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Abstract: Avian coccidiosis arises from co-infection involving multiple Eimeria species, which could
give rise to substantial economic losses in the global poultry industry. As a result, multivalent
anticoccidial vaccines containing common Eimeria antigens offer considerable promise for controlling
co-infection in clinical practice. In our previous study, Elongation factor 2 (EF2) was deemed as an
immunogenic common antigen across various Eimeria species. This current investigation aimed to
further assess the immunogenicity and protective efficacy of EF2 in recombinant subunit vaccine
format against three Eimeria species. The EF2 gene cloned from Eimeria maxima (E. maxima) cDNA
was designated as EF2 of E. maxima (EmEF2). The immunogenicity of the recombinant protein
EmEF2 (rEmEF2) was assessed through Western blot analysis. The evaluation of the vaccine-induced
immune response encompassed the determination of T lymphocyte subset proportions, cytokine
mRNA transcription levels, and specific IgY concentrations in rEmEF2-vaccinated chickens using
flow cytometry, quantitative real-time PCR (qPCR), and indirect enzyme-linked immunosorbent assay
(ELISA). Subsequently, the protective efficacy of rEmEF2 was evaluated through vaccination and
challenge experiments. The findings demonstrated that rEmEF2 was effectively recognized by the
His-tag monoclonal antibody and E. maxima chicken antiserum. Vaccination with rEmEF2 increased
the proportions of CD4+ and CD8+ T lymphocytes, elevated IL-4 and IFN-γ mRNA transcription
levels, and enhanced IgY antibody levels compared to the control groups. Moreover, compared to
the control groups, vaccination with rEmEF2 led to decreased weight loss, reduced oocyst outputs,
and alleviated enteric lesions. Furthermore, in the rEmEF2-immunized groups, challenges with
E. maxima and E. acervulina resulted in anticoccidial index (ACI) scores of 166.35 and 185.08, showing
moderate-to-excellent protective efficacy. Nevertheless, challenges with E. tenella and mixed Eimeria
resulted in ACI scores of 144.01 and 127.94, showing low protective efficacy. In conclusion, EmEF2, a
common antigen across Eimeria species, demonstrated the capacity to induce a significant cellular
and humoral immune response, as well as partial protection against E. maxima, E. acervulina, and
E. tenella. These results highlight EmEF2 as a promising candidate antigen for the development of
multivalent vaccines targeting mixed infections by Eimeria species.

Keywords: avian coccidiosis; common antigen; EF2; multivalent vaccine; co-infection

1. Introduction

Coccidiosis in chickens, characterized by a hemorrhagic presentation, typically results
in high mortality rates, subpar weight gains, and inefficient food conversion ratios. This
has a profound impact on chicken production and overall welfare [1,2]. In 2016, the global
economic burden caused by chicken coccidiosis arising from multiple Eimeria species was
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estimated to have surpassed GBP 10.4 billion [3,4]. Avian coccidiosis is prevalent world-
wide, with an incidence ranging from 70% to 90% [5], often stemming from mixed infections
involving multiple Eimeria species [6]. Currently, anticoccidial drugs have been the primary
approach for managing avian coccidiosis [7,8]. However, the continuous occurrence of drug
resistance and the presence of drug residues in poultry products are constantly escalating,
which has led to the search for new approaches, such as the use of anticoccidial vaccines as
a substitute for chemoprophylaxis prevention to control coccidiosis [9,10]. In recent years,
vaccination with innovative vaccine types, including subunit vaccines, DNA vaccines, and
live vector vaccines, has emerged as a promising strategy [11–14]. Recent research has
demonstrated the successful utilization of various Eimeria antigens to develop neotype
anticoccidial vaccines that offer effective protection [11,14–20]. However, the majority
of these antigens are derived from single Eimeria species and do not fulfill the clinical
requirement for controlling mixed Eimeria infections.

As avian coccidiosis typically arises from mixed infections involving multiple Eimeria
species in clinical settings, identifying common proteins shared by various Eimeria species
becomes essential for the development of multivalent vaccines against this poultry disease.
Several Eimeria common antigens have been reported in this regard. For instance, Talebi
discovered a 45 kDa immunogenic protein that was recognized by chicken antiserum
against E. maxima and remained conserved among five Eimeria species [21]. A common
antigen of all chicken Eimeria species has been clearly identified by Sasai et al., which is
present on motile stages and can be recognized by chicken monoclonal antibodies against
E. acervulina sporozoites; in addition, the presence of this antigen has been found in two
closely related coccidian parasites (Toxoplasma and Neospora) [22]. In our previous studies,
we successfully identified five common immunodominant antigens displaying an amino
acid sequence similarity of over 93% among three Eimeria species (Eimeria maxima, Eimeria
acervulina, and Eimeria tenella). Notably, two of these antigens have been demonstrated to
provide effective protection against infections caused by these three Eimeria species, both
individually and in combination [23–25]. These studies strongly underscore the potential
of Eimeria common antigens as prospective candidate components for the development of
effective, safe, and stable multivalent vaccines against avian coccidiosis in poultry.

Elongation factor 2 (EF2), a member of the GTP-binding translation elongation factor
family, has garnered attention in various research domains [26–29]. It has been demon-
strated to exhibit a high degree of conservation among various apicomplexan protozoa and
has been proposed as a potential target for drugs or vaccine candidate antigens against
protozoan diseases [30,31]. In the case of Leishmania, Agallou et al. reported remarkable EF2
conservation between strains, including L. infantum, L. donovani, L. major, and L. braziliensis,
with amino acid sequence identities ranging from 98% to 100% [32]. Furthermore, EF2 was
identified as a T cell-stimulating antigen capable of eliciting protective cellular immune
responses against experimental visceral leishmaniosis [32–34]. Extensive analysis of 1685
clinically infected Plasmodium samples from 17 countries revealed the high conservation of
EF2 in Plasmodium genomic sequences, and inhibiting EF2 at multiple stages of Plasmodium
growth resulted in a substantial reduction in the Plasmodium population of up to 98% [35].
In the study of Plasmodium, in order to block the transmission of malaria, Dechering et al.
identified drugs targeting EF2 as important candidates [36]. In our previous research,
among Eimeria species, EF2 was deemed as a common immunodominant antigen, sharing
an astonishing amino acid sequence similarity of 99% among the three Eimeria species
studied [24]. However, the protective efficacy of EF2 against infections caused by different
Eimeria species remained unknown. In this study, the EF2 gene of Eimeria maxima (EmEF2)
was ligated with the prokaryotic expression vector to produce the recombinant protein
EmEF2 (rEmEF2). Subsequently, we systematically assessed the cellular and humoral
immune responses triggered by EF2 in the form of rEmEF2 in chickens. Finally, we eval-
uated the protective efficacy of rEmEF2 through vaccination and challenge experiments.
These results indicate that EmEF2 may confer partial protection against multiple Eimeria
infections and hold promise as a candidate antigen for the development of multivalent
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vaccines to control avian coccidiosis in practical clinical applications. It may provide new
ideas for the development of multivalent vaccines against other pathogens.

2. Materials and Methods
2.1. Animals, Parasites and Antiserum

Hy-Line chickens (1-day-old) were raised under stringent condition in a coccidia-free
environment in the Laboratory Animal Center of Nanjing Agricultural University. Mean-
while, chickens had unrestricted access to water and feed without any coccidiostat during
the experimental period. Each chicken underwent oral infection with 1 × 104 E. acervulina,
and oocysts were collected from feces 4–7 days post-infection. Subsequently, each chicken
was orally infected with 1 × 104 E. maxima and 8 × 103 E. tenella, and oocysts were collected
from feces 5–8 days post-infection. Oocysts were collected from feces using the saturated
saline floatation method. Sporulated oocysts of E. maxima, E. acervulina and E. tenella were
stored at 4 ◦C in 2.5% potassium dichromate. To ensure the viability of the parasites,
sporulated oocysts were propagated in chickens seven days prior to the challenge trials. All
animal procedures and experiments were subject to rigorous ethical scrutiny and received
approval from the Committee on Experimental Animal Welfare and Ethics of Nanjing
Agricultural University (Approval number: PTA 2020001). The non-infected chicken serum
and E. maxima chicken antiserum were provided by our lab [16] and used for subsequent
Western blot analysis.

2.2. Cloning of EmEF2 and Recombinant Plasmid Construction of pET-32a-EmEF2

Total RNA extraction from 1 × 108 E. maxima was carried out utilizing a Total RNA
Extraction Kit (Omega Bio-Tek, Norcross, GA, USA). Then, using the HiScript III Q RT
SuperMix for qPCR (+gDNA wiper) (Vazyme Biotech, Nanjing, China), the extracted total
RNA from E. maxima served as the starting material for cDNA synthesis. The reverse
transcription steps were as follows: 1 µg of total RNA and 4 µL of 4 × gDNA wiper Mix
were added to a RNase-free EP tube, followed by RNase-free water to 16 µL and 42 ◦C for
2 min. We then added 4 µL of 5 × HiScript III qRT SuperMix to the tube at 37 ◦C for 15 min,
then 85 ◦C for 5 s. The cDNA was used for the subsequent experiments. Restriction enzyme-
anchored primers were designed and guided by the sequence of E. maxima EF2 (EmEF2)
available in GenBank (No. 25335462). The forward primer was anchored with EcoR I
(Takara Biotechnology, Dalian, China) and the reverse primer was anchored with Hind III
(Takara Biotechnology, Dalian, China) (Table 1). PCR amplification was executed utilizing
2 × Taq Master Mix (Dye Plus) (Vazyme Biotech, Nanjing, China). The PCR program for
the amplification of EmEF2 gene was carried out according to the manufacturer’s protocols.
In the meantime, changing the extension time based on the length of EmEF2 gene fragment.
The program for EmEF2 was as follows: 95 ◦C, 3 min; 30 cycles (95 ◦C, 15 s; 60 ◦C, 30 s;
72 ◦C, 149 s); and 72 ◦C, 5 min. The PCR product of EmEF2 was recovered after EcoR I
and Hind III digestion in 10 × K Buffer (Takara Biotechnology, Dalian, China) at 37 ◦C
and was subsequently inserted into the pET-32a (Invitrogen Biotechnology, Carlsbad, CA,
USA). The constructed pET-32a-EmEF2 was subjected to validation through restriction
enzyme digestion and sequence analysis. The complete open reading frame (ORF) of
EmEF2 was aligned in the GenBank databases using the Basic Local Alignment Search
Tool. Antigenicity analysis of the EmEF2 was performed by Protean of DNAStar software
(Version 11.0, DNASTAR Inc., Madison, WI, USA).

Table 1. Primers of E. maxima EF2 (EmEF2).

Gene Primer (5′-3′) Accession
No.

EmEF2
Forward: CCGGAATTCATGGTGAATTTTTCAGTGGATC

25335462Reverse: CCCAAGCTTTTACAGCTTGTCGTAGTAGTGGTCG
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2.3. Expression of Recombinant Protein EmEF2 and Western Blot Analysis

pET-32a-EmEF2 was transformed into ampicillin-resistant Escherichia coli (E. coli)
BL21 (DE3) (Vazyme Biotech, Nanjing, China) to express the recombinant protein EmEF2
(rEmEF2). The rEmEF2 was purified using a protein affinity chromatography column
(His-Trap™ FF, Cytiva, Marlborough, MA, USA). Subsequently, the purification of rEmEF2
was verified through SDS-PAGE analysis. According to the manufacturer’s protocols,
the concentration of purified rEmEF2 was measured using the BCA Protein Assay Kit
(Beyotime, Shanghai, China). The concentration of rEmEF2 was 100 µg/mL and the rEmEF2
was used for the following Western blot analysis. Then, the rEmEF2 was 400 µg/mL
and used in the subsequent determination of the immune responses and experimental
assessment of the protective efficacy of rEmEF2. In addition, the rEmEF2 was cryogenically
stored by freezing individual tubes at −80 ◦C.

The presence of the rEmEF2 was determined through a Western blot assay, using
E. maxima chicken antiserum, non-infected chicken serum or His-tag monoclonal antibody
(Proteintech, Wuhan, China) as primary antibodies, respectively. Here is a concise overview
of the procedure: After conducting the SDS-PAGE assay, the purified rEmEF2 was trans-
ferred onto a polyvinylidene fluoride (PVDF) membrane (Millipore, Billerica, MA, USA).
Subsequently, the PVDF membranes were incubated with E. maxima chicken antiserum
(1:100 dilution), non-infected chicken serum (1:100 dilution) or His-tag monoclonal anti-
body (1:200 dilution) for 1 h at 37 ◦C, respectively. The non-infected chicken serum was
regarded as the negative control. After the PVDF membranes were separately incubated
with goat anti-chicken IgY H&L (HRP) (1:20,000 dilution, Abcam, Cambridge, UK) or goat
anti-mouse IgG H&L (HRP) (1:10,000 dilution, Abcam, Cambridge, UK) for 45 min at 37 ◦C.
The detection of bound antibodies was achieved by initiating a color development process,
utilizing an HRP-DAB substrate chromogenic kit (Tiangen, Beijing, China).

2.4. Determination of the Immune Responses Induced by rEmEF2 in Chickens

Chickens (14-day-old) were randomly allocated into three groups, and each group
comprised six chickens and underwent the primary immunization. Among these groups,
two control groups including a PBS control and a pET-32a tag protein control were intramus-
cularly injected in the leg as follows: PBS and 200 µg of pET-32a tag protein, respectively.
In parallel, the experimental group received intramuscular injections of 200 µg of rEmEF2
in the leg. Following the primary immunization, the secondary immunization was admin-
istered after a 7-day interval, and the injection dose of the secondary immunization was
the same as the primary immunization. The timeline for the determination of immune
responses induced by immunized chickens is shown in Figure 1.

On the 7th day following each vaccination, spleen lymphocytes were gathered in three
chickens which were stochastically selected in each group. The spleens were meticulously
ground in 5 mL of PBS and filtered with cell strainers. The filtrate containing spleno-
cytes was added to the lymphocyte separation solution (TBDscience, Tianjin, China) and
centrifuged at 500× g for 20 min, and the lymphocytes located in the middle layer were
extracted. The lymphocytes were analyzed using the CD4+ and CD8+ T cell subpopulations.
Whereafter, CD3 mouse anti-chicken FITC antibody (Southern Biotechnology Associates,
Birmingham, AL, USA), CD4 mouse anti-chicken PE antibody (Southern Biotechnology
Associates, Birmingham, AL, USA) and CD8 mouse anti-chicken PE antibody (Southern
Biotechnology Associates, Birmingham, AL, USA) were used to detect the T cell subpop-
ulations with a FACS Calibur flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA).
In brief, each group’s lymphocytes suspension was adjusted to 1 × 106 cells in 100 µL of
PBS. Subsequently, CD3 and CD4 antibody or CD3 and CD8 antibody were used to bind
chicken CD3+ CD4+ or CD3+ CD8+, and T cells were incubated for 25 min at 4 ◦C without
light following the manufacturer’s protocols.
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Figure 1. Experimental protocol timeline. The chickens received the first and second vaccinations
at 14 and 21 days of age, respectively. In the timeline for the determination of immune responses
induced by immunized chickens, spleen lymphocytes and serum samples were collected from
immunized chickens at 21 days old and 28 days old, respectively. In timeline of experimental
assessment of protective efficacy of rEmEF2 against three Eimeria, data collection for E. acervulina
groups (Trial 2) occurred on the sixth day after the challenge (34 days old), while data collection for
other Eimeria species (trial 1, 3 and 4) was conducted on the seventh day (35 days old). The collected
data included weight gain, enteric lesion score, and OPG. The figure was created in BioRender.com
(https://www.biorender.com/ accessed on 2 December 2023).

To assess the mRNA transcription levels of the IL-4 gene (GenBank No. AJ621735)
and IFN-γ gene (GenBank No. Y07922) in immunized chickens, a quantitative real-time
PCR (qPCR) assay was conducted, with the GAPDH gene (GenBank No. K01458) serving
as internal control. The primer sequences, amplification efficiency (%) and correlation
coefficients (r2) of GAPDH, IL-4 and IFN-γ for qPCR are based on previously published
articles from our lab [16], and the primer sequences are shown in Table 2. On the 7th day
following each vaccination, the total RNA from spleen lymphocytes was extracted from
each group of three chickens and subsequently reverse-transcribed to cDNA, following
previous protocols. The ChamQTM SYBR qPCR Master Mix kit (Vazyme Biotech, Nanjing,
China) was employed as the manufacturer’s instructions by the qPCR assay. The qPCR
amplification reaction system contained 10 µL of 2 × ChamQTM SYBR qPCR Master Mix,
0.4 µL of forward and reverse primers, 2 µL of cDNA and 7.2 µL of RNase-free water. The
triplicated samples were set in each qPCR assay. The reaction procedure of the qPCR was
as follows: 95 ◦C, 30 s; 40 cycles (95 ◦C, 10 s; 60 ◦C, 30 s). The melt curve stage of qPCR
was as follows: 95 ◦C, 15 s; 60 ◦C, 1 min; 95 ◦C, 15 s. The qPCR reaction was performed
on an ABI prism 7300 Fast Real-Time PCR System (Applied Biosystems, Carlsbad, CA,
USA). The relative quantification of cytokine gene mRNA was determined using the 2−∆∆Ct

method for precise quantification based on the methods previously established by Livak
and Schmittgen (2001) [37].

Table 2. Primer sequences of GAPDH, IL-4 and IFN-γ.

RNA Target Primer Sequence (5′-3′) Accession No.

GAPDH
Forward: GGTGGTGCTAAGCGTGTTAT

K01458Reverse: ACCTCTGTCATCTCTCCACA

IL-4
Forward: ACCCAGGGCATCCAGAAG

AJ621735Reverse: CAGTGCCGGCAAGAAGTT

IFN-γ
Forward: GGTGGTGCTAAGCGTGTTAT

Y07922Reverse: ACCTCTGTCATCTCTCCACA

https://www.biorender.com/
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Chicken serum samples were collected from three chickens, which were randomly
selected on the 7th day following each vaccination in each group. The indirect enzyme-
linked immunosorbent assay (ELISA) was conducted to assess the rEmEF2-specific serum
IgY antibody levels. In the indirect ELISA procedure, rEmEF2 was diluted to 10 ng/µL,
and 200 µL was coated in flat-bottomed 96-well plates (MarxiSorp, Nunc, Waltham, MA,
USA) for 16 h at 4 ◦C. Subsequently, the plates were washed five times with PBST (PBS with
0.05% Tween20) and blocked with 200 µL of PBST containing 5% bovine serum albumin
(BSA) (Yifeixue, Nanjing, China) for 2 h at 37 ◦C. The primary antibody was chicken serum
samples (1:50 dilution) for 1 h at 37 ◦C, while the secondary antibody was goat anti-chicken
IgY H&L (HRP) antibody (1:40,000 dilution). Non-infected chicken serum (1:50 dilution)
and PBS were used as controls during the analysis. In the end, the color production was
detected with 100 µL of 3,3′,5,5′-tetramethylbenzidine (TMB) (Tiangen, Beijing, China) in
the dark at RT for 8 min and observed under OD450 absorbance with a microplate reader
(Thermo Fisher Scientific, Waltham, MA, USA).

2.5. Experimental Assessment of Protective Efficacy of rEmEF2 against Infections by Three Eimeria
Species in Chickens

In order to evaluate the protective efficacy of rEmEF2 (Table 3), four immunization
challenge trials were carried out. Trial 1, trial 2, trial 3 and trial 4 were performed to
evaluate the protective efficacy of rEmEF2 against E. maxima, E. acervulina, E. tenella and
mixed Eimeria, respectively. Healthy chickens (14-day-old) were randomly divided into
thirteen groups based on similar body weights. Among these, four experimental groups
received intramuscular injections of 200 µg of rEmEF2 into the leg, with an injection volume
of 0.5 mL. The remaining nine groups served as controls and included a non-immunized
non-challenged group, four non-immunized challenged groups and four pET-32a tag
protein control groups. The pET-32a tag protein control groups were injected with the same
dose of pET-32a tag protein as the experimental groups. The subsequent manipulations
were performed as follows. When the chickens reached an age of 21 days, the pET-32a tag
protein control groups and the rEmEF2 experimental groups were, respectively, given the
same dose as the first immunization for the second immunization. All chickens were orally
challenged with 1 × 105 E. maxima (trial 1), 1 × 105 E. acervulina (trial 2), 5 × 104 E. tenella
(trial 3), or a mixture of these three Eimeria species (trial 4), except for the non-immunized
non-challenged group, at age of 28 days according to the grouping in Table 3. The timeline
of the protocol schemes of the trials is shown in Figure 1. The life cycles of various Eimeria
species exhibit distinctions, resulting in diverse peak points for fecal oocyst shedding.
Specifically, the highest fecal oocyst-shedding point for E. tenella and E. maxima occurs on
the seventh day after challenge, whereas E. acervulina reaches its peak on the sixth day
post-challenge. The data collection for E. acervulina groups occurred on the sixth day after
the challenge, while data collection for other Eimeria species was performed on the seventh
day. The collected data included body weight gain, enteric lesion score, oocyst shedding
and the anticoccidial index (ACI) to assess the protective efficacy of the rEmEF2. We
calculated the body weight gain of each chicken based on the difference in weight between
the challenge time and the slaughter time. Based on the methods previously established
by Hodgson (1970) [38], oocyst counts were carried out using a McMaster chamber. A
numerical scale ranging from normal to severe (0 to 4) was used to score the lesions in
the chicken intestine, as per Johnson and Reid (1970) [39]. The oocyst-shedding decrease
ratio was calculated using the formula: (mean oocyst amount of the challenged control
group-that of the vaccinated groups)/oocyst amount of control group × 100%. ACI was
calculated using the formula: (relative rate of weight gain + survival rate) − (lesion index +
oocyst index) (McManus et al., 1968) [40]. An ACI of less than 120 was deemed to indicate
no protective efficacy, while an ACI ranging from 120 to less than 160 was categorized as
indicative of low-level protective efficacy. ACI values falling within the range of 160 to less
than 180 were considered to represent moderate protective efficacy, while an ACI of 180 or
higher was regarded as indicative of excellent protective efficacy.
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Table 3. Protective efficacy of rEmEF2 vaccines against the challenge infections by E. maxima, E.
acervulina, E. tenella and mixed Eimeria.

Trials Groups N Initial Body
Weight (g) Weight Gain (g)

Relative Body
Weight Gain

(%)

Mean Enteric
Lesion
Scores

OPG (×105)
Oocyst

Decreased
Ratio (%)

Anticoccidial
Index (ACI)

1

Non-immunized
non-challenged 14 138.25 ± 6.96 a 103.83 ± 36.48 b 100.00 0 ± 0 a 0 ± 0 a 100.00 200

Non-immunized challenged 9 135.32 ± 10.01 a 26.82 ± 16.00 a 25.13 3.78 ± 0.44 c 1.79 ± 0.985 c 0.00 47.35
pET-32a tag protein control 12 138.73 ± 7.22 a 43.31 ± 12.22 a 39.99 3.92 ± 0.29 c 2.07 ± 1.05 c −15.64 60.82

rEmEF2 14 140.68 ± 4.52 a 94.21 ± 20.06 b 87.06 1.07 ± 0.47 b 0.522 ± 0.257 b 70.84 166.35

2

Non-immunized
non-challenged 14 138.25 ± 6.96 a 78.36 ± 34.14 b 100.00 0 ± 0 a 0 ± 0 a 100.00 200

Non-immunized challenged 15 140.9 ± 4.70 a 52.13 ± 16.2 a 64.16 3.93 ± 0.26 b 10.1 ± 8.22 c 0.00 84.78
pET-32a tag protein control 14 138.34 ± 6.17 a 52.01 ± 25.14 a 65.47 3.79 ± 0.43 b 6.67 ± 4.79 c 33.96 107.61

rEmEF2 16 136.76 ± 10.54 a 76.41 ± 21.81 b 97.58 0.75 ± 0.58 a 1.67 ± 1.31 b 83.47 185.08

3

Non-immunized
non-challenged 14 138.25 ± 6.96 a 103.83 ± 36.48 b 100.00 0 ± 0 a 0 ± 0 a 100.00 200

Non-immunized challenged 14 138.51 ± 6.71 a 25.84 ± 36.86 a 24.08 3.86 ± 0.36 c 91.9 ± 64.8 c 0.00 65.51
pET-32a tag protein control 10 139.65 ± 6.12 a 45.36 ± 14.78 a 43.11 3.80 ± 0.42 c 138 ± 98.2 c −50.16 65.11

rEmEF2 14 140.34 ± 3.48 a 78.23 ± 31.54 b 71.87 2.29 ± 1.38 b 5 ± 6.4 b 94.56 144.01

4

Non-immunized
non-challenged 14 138.25 ± 6.96 ab 103.83 ± 36.48 b 100.00 0 ± 0 a 0 ± 0 a 100.00 200

Non-immunized challenged 7 140.06 ± 5.46 ab 0.10 ± 25.34 a 0.10 3.71 ± 0.49 c 36.4 ± 32.9 c 0.00 22.96
pET-32a tag protein control 15 140.06 ± 6.85 b −5.41 ± 14.44 a −5.23 3.93 ± 0.26 c 41.3 ± 32.3 c −13.46 15.44

rEmEF2 13 134.88 ± 5.41 a 59.47 ± 22.91 b 57.56 2.46 ± 1.33 b 2.6 ± 1.1 b 92.86 127.94

Notes: (1) trial 1, trial 2, trial 3 and trial 4 were performed to evaluate the protective efficacy of rEmEF2 against
E. maxima, E. acervulina, E. tenella and mixed Eimeria, respectively. (2) Value = mean ± standard deviation (S.D.).
(3) Data comparisons were performed only within the challenged groups of the same Eimeria species, not among
the challenged groups of different Eimeria species. (4) Data collection for the E. acervulina groups occurred on
the sixth day after the challenge, while data collection for other Eimeria species was performed on the seventh
day. (5) The mixed Eimeria included 1 × 105 E. maxima, 1 × 105 E. acervulina and 5 × 104 E. tenella. (6) Significant
difference (p < 0.05) between data was annotated with different letters. No significant difference (p > 0.05) between
data was annotated with the same letter.

2.6. Statistical Analysis

The data were analyzed for normal distribution using SPSS software (Version 27.0.1,
SPSS Inc., Chicago, IL, USA). Statistical analysis was conducted using GraphPad Prism
software (Version 8.0.2, GraphPad Software Inc., San Diego, CA, USA), and the signifi-
cance of differences between groups was assessed through a Kruskal–Wallis H test. The
data were presented in the format of mean ± standard deviation (S.D.). A significance
level of p < 0.05 was considered statistically significant, while p > 0.05 indicated a lack of
significant difference.

3. Results
3.1. Cloning of EmEF2 and Recombinant Plasmid Construction of pET-32a-EmEF2

The EmEF2 was successfully amplified using E. maxima cDNA, as previously described.
As shown in Figure 2A, the result of the agarose gel electrophoresis showed that the band
had a size of 2499 bp, which corresponds to the molecular weight of EmEF2 (Figure 2A,
lane 1). Subsequently, the EmEF2 gene was ligated with a prokaryotic expression plasmid:
the pET-32a. The recombinant plasmid of pET-32a-EmEF2 was constructed. As shown
in Figure 2B, after restriction enzyme digestion (EcoR I and Hind III) of the constructed
pET-32a-EmEF2, the results showed that the pET-32a linearized plasmid fragment and the
target band of 2499 bp were observed, which were consistent with the expected size of
EmEF2 (Figure 2B, lane 2). In addition, the sequence analysis confirmed that EmEF2 shared
100% identity with the sequence of E. maxima EF2 available in GenBank (No. 25335462).
DNAStar Protean analysis revealed that EmEF2 is immunogenic.

3.2. Purification of Recombinant Protein EmEF2 and Western Blot Analysis

The recombinant protein EmEF2 (rEmEF2) was analyzed through SDS-PAGE and
Western blot analysis. As shown in Figure 3A, the rEmEF2 was purified via a protein
affinity chromatography column; a band appeared at 110 kDa that was consistent with the
expected size of rEmEF2 (Figure 3A, lane 1). Furthermore, Western blot analysis confirmed
that the purified rEmEF2 was recognized by the His-tag monoclonal antibody (Figure 3B,
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lane 1) and E. maxima chicken antiserum (Figure 3B, lane 2). Meanwhile, the rEmEF2 was
not recognized by the negative chicken serum (Figure 3B, lane 3).
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Figure 2. E. maxima EF2 (EmEF2) gene cloning and recombinant plasmid construction of pET-32a-
EmEF2. (A) Cloning of EmEF2 gene from E. maxima cDNA. M: DNA marker DL5000. Lane 1: Amplifi-
cation product of EmEF2 (2499bp). (B) Restriction enzyme digestion identification of pET-32a–EmEF2.
M: DNA marker DL10000. Lane 2: The pET-32a-EmEF2 was identified by EcoR I and Hind III restric-
tion enzyme digestion, resulting in the pET-32a linearized plasmid fragment and the EmEF2.
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Figure 3. Purification of recombinant protein EmEF2 (rEmEF2) and Western blot analysis. (A) SDS-
PAGE analysis of rEmEF2 purification (110 kDa). M: protein mid-molecular-weight marker. Lane 1:
The rEmEF2 was purified via protein affinity chromatography column (110 kDa). (B) Western blot
analysis of rEmEF2 (110 kDa). M: protein mid-molecular-weight marker. Lane 1: The purified rEmEF2
was recognized by the His-tag monoclonal antibody as primary antibody and goat anti-mouse IgG
H&L (HRP) as secondary antibody. Lane 2: The purified rEmEF2 was recognized by the E. maxima
chicken antiserum as primary antibody and goat anti-chicken IgY H&L (HRP) as secondary antibody.
Lane 3: The non-infected chicken serum was primary antibody and served as negative control, while
the secondary antibody was goat anti-chicken IgY H&L (HRP).
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3.3. The Evaluation of Immune Responses Induced by rEmEF2 in Chickens

After 7 days of the first and second immunization with rEmEF2, flow cytometry
was used to evaluate the proportion of CD4+ and CD8+ T lymphocytes in immunized
chickens. The results are shown in Figures 4 and 5A. Remarkably, the proportion of CD4+

T lymphocytes increased after immunization with rEmEF2 (Figure 5A), when compared to
the pET-32a tag protein control group (p < 0.05). The proportion of CD8+ T lymphocytes
increased after immunization with rEmEF2 (Figure 5A), when compared to the PBS control
group (p < 0.05). Notably, among the PBS control group and the pET-32a tag protein
control group, these control groups showed no statistically significant differences in the
proportions of CD4+ and CD8+ T lymphocytes (p > 0.05).
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Figure 4. The proportion of the T cell subpopulation in chickens immunized with PBS, pET-32a
tag protein and rEmEF2 was determined by flow cytometry 7 days after the first and second immu-
nization. (A) Detection of CD3+CD4+ T lymphocytes in immunized chickens 7 days after the first
immunization. (B) Detection of CD3+CD4+ T lymphocytes in immunized chickens 7 days after the
second immunization. (C) Detection of CD3+CD8+ T lymphocytes in immunized chickens 7 days
after the first immunization. (D) Detection of CD3+CD8+ T lymphocytes in immunized chickens
7 days after the second immunization. 1: PBS control group. 2: pET-32a tag protein control group.
3: rEmEF2 group.



Vaccines 2024, 12, 18 10 of 16Vaccines 2024, 12, x FOR PEER REVIEW  12  of  18 
 

 

 

Figure 5. The immune responses induced in immunized chickens 7 days after the first and second 

immunization. Chickens received the first and second immunizations when aged 14 and 28 days 

old,  respectively. Spleen  lymphocytes and  serum  samples were  collected  from  chickens  in  each 

group 7 days after each immunization. The collected spleen lymphocytes were analyzed for changes 

in  T  cell  subpopulation  and  cytokine mRNA  transcription.  Serum  samples were  analyzed  for 

changes in rEmEF2-specific serum IgY. Significant difference (p < 0.05) between data was annotated 

with different letters. No significant difference (p > 0.05) between data was annotated with the same 

letter. (A) Percentage of T cell subpopulation in the spleen of chickens immunized with PBS, pET-

32a tag protein and rEmEF2. Left: change in CD4+ T lymphocytes. Right: change in CD8+ T lympho-

cytes. (B) Change in the mRNA transcription level of cytokine genes in spleen lymphocytes of chick-

ens immunized with PBS, pET-32a tag protein and rEmEF2. Left: change in IL-4. Right: change in 

IFN-γ. (C) Change in rEmEF2-specific serum IgY induced by immunized chicken serum samples 7 

days after the first and second immunization. 

3.4. Protective Efficacy of rEmEF2 Vaccines against E. maxima, E. acervulina, E. tenella and 

Mixed Eimeria 

The protective efficacy of rEmEF2 was assessed based on parameters such as relative 

weight gain, oocyst decreased ratio, lesion score and ACI. The results of all data are shown 

in Table 3. Chickens immunized with rEmEF2 were then orally challenged with E. maxima, 

E. acervulina, E. tenella and mixed Eimeria, resulting in relative body weight gains, which 

were 87.06%, 97.58%, 71.87% and 57.56% (Table 3), respectively. Notably, the weight gain 

of the experimental groups (immunized with rEmEF2) was significantly higher than that 

of the control groups (non-immunized challenged and pET-32a tag protein control) (p < 

0.05). These findings clearly indicate that immunization with rEmEF2 significantly miti-

gated the weight gain loss caused by Eimeria infection. 

The  reduction  in mean  enteric  lesion  scores  and Oocysts Per Gram  (OPG)  in  the 

rEmEF2-immunized groups were found to be significantly  lower compared to the non-

immunized challenged groups, as well as the pET-32a tag protein control groups (p < 0.05). 

Chickens immunized with rEmEF2 were then orally challenged with E. maxima, E. acer‐

vulina,  E.  tenella  and mixed  Eimeria,  resulting  in  decreased  oocyst  ratios, which were 

70.84%, 83.47%, 94.56% and 92.86% (Table 3), respectively. These findings show that im-

munization with rEmEF2 alleviated the enteric lesions and reduced oocyst output in the 

Eimeria-infected chickens.   

Figure 5. The immune responses induced in immunized chickens 7 days after the first and second
immunization. Chickens received the first and second immunizations when aged 14 and 28 days old,
respectively. Spleen lymphocytes and serum samples were collected from chickens in each group
7 days after each immunization. The collected spleen lymphocytes were analyzed for changes in T
cell subpopulation and cytokine mRNA transcription. Serum samples were analyzed for changes
in rEmEF2-specific serum IgY. Significant difference (p < 0.05) between data was annotated with
different letters. No significant difference (p > 0.05) between data was annotated with the same letter.
(A) Percentage of T cell subpopulation in the spleen of chickens immunized with PBS, pET-32a tag
protein and rEmEF2. Left: change in CD4+ T lymphocytes. Right: change in CD8+ T lymphocytes.
(B) Change in the mRNA transcription level of cytokine genes in spleen lymphocytes of chickens
immunized with PBS, pET-32a tag protein and rEmEF2. Left: change in IL-4. Right: change in IFN-γ.
(C) Change in rEmEF2-specific serum IgY induced by immunized chicken serum samples 7 days
after the first and second immunization.

After 7 days of both the first and second immunization with the rEmEF2, the mRNA
transcription levels of IL-4 and IFN-γ in immunized chickens were assessed by qPCR
analysis. As shown in Figure 5B, the qPCR results indicated that the mRNA transcription
levels of cytokine IL-4 and IFN-γ were increased in the rEmEF2 immunization group
compared to the pET-32a tag protein control group (p < 0.05). Notably, there were no
statistically significant differences in the mRNA transcription levels of cytokines among
the control groups (p > 0.05).

The rEmEF2-specific IgY levels in the serum of chickens immunized with rEmEF2 were
detected using indirect ELISA assays. As exhibited in Figure 5C, the rEmEF2-specific IgY
antibody levels in the rEmEF2-immunized group were higher than the pET-32a tag protein
control group seven days after the first and second immunization (p < 0.05). Notably, there
was no significant difference in IgY antibody levels between the control groups (p > 0.05).

3.4. Protective Efficacy of rEmEF2 Vaccines against E. maxima, E. acervulina, E. tenella and
Mixed Eimeria

The protective efficacy of rEmEF2 was assessed based on parameters such as relative
weight gain, oocyst decreased ratio, lesion score and ACI. The results of all data are shown
in Table 3. Chickens immunized with rEmEF2 were then orally challenged with E. maxima,
E. acervulina, E. tenella and mixed Eimeria, resulting in relative body weight gains, which
were 87.06%, 97.58%, 71.87% and 57.56% (Table 3), respectively. Notably, the weight gain of
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the experimental groups (immunized with rEmEF2) was significantly higher than that of
the control groups (non-immunized challenged and pET-32a tag protein control) (p < 0.05).
These findings clearly indicate that immunization with rEmEF2 significantly mitigated the
weight gain loss caused by Eimeria infection.

The reduction in mean enteric lesion scores and Oocysts Per Gram (OPG) in the
rEmEF2-immunized groups were found to be significantly lower compared to the non-
immunized challenged groups, as well as the pET-32a tag protein control groups (p < 0.05).
Chickens immunized with rEmEF2 were then orally challenged with E. maxima, E. acervulina,
E. tenella and mixed Eimeria, resulting in decreased oocyst ratios, which were 70.84%,
83.47%, 94.56% and 92.86% (Table 3), respectively. These findings show that immu-
nization with rEmEF2 alleviated the enteric lesions and reduced oocyst output in the
Eimeria-infected chickens.

In the case of rEmEF2-immunized groups, challenges with E. maxima and E. acervulina
resulted in ACI scores of 166.35 and 185.08 (Table 3), signifying moderate-to-excellent
protective efficacy. However, challenges involving E. tenella and mixed Eimeria species
yielded ACI scores of 144.01 and 127.94, indicating a low level of protective efficacy.

4. Discussion

Eimeria species are an obligate intracellular parasitic protozoan and can cause avian
coccidiosis clinically, which seriously affects the health, efficiency and sustainable de-
velopment of the domestic poultry industry and brings tremendous and irreversible
loss worldwide [1,41,42]. The data report on avian coccidiosis shows that the preva-
lence range of Eimeria spp. is widespread and the infection rate is high [41]. Recent re-
ports estimate that avian coccidiosis in poultry is responsible for a global cost of around
GBP 10.4 billion [3,4,43]. Anticoccidial drugs and live vaccines have been used strictly in
clinical practice because of their various drawbacks, such as drug resistance and residues,
the high cost of producing live vaccines, the inconvenient transportation of live vaccines
and so on. In existing research on the prevention of avian coccidiosis, neotype vaccines have
been revealed as a potential and prospective strategy against Eimeria species that are short
of the shortcomings of anticoccidial drugs and traditional vaccines [44,45]. Nevertheless,
the search for feasible vaccine candidate antigens has always been a formidable and hard
task in the development of subunit, DNA and live vector vaccines. In Eimeria species,
various antigens have been identified as antigen candidates for subunit vaccines and DNA
vaccines, inducing immune responses and providing immune protection [16,18,19,25]. In
this study, an Eimeria common antigen of EF2 was used to construct neotype anticoccidial
vaccines: recombinant subunit vaccine (rEmEF2). The vaccination challenge trial showed
that the vaccines constructed in the study could provide partial protection against infection
by single or mixed Eimeria species. The result indicates that EmEF2, a common antigen, is
an effective candidate antigen for the substantial development of neotype vaccines against
mixed infection by Eimeria species.

The majority of clinical cases of chicken coccidiosis result from mixed infections [2,46–48].
Consequently, commercially available traditional live anticoccidial vaccines are typically
multivalent. The same holds true for neotype anticoccidial vaccines, as monovalent vaccines
may not adequately address the clinical requirements [5,49]. In recent times, a few strategies
have been employed to develop multivalent vaccines for chicken coccidiosis. One approach
involves the use of a cocktail of antigens derived from different Eimeria species, which
has demonstrated promising immune protection [50,51]. Another strategy entails the
design of multiepitope DNA vaccines comprising multiple genes sourced from various
chicken Eimeria species, displaying notable protective efficacy against multiple Eimeria
strains [45,52]. In this specific study, we chose the common Eimeria antigen EF2 as a
candidate antigen and observed that vaccination with EmEF2 provided partial protection
against infection by three Eimeria species when administered recombinant subunit vaccine
(rEmEF2). These findings present an additional avenue for the development of effective
and safe multivalent anticoccidial vaccines.
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In the present study, we investigated the immune responses elicited by vaccination
with the common Eimeria antigen EF2. Cellular immunity has been recognized as a domi-
nant player in the defense against Eimeria infection, with T cells and their secreted cytokines
playing pivotal roles [53–55]. Notably, CD4+ T cells and CD8+ T cells have demonstrated
significant involvement in combating avian coccidia infections [4]. The IFN-γ as a Th1
cytokine exerts crucial early anticoccidial effects [56–58]. In this study, the proportion of
CD4+ and CD8+ T lymphocytes showed an increase after the first and second immunization
with the rEmEF2, indicating that T cells play a positive role in avian coccidiosis infection.
Specifically, IFN-γ mRNA transcript levels increased seven days after the first and second
immunization with rEmEF2. These results suggest that EmEF2 positively contributes to
resistance against coccidiosis infection, with the observed changes in T lymphocytes and
cytokine levels indicative of a robust cell-mediated immune response. In this study, the
mRNA transcription level of IL-4 was also increased by vaccination with the rEmEF2.
These results align with previous reports [59]. The role of humoral immune responses
has been debated in Eimeria infection. Recent studies have demonstrated that maternal
or passive immunization can provide protective antibodies, impeding the growth and
development of Eimeria species and safeguarding chick offspring [60,61]. In our study,
vaccination with rEmEF2 led to an increase in IgY antibody levels following both the initial
and booster immunization. These results lend support to the notion that IgY contributes
to the anticoccidial immune response. Overall, EmEF2 administered as a recombinant
subunit vaccine induced significant cellular and humoral immune responses, underscoring
its pivotal role in immune protection.

EF2 has been shown to offer critical protection against various parasites. For example,
in Leishmania challenge experiments, EF2 induced elevated levels of IL-12 and IFN-γ, medi-
ated Th1 immune responses, and significantly increased IgG2 antibody levels, resulting
in 65% protection in hamsters [33]. Additionally, the localization of Eimeria tenella EF2
(EtEF2) in second-generation merozoites has been determined, with increased expression
levels, leading to the inhibition of partial invasion-related proteins following diclazuril
treatment [59,62]. These results underscore the significant prospects and potential of EF2 as
a vaccine candidate antigen given its high homology across species and its demonstrated
capacity to confer significant immune protection.

In this study, we used the whole protein of EmEF2 to construct an anticoccidial vaccine.
However, developing peptide vaccines could be considered for controlling chicken coccidio-
sis. Some researchers have proposed that peptide-based vaccines are composed of immuno-
genic epitopes of various antigens to generate highly specific immune responses [63–67].
Since cellular immunity plays a crucial role against avian coccidiosis, selecting peptides of
T cell epitopes as vaccine candidates for development may effectively control the incidence
of avian coccidiosis [68–72]. Therefore, T cell epitopes of several common antigens of
chicken coccidia identified in our previous study, including EF2, can be selected for the
construction of a multivalent epitope vaccine, which can be targeted to increase the level of
cellular immunity induced by the vaccine and thus improve its protective efficacy. We will
be conducting such studies in the future.

Immunization with EmEF2 in chickens effectively ameliorated enteric lesions, reduced
weight loss, and diminished oocyst output in chickens afflicted with single or mixed Eimeria
species infections. Nevertheless, the scope for enhancing their protective efficacy remains.
For example, the incorporation of cytokines such as IL-2 or IFN-γ as adjuvants [73–75],
or their direct inclusion into prokaryotic recombinant plasmids, coupled with potential
adjustments to the dosage of EmEF2 vaccines, may serve to augment the immunoprotective
potency of EmEF2 vaccines.

Since the intramuscular injection route could provide consistency in systemic immune
responses [76], it is commonly employed in studies involving new-generation anticoccidial
vaccines. Nasri et al. reported intramuscular injection as the most prevalent administration
route for new-generation anticoccidial vaccines (n = 43 studies) [77]. In their report, they
took a meta-analysis of the immunization routes used in immunization challenge trials
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which evaluated the protective efficacy of new-generation anticoccidial vaccine candidates
against Eimeria infection in chickens; they found that out of 63 studies, 43 utilized intra-
muscular injection. Notably, 25 studies employed intramuscular injection for delivering
subunit vaccines, indicating its frequent use as a route for administering anticoccidial
subunit vaccines in chickens. Therefore, we also employed the intramuscular route in
this study, resulting in effective immunoprotection. However, intramuscular injection
inevitably causes stress to immune animals, leading to potential deviations in immune
responses. Non-injection immunization (e.g., via eye and nasal drops) [78–80] is more
suitable for large-scale clinical practice than intramuscular immunization. In future studies,
we will consider non-injectable vaccination routes to immunize chickens.

5. Conclusions

In conclusion, EmEF2 is highly immunogenic, elicits immune responses and is able
to provide partial protection against both single and mixed Eimeria species infections,
suggesting that EmEF2 is a promising candidate antigen and offers a hopeful prospect for
the development of anticoccidial vaccines to prevent Eimeria infection.
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