolybdate-phosphotungstate
in the Folin-Phenol reagent is reduced by tyrosine and tryptophan residues in proteins,
producing a deep blue color (a mixture of molybdenum and tungsten orchids). Under
certain conditions, the depth of the blue color is positively correlated with the amount
of protein. The assessment of residual cellular protein in MDCK samples was conducted
using the MDCK Cellular Residual Protein Assay Kit (F800, Cygnus, Leland, NC, USA).
The specific procedures were performed in accordance with the instructions provided by
the kit.

2.11. Hemagglutinin Content Testing

The single radial immunodiffusion (SRID) method was employed for the analysis.
Standard antigen in a series of HA concentrations were performed in single radial immun-
odiffusion with samples together. Results were plotted as mean zone diameter versus the
antigen concentration on a linear scale.

2.12. Statistical Analysis

All experiments were conducted in triplicate, and the data were presented as
mean ± standard deviation (SD). Statistical analyses were carried out using one-way
ANOVA with SPSS version 26.0 (SPSS Inc., Chicago, IL, USA). Differences were deemed
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statistically significant at p < 0.05. All data shown in the manuscript are expressed as the
means ± standard deviation (SD).

3. Results

3.1. Flow Rate, Column Bed Height, and Sample Volume Affect Purification of CaptoTM Core 700
3.1.1. The Influence of Column Bed Height on Purification Effect

To assess the influence of column bed height on the purification effectiveness of H5N1
HPAIV using CaptoTM Core 700, parallel comparative experiments were carried out at
different heights. In these experiments, two distinct protein peaks were identified at OD280.
Notably, the appearance of the target peaks exhibited variability across different column bed
heights. Subsequently, these peaks were isolated, captured, and subjected to analysis, with
the results presented in Figure 1. Two distinct protein peaks were observed at OD280. The
timing of the target peaks’ appearance varied at different column bed heights, with higher
column beds resulting in later peak appearance times. There was no significant difference
in the removal of impurities (total protein removal) and the recovery of haemagglutinin
(HA) in the purified samples as the column bed height increased (p > 0.05). Additionally,
the ratio of protein content to haemagglutinin concentration in the samples was 5.44, 5.58,
and 5.28 for column bed heights of 16 cm, 25 cm, and 34 cm, respectively.
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3.1.2. The Influence of Flow Rate on Purification Effect

The distribution and binding of components in the chromatographic medium are
influenced by the linear flow rate. This study analyzed the chromatographic separation of
CaptoTM Core 700 at different flow rates (50, 100, and 200 cm/h), as illustrated in Figure 2.
Increasing the linear flow rate of the loading sample from 50 cm/h to 100 cm/h resulted in
a significant rise in haemagglutinin recovery from 47.13% to 71.50% (p < 0.05). Concurrently,
there was a notable decrease in the removal of impurities (host cell residual protein, host
cell residual DNA, etc.), with the total protein removal rate dropping from 75.56% to 68.19%,
and the DNA removal rate decreasing from 70.86% to 66.08%. However, when the linear
flow rate of the sample was further increased to 200 cm/h, there was no significant differ-
ence observed in both the recovery of haemagglutinin and the removal of impurities at the
target peak (p > 0.05). Simultaneously, the ratio of protein to haemagglutinin concentration
remained below 5:1.
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3.1.3. The Influence of Sample Loading Volume on Purification Effect

The study investigated the impact of four loading volumes (0.25, 0.5, 1, and 1.75 BV)
on the chromatographic separation of CaptoTM Core 700, as depicted in Figure 3. With an
increase in loading volume (from 0.25 BV to 1.75 BV), the impurity removal of CaptoTM

Core 700 gradually decreased, showing a 15.23% reduction in total protein removal and a
14.60% decrease in DNA removal. However, the haemagglutinin recovery from the sample
significantly increased by 29% as the sample loading volume increased from 0.25 BV to
1 BV. In comparison to the 1 BV sample volume, there was no significant difference in
haemagglutinin recovery when the sample loading volume continued to increase to 1.75 BV
(p > 0.05), with a decreasing trend in impurity removal (total protein removal: 3.74%;
DNA removal: 4.33%). Table 2 presents the optimal testing parameters derived from the
optimization results of CaptoTM Core 700. The combination of these parameters resulted in
a highly successful haemagglutinin recovery rate of 72.26% for the primary purified liquid
of the H5N1 HPAIV. However, the total protein removal rate was approximately 66.35%.
Detailed results can be found in Table 3.
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Table 2. Optimization steps for CaptoTM Core 700 chromatography.

Step Parameter

System ÄKTA™ purifier (Cytiva, Uppsala, Sweden)
Column XK16/40 (Cytiva, Uppsala, Sweden), column height = 16 cm, CaptoTM Core 700
Sample H5N1 HPAIV (NIBSC, Hertfordshire, UK) ultrafiltration concentrate

Sample load 100% BV, 100 cm/h
Running buffer 150 mmol/L NaCl + 20 mmol/L PB, pH 7.5, 100 cm/h

Wash 150 mmol/L NaCl + 20 mmol/L PB, pH 7.5, 100 cm/h
Cleaning in place (CIP) 0.5 M NaOH, 60 cm/h

Table 3. Test results of CaptoTM Core 700 under optimal chromatographic conditions.

Indicator Value

HA Recovery (%) 72.26 ± 2.11
Protein depletion (%) 66.35 ± 1.95
DNA depletion (%) 65.16 ± 2.18

Total protein concentration/HA concentration 4.56 ± 0.76
HA (µg/mL) 45.86 ± 4.29

DNA (ng/mL) 83 ± 6.86
HCP (ng/mL) 3145 ± 116.05

3.2. The Selection of Hydrophobic Chromatography Media

The residual protein content in the host cells did not meet the required standards for
vaccine products. To eliminate impurities such as residual host cell proteins and DNA in
the H5N1 HPAIV purified using CaptoTM Core 700, an adequate amount of H5N1 HPAIV
sample purified under the optimal CaptoTM Core 700 chromatographic conditions was
subjected to additional processing using bonded butyl and bonded phenyl HIC media. The
effectiveness of each purification step was assessed, with the results presented in Figure 4.
The purification efficacy of hydrophobic chromatographic media with bonded phenyl
groups proved significantly superior to that of hydrophobic chromatographic media with
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bonded butyl groups. The virus sample was loaded under buffer conditions of 20 mmol/L
PB + 1 mol/L (NH4)2SO4, pH 7.5, and eluted with a gradient of 0–1.0 mol/L (NH4)2SO4 at
10 BV. Subsequently, the column was washed with water injection and 0.5 mol/L NaOH.
The purification impact of the butyl-bonded hydrophobic chromatographic medium is
depicted in Figure 4A, revealing a total protein removal rate of 69.21%, a host cell residual
DNA removal rate of 91.26%, and an antigen recovery rate of 79.28%. Figure 4B shows the
purification effect of the phenyl-bonded hydrophobic chromatographic medium, where
hemagglutinin and impurities were effectively separated through gradient elution with
0–1.0 mol/L (NH4)2SO4 concentration. The total protein removal rate reached 76.27%,
significantly surpassing that of the hydrophobic chromatographic medium with bonded
butyl groups. Host cell residual protein and host cell residual DNA were reduced to
(2112.60 ng/mL, 6.4 ng/mL), respectively. Additionally, the antigen recovery reached
87.14% (68.59 µg/mL).
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3.3. The Characterization, Purity, and Morphological Analysis of Purified Virus
3.3.1. SDS-PAGE and Western Blot Analysis

The purification process involved four distinct samples: clarified viral suspension,
virus ultrafiltration concentrate, virus purified by CaptoTM Core 700, and the purified
product after the second purification step (CaptoTM Core 700 combined with hydrophobic
chromatography). These samples were labeled as samples 1, 2, 3, and 4. All samples
underwent reduced SDS-PAGE and were subjected to analysis through Coomassie Brilliant
Blue staining to compare the content of HA protein. Additionally, the purification process
was validated using a sample reduction Western blot to confirm the specificity of the target
protein, as illustrated in Figure 5. In the Western blot experiment, the primary antibody
used was standard sheep anti-HA serum (concentration of 1:5000), and the secondary
antibody used was donkey anti-sheep IgG H&L (HRP) (concentration of 1:5000). Specific
bands, representing the target proteins HA1 and HA2 were observed in all virus sample
groups, between 55~70 kDa and 25~35 kDa, respectively (Figure 5B). SDS-PAGE results
indicated that the HA protein content in sample 4 was significantly higher than that
in the other three groups, following the combined hydrophobicity using hydrophobic
chromatography and CaptoTM Core 700 composite mode chromatography, while keeping
the sample volumes equal.
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Figure 5. SDS-PAGE (A) and Western blot (B) analyses conducted on the H5N1 HPAIV. Band 1
represents the clarified viral suspension, band 2 signifies the virus ultrafiltration concentrate, band 3
corresponds to the virus purified by CaptoTM Core 700, and band 4 indicates the purified product
after the second purification step.

3.3.2. HPLC Analysis

The purity of the HA protein in samples 1, 2, 3, and 4 was assessed using HPLC
analysis. The corresponding data are depicted in Figure 6A, Figure 6B, Figure 6C, and
Figure 6D, respectively. The target protein peak began to emerge 5–10 min after the
ultrafiltration concentration treatment of the clarified viral suspension. Subsequently,
further preliminary purification of the ultrafiltration concentrate through CaptoTM Core 700
notably reduced the number of impurity peaks. The peak value of the target protein peak
was slightly lower, attributed to the increase in the collected sample volume after CaptoTM

Core 700 gel filtration chromatography compared to the loading sample. Ultimately,
following purification via a phenyl-bonded hydrophobic chromatography medium, the
peak value of the target protein in the viral fluid sample increased, and the number of
impurity protein peaks was further reduced.
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Figure 6. High−performance liquid chromatograms of samples from the H5N1 HPAIV purification
process with each peak corresponding to different stages of the process: (A) clarified viral suspension,
(B) virus ultrafiltration concentrate, (C) virus purified by CaptoTM Core 700, and (D) purified product
after the second purification step.
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3.3.3. TEM Analysis

The H5N1 HPAIV sample underwent a two-step purification process before being
subjected to TEM analysis. Figure 7 presents the results of this analysis, illustrating the
virus particles in the purified liquid. The H5N1 HPAIV particles exhibit a solid spherical
shape with a diameter of approximately 100 nm (highlighted by the red arrow). A vesicle
membrane envelops the virus surface, adorned with numerous spines representing the HA
and neuraminidase (NA). The virus’s structure aligns with the typical characteristics of
influenza viruses and closely resembles H5N1 HPAIV reported in existing literature [31].
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4. Discussion

Vaccines, designed for healthy populations, prioritize safety. The U.S. Food and
Drug Administration (FDA) notes potential carcinogenicity for DNA gene fragments
exceeding 200 bp (www.fda.com, Microsoft Edge, accessed on 5 July 2023). The European
Pharmacopoeia stipulates a maximum residual DNA limit of 10 ng/dose [32,33]. In the
manufacturing process involving MDCK cells, mitigating the tumorigenic risk associated
with host cell residual DNA is commonly achieved through nuclease digestion and ion
exchange chromatography. CaptoTM Core 700, a recently developed composite filler,
features an unfunctionalized inert shell and an octylamine ligand in its core. This dual
functionality in molecular exclusion and ion adsorption makes it effective in eliminating
HCP and nucleases [34,35]. CaptoTM Core 700 has proven its utility in producing vaccines
against diverse viruses, including rotavirus, rabies, influenza, and encephalitis B. It has
also been applied in generating transgenic virus-like particles [36–40]. Presently, there is
insufficient information regarding the efficacy of integrating Core 700 and HIC in purifying
the H5N1 HPAIV vaccine. This study seeks to investigate a downstream purification
method for the cell–based H5N1 HPAIV vaccine. A CaptoTM Core 700 composite mode
medium, in conjunction with HIC, was employed to refine the avian influenza strain H5N1
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HPAIV. The focus was on evaluating the combined outcomes of the two chromatographic
techniques for refining the H5N1 HPAIV strain. After a two-step purification process,
HA was successfully recovered at a rate of 68.16%. Furthermore, the levels of HCP and
DNA were reduced to 2112.60 ng/mL and 6.4 ng/mL, respectively, meeting the residual
DNA requirement of 10 ng/agent set by the European Pharmacopoeia [33]. However,
the purification of cell culture-derived influenza A virus via continuous anion exchange
chromatography on monoliths allowed the depletion of >98% of the DNA and >52% of the
total protein [41].

The investigation initially explored the effects of different experimental factors, such as
column loading height, linear flow rate, and sample volume, on sample purification using
CaptoTM Core 700. Preliminary purification of samples using varied column bed heights
revealed no significant differences in the recoveries of haemagglutinin and the removal of
impurities like host cell residual protein and host cell residual DNA (p > 0.05). CaptoTM

Core 700, a new composite packing material, consists of an inert, unfunctionalized shell and
a core with an octylamine ligand. The core performs dual functions—molecular exclusion
and ion adsorption—critical for efficient HCP removal. Unlike traditional molecular sieve
gel media, Core 700 achieves separation without requiring a high column bed height.
Increasing the linear flow rate from 50 cm/h to 100 cm/h reduced the retention time of the
viral sample in the column, resulting in a substantial increase in haemagglutinin retrieval to
71.50% (p < 0.05). However, this also led to a notable decrease in contaminant elimination.
Lower up-sampling flow rates extended sample retention in the column bed, allowing some
virus particles to pass through the inert shell via a precisely sized notch. This led to sample
diffusion and zone broadening. Tania P. Pato (2019) conducted a study on a yellow fever
virus vaccine and demonstrated a 41.6% increase in antigen recovery by enhancing the up-
sampling linear flow rate from 200 cm/h to 500 cm/h, with a corresponding spike in HCP
content [19]. The reduction in the removal of residual DNA from host cells is attributed to
the DNA fragment size exceeding the bead pore size (with a 700 kDa molecular weight
threshold) [42]. This results in shorter retention times hindering DNA fragments from
promptly binding to the octylamine ligand. Furthermore, this study established an inverse
relationship between Core 700′s ability to eliminate impurities and the volume of sample
uptake. Compared to a sample volume of 0.25 BV, total protein and residual DNA removal
decreased, while haemagglutinin recovery increased at a sample volume of 1 BV, causing a
shift in the total protein to haemagglutinin content ratio. The dynamic loading for CaptoTM

Core 700, according to the manufacturer, is 13 mg of ovalbumin per mL of packing at a
flow rate of 200 cm/h [33]. Higher protein loadings increase the importance of up-sample
volume relative to the column volume, affecting separation and purification results due
to pore diffusion effects. Higher viral loadings may negatively impact resolution [21].
Optimal test parameters were chosen based on CaptoTM Core 700 chromatography test
conditions. After the combined purification process, the final haemagglutinin recovery rate
in the primary purification solution of H5N1 HPAIV reached 72.26%, slightly exceeding
the antigen recovery of chicken embryo stromal influenza virus purified via Core 700 by
Hans Blom (69%) [37]. Similarly, the total virus yield for cell culture-derived influenza
A/PR/8/34 (H1/N1) virus of a membrane-based purification process was 75% [43].

To further eliminate remaining proteins (3145 ± 116.05 ng/mL) from the host cells
of the primary H5N1 HPAIV purification solution, we chose Polar MC-HIC, using the
hydrophobic nature of phenyl over butyl [44]. This choice facilitated the ongoing isolation
and purification of the viral fluid previously processed by CaptoTM Core 700. Addition-
ally, the presence of 1 mol/L (NH4)2SO4 enhanced the binding of target proteins to the
hydrophobic medium, increasing their conformational stability while decreasing solubility.
Consequently, Polar MC-HIC, equipped with phenyl functional groups, was selected for
the subsequent isolation and purification of the viral fluid treated with CaptoTM Core
700. The tight binding of target proteins to the hydrophobic medium induced by 1 mol/L
(NH4)2SO4 resulted in increased conformational stability and reduced solubility. Employ-
ing concentration gradient elution with (NH4)2SO4 led to improved antigen separation
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from heteroproteins, accompanied by a decrease in residual proteins and host cell DNA
to (2112.60 ng/mL, 6.4 ng/mL), respectively. Furthermore, the antigen’s recovery rate
reached 87.14% (68.59 µg/mL). In a similar manner, Influenza A viral fluids were isolated
by Thomas Weigel through initial purification with Capto Q by HIC (with polypropylene
glycol as a functional group), achieving the removal of 57.3% total protein and 45.7% host
cell residual DNA [45]. Finally, to validate the separation of H5N1 HPAIV samples and
characterize their purity, SDS-PAGE, Western blot, HPLC, and TEM were employed. The
results demonstrated that after applying CaptoTM Core 700 and hydrophobic interaction
chromatography in the two-step purification process, the H5N1 HPAIV samples exhibited
significant purity improvement, with a noteworthy removal of impurities.

The Con A agarose medium chromatography resin is efficient in purifying glycopro-
teins containing mannitol and glucose residues, along with other sugar types. Moreover,
affinity chromatography resin proves advantageous for the purification of glycoproteins
and glycolipids, offering high specificity and efficient recovery of target proteins [46]. In
addition, alternative ion chromatography has been utilized for the analysis and purification
of the influenza virus HA glycoprotein.

Numerous studies highlight the challenge of removing host cell residual proteins and
DNA from cell-based vaccines using the traditional downstream purification approach
applied to chicken embryo-based vaccines [47,48]. This often necessitates multiple costly
and labor-intensive downstream purification steps. Further investigation is warranted,
considering the possibility that the binding of DNA fragments to viral particles and viral
protein aggregates during the production process might be a contributing factor [49].

The results of this study demonstrate that the composite model medium CaptoTM

Core 700, coupled with HIC, provides a straightforward and highly effective method for
purifying H5N1 HPAIV. In addition, the reproducibility and reliability of the downstream
purification process was validated in the production of the clinical samples of H5N1
HPAIV vaccine. Although only one type of strain is used for the development of the
two-step purification process, a specific focus also was laid on the investigation of the
downstream purification process of H7N9, it was found that the two-step purification
process was suitable for H7N9 as well and achieved ideal purification effect. In summary,
this purification method is pivotal in laying the foundation for the subsequent scale-up of
the downstream process for cell culture-derived influenza vaccine production.
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