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Abstract: Patients with autoimmune diseases are among the susceptible groups to COVID-19 infection
because of the complexity of their conditions and the side effects of the immunosuppressive drugs
used to treat them. They might show impaired immunogenicity to COVID-19 vaccines and have a
higher risk of developing COVID-19. Using a systematic review and meta-analysis, this research
sought to summarize the evidence on COVID-19 vaccine efficacy, immunogenicity, and safety in
patients with autoimmune diseases following predefined eligibility criteria. Research articles were
obtained from an initial search up to 26 September 2022 from PubMed, Embase, EBSCOhost, ProQuest,
MedRxiv, bioRxiv, SSRN, EuroPMC, and the Cochrane Center of Randomized Controlled Trials
(CCRCT). Of 76 eligible studies obtained, 29, 54, and 38 studies were included in systematic reviews
of efficacy, immunogenicity, and safety, respectively, and 6, 18, and 4 studies were included in meta-
analyses for efficacy, immunogenicity, and safety, respectively. From the meta-analyses, patients with
autoimmune diseases showed more frequent breakthrough COVID-19 infections and lower total
antibody (TAb) titers, IgG seroconversion, and neutralizing antibodies after inactivated COVID-19
vaccination compared with healthy controls. They also had more local and systemic adverse events
after the first dose of inactivated vaccination compared with healthy controls. After COVID-19
mRNA vaccination, patients with autoimmune diseases had lower TAb titers and IgG seroconversion
compared with healthy controls.

Keywords: autoimmune; efficacy; immunogenicity; safety; vaccine; COVID-19

1. Introduction

As of 26 December 2022, there were more than 651 million cases of COVID and more
than 6 million deaths reported worldwide [1]. It is important to understand that certain
groups in the population are higher-risk groups who are more susceptible to severe COVID-
19 infection. These groups consist of people who have comorbidities, such as cancer, chronic
kidney disease, underlying lung disorders, diabetes, dementia, cardiac issues, HIV, other
immunocompromised conditions, neurological diseases, and pregnancy [2].
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One of these susceptible groups is people with autoimmune diseases because of the
complexity of these conditions and the mechanisms underlying the therapeutic effects of
the drugs used to treat them. Medications play a pivotal role in significantly improving the
disease course and outcomes of autoimmune patients. However, the primary disadvantage
of these medications is the immunosuppressive effect they have, which can enhance the risk
of infections. Therefore, there is an emerging demand to prioritize COVID-19 vaccination
for people with autoimmune conditions, as this prevents severe disease outcomes [3,4].

Vaccination is an effort to suppress the case numbers and severity of COVID-19
infections [5,6]. It has been established that vaccines can induce humoral and/or cellular
immune responses to build protection against various infectious diseases, which is an
ability also known as immunogenicity [5,7]. Not only does COVID-19 vaccination protect
healthy individuals from getting infected, it also prevents those who are infected from
getting severely ill, or even dying, from COVID-19 [5–7]. As of 26 December 2022, 13 billion
doses of COVID 19 vaccine had been administered worldwide [1].

An additional cause of concern is that patients with systemic autoimmune diseases
might show impaired immunogenicity to COVID-19 vaccines. These patients can have a
higher risk of developing COVID-19 [8]. Besides the issue of decreased vaccine efficacy
due to the use of immunosuppressive drugs, the safety of the COVID-19 vaccine is also a
concern among these patients [9,10]. Certain vaccine antigens and their adjuvants, such as
aluminum salts (alum), have been claimed to induce autoimmunity in numerous studies.
Adjuvants are usually needed in inactivated and recombinant protein vaccines to boost the
immunogenicity induced by the antigen [4]. Patients with autoimmune diseases are more
susceptible to vaccination-induced autoimmune/autoinflammatory syndrome induced
by adjuvants (ASIA) [11]. SARS-CoV-2 amino acid sequences cross-react with human cell
sequences [12]. The antibody to the S1 spike protein of SARS-CoV-2 has a high affinity for
transglutaminase 3 protein, transglutaminase 2 protein, anti-extractable nuclear antigen,
nuclear antigen, and myelin basic protein [13]. Despite the evidence, this claim should be
interpreted cautiously, as the temporal relationship between the vaccine and autoimmune
events is still unclear [4]. There is also evidence that non-live vaccines, including those
for influenza and pneumococcal virus, do not cause exacerbation of previously diagnosed
autoimmune conditions [3,6].

In the third-phase clinical trial of ChAdOx1 nCoV-19 (AstraZeneca), a simian adenovirus-
vectored vaccine, there was one case of transverse myelitis reported 14 days after vacci-
nation [14]. A cohort study from the health registry in Denmark and Norway showed an
increase in venous thromboembolism cases, including cerebral venous thrombosis, 28 days
after ChAdOx1 nCoV-19, and a slight increase in thrombocytopenia and bleeding cases [15].
Another study reported 39 patients with thrombocytopenia and thrombosis 5–24 days after
vaccination with ChAdOx1 nCoV-19. These patients were diagnosed with vaccine-induced
thrombotic thrombocytopenia (VITT) or thrombosis with thrombocytopenia syndrome
(TTS), which were suspected to be caused by platelets activating antibodies to platelet
factor 4 [16–18]. Brill et al. reported autoimmune hepatitis 6 days after administration of
the Pfizer–BioNTech COVID-19 vaccine in a 35-year-old woman. This case report could not
conclude whether this was a causal relationship or only coincidence [19]. There were also
reports of thrombocytopenia post the mRNA vaccine, which were diagnosed as secondary
immune thrombocytopenia (ITP), but again, it could not be determined whether this was a
coincidence or vaccine-induced ITP [20].

Despite COVID-19 vaccination being recommended, the efficacy, immunogenicity, and
safety of COVID-19 vaccination in people with autoimmune diseases have not been dis-
cussed much. In addition, patients with autoimmune conditions and/or people taking im-
munosuppressants were excluded from clinical trials of approved COVID-19 vaccines [4,21].
Therefore, this systematic review aims to summarize the evidence on COVID-19 vaccine
efficacy, immunogenicity, and safety in autoimmune patients.
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2. Materials and Methods

The protocol for this study has been registered in PROSPERO with the registration
number CRD42022337621. This study was conducted in accordance with the Preferred
Reporting Items of the Systematic Review and Meta-Analysis (PRISMA) checklist [22].

2.1. Eligibility Criteria

The specific inclusion criteria for the systematic review and meta-analysis were as fol-
lows: (1) all randomized controlled trials (RCTs), non-randomized studies of interventions,
cohort studies, case–control studies, and cross-sectional studies; (2) studies with autoim-
mune patients as the population (with the autoimmune condition existing prior to the
intervention); (3) COVID-19 vaccination as the intervention; (4) efficacy, immunogenicity or
safety as outcomes; and (5) publication in English. The exclusion criteria were as follows:
(1) full text or data that cannot be accessed even though the corresponding author has been
contacted.

2.2. Information Sources and Search Strategy

We included all articles on patients with autoimmune diseases published in English
from 2020 to 2022. Electronic databases were searched using PubMed, Embase, EBSCOhost,
ProQuest, MedRxiv, bioRxiv, SSRN, EuroPMC, and the Cochrane Center of Randomized
Controlled Trials (CCRCT) from 6–26 September 2022 for studies evaluating the response to
SARS-CoV-2 vaccines using a combination of keywords and medical subject headings. The
keywords utilized were “autoimmune”; “vaccine” or “immunization” or “vaccination”;
“COVID-19”; “efficacy”; “immunogenicity”; and “safety” or “adverse event” or “adverse
effect”, along with their synonyms and related terms incorporated by the appropriate
Boolean operators. The detailed search strategy for articles is available in the Supplementary
Materials (Table S1).

2.3. Data Extraction

Records were checked for duplicates using Zotero 6.0.19. Two independent researchers
screened the literature search and assessed each study for inclusion by reading titles, ab-
stracts, and full texts. Different opinions during data extraction were resolved by discussion
and the inclusion of a study was decided by the two researchers. Relevant data were ob-
tained from each eligible study by using an extraction sheet, which was prepared and
approved by all the reviewers by reaching a consensus after screening for the eligible stud-
ies. Relevant data that were collected included study characteristics (authors, year, country,
research setting, study design, study duration, sample size); participant characteristics
(autoimmune diagnosis, age, sex, comorbidities); intervention (COVID-19 vaccine plat-
form) and comparison; and outcomes (efficacy, immunogenicity, safety). Two independent
researchers collected the data from each research article. The corresponding authors were
contacted to obtain any information that was not explicitly available.

2.4. Outcome Measures

All studies describing the efficacy, immunogenicity, or safety of the COVID-19 vac-
cine in autoimmune patients were evaluated. The main outcomes were (1) breakthrough
COVID-19 events, severity of infection, hospitalization, and mortality as markers of efficacy;
(2) neutralizing antibodies, antibody titers, and seroconversion as markers of immuno-
genicity; and (3) flares or autoimmune relapses, local reactions, systemic reactions, and
other adverse events as markers of safety.

The pooled efficacy, immunogenicity, and safety data after primary or booster doses
of COVID-19 vaccine were evaluated. Efficacy was measured by the number of COVID-
19 breakthrough infections, severity of COVID-19 infections, and hospitalizations and
mortality related to COVID-19 infection. A COVID-19 breakthrough infection was defined
as an infection after receiving the vaccination. Severity was defined by one of three levels
of COVID-19 infection after vaccination: mild, moderate, or severe. Hospitalization was
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defined as the number of people who were taken to hospital as a result of COVID-19
infection. Mortality was defined as the number of people who died as a result of COVID-19
infection. Immunogenicity was defined as the ability of COVID-19 vaccines to stimulate an
immune response, which was measured by the proportions of subjects with seroconversion
(based on total IgG, as measured by ELISA) and with neutralizing antibodies (based on a
plaque reduction neutralization test (PRNT) or surrogate virus neutralization test (sVNT),
total IgG antibody titers (following WHO guidelines on translating results from different
ELISA manufacturers into standardized binding antibody units (BAU)/mL) [23], and
neutralizing activity (based on PRNT or sVNT, calculated as (1-OD value of sample/OD
value of control) × 100%). Antibody titers were log-transformed prior to standardized mean
difference (SMD) calculation. Where applicable, PRNT50 titer was correlated with sVNT
inhibition capacity [24], mean and standard deviation (SD) were estimated from median
and interquartile range (IQR) [25], SDs were estimated from 95% confidence interval, and
means and SDs were aggregated from multiple subgroups. Safety was measured by the
number of autoimmune relapses, local symptoms (pain, erythema, bruising, etc.), systemic
symptoms (fever, joint pain, flu like symptoms, fatigue, headache, muscle pain), and other
adverse events occurring after receipt of a dose of COVID-19 vaccine.

2.5. Risk of Bias Evaluation

Risk-of-bias and quality-of-study evaluations were carried out by two independent
researchers. The Risk of Bias (RoB) and Risk of Bias in Nonrandomized Studies of In-
terventions (ROBINS-I) tools were used for randomized controlled trials (RCT) and non-
randomized studies of interventions, respectively [26]. Cross-sectional and case-series
studies were assessed using the Newcastle–Ottawa Quality Assessment Scales and The Na-
tional Institutes of Health (NIH) quality assessment tool, respectively [27,28]. The certainty
of evidence for the primary outcomes was evaluated using the Grades of Recommenda-
tion, Assessment, Development, and Evaluation (GRADE) system in eight domains: risk
of bias, inconsistency, indirectness, imprecision, publication bias, large effects, plausible
confounding, and dose–response gradient [26].

2.6. Data Synthesis

All outcomes were analyzed using Microsoft Excel and RevMan version 5.4 issued
by Cochrane. Outcomes were reported as risk ratios for categorical data and standardized
mean differences for numerical data, each with a confidence interval. Risk ratio was used
to compare the risks of outcomes measured among patients with autoimmune diseases
to healthy controls, while standardized mean difference was used to assess and pool
continuous data, which was measured in a variety of ways. For analyzing continuous
data conversion, guidelines from the Cochrane book were applied [28]. Heterogeneity was
assessed using Higgins I2 and considered significant at I2 > 60% [28]. For significantly
heterogeneous data, subgroup analysis was performed. Fixed-effects models were used for
data with no substantial heterogeneity or which was considered homogeneous, whereas
random effect models were used when there was significant heterogeneity. Data was
displayed as a forest plot for meta-analysis.

3. Results

Our search retrieved 1054 records, of which 833 were duplicates and were excluded.
The titles and abstracts of the remaining 221 published articles were screened, and 188
were assessed for eligibility via full-text evaluation. One hundred and twelve records
did not meet the inclusion criteria after this full-text review, and were excluded. As a
result, 76 full-text articles were selected for systematic review. Subsequently, 20 full-text
articles were selected for meta-analysis, with 6, 18, and 4 articles included for efficacy,
immunogenicity, and safety, respectively. The study flow chart is presented in Figure 1.
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3.1. Study Characteristics

Seventy-six studies were included in the qualitative analysis (Table S2). Ten studies
were conducted in Israel [29–38], one study in Denmark [39], eight studies in Italy [8,40–46],
three studies in the USA [47–49], nine studies in Germany [50–58], one study in New
Zealand [59], three studies in Austria [60–62], four studies in Spain [63–66], one study in
Japan [67], one study in France [68], one study in Romania [69], one study in Peru [70],
one study in Canada [71], six studies in Brazil [72–77], two studies in China [78,79], three
studies in Thailand [80–82], one study in Chile [83], five studies in India [84–88], one
study in Greece [89], one study in Turkey [90], four studies in the UK [91–94], one study
in Korea [95], one study in Taiwan [96], two studies in Netherlands [97,98], one study in
Switzerland [85], one study in Hungary [99], and one study in the USA and UK [100].
The types of investigated studies encompassed single-blinded [73,96], observer-blinded
randomized [31], and non-randomized [8,29,30,32–72,74–95,97–103] studies. A total of
160,447 participants were involved. All studies concerned adult participants (the majority



Vaccines 2023, 11, 1456 6 of 25

of participants were >18 years of age), and only one study also involved pediatric par-
ticipants [91]. Sixty-six studies included participants who had only had a primary dose
vaccine [8,29,30,35–39,41,43–80,82–93,97–103], whereas in ten studies participants had had
a booster dose vaccine [31–34,40,42,81,94–96].

The studies in our qualitative analysis were divided into six categories based on
the type of vaccine: studies on mRNA vaccines including Pfizer/BioNTech (BNT162b2)
and Moderna (mRNA-1273); studies on inactivated virus vaccines including CoronaVac,
Covaxin (BBV152), and Sinopharm (BBIBP-CorV); studies on adenovirus vector vaccines
including Vaxzevria (ChAdOx1), Janssen (Ad26.COV2.S), Sputnik V (Gam-COVID-Vac),
and AstraZeneca (AZD1222); studies on mRNA vaccines and adenovirus vector vaccines;
studies on inactivated virus and adenovirus vector vaccines; and studies on mRNA vaccines,
inactivated virus vaccines, and adenovirus vector vaccines.

In terms of autoimmune diagnosis, studies included adult-onset Still’s disease [57,
61,89,95], antiphospholipid syndrome [33,47,69,72,74,75,88,89,94,96,102], autoimmune en-
cephalitis [40,52,60], autoimmune hepatitis [44,56,69,90,97,101], autoimmune thyroid [69,
96], IgG-4-related diseases [47,69,92,94], interstitial lung disease and systemic autoimmune
disease/immune pulmonary disease [49,69], inflammatory bowel disease [47,50,62,69,71,91,
97], inflammatory myopathies/systemic autoimmune myopathy [33,35,36,61,63,69,72,74–
77,101], immune-mediated thrombocytopenic purpura/immune-mediated thrombotic
thrombocytopenic purpura (ITP/iTTP) [32,42,96], juvenile idiopathic arthritis [57,83,88,89,
94,98], mixed/undifferentiated connective tissue disease/connective tissue disease [44,47,
50,55,57,61,69,86–89,94,98,103], multiple sclerosis [29–31,34,47,50,52–54,60,64,67,69,97,98],
myasthenia gravis syndrome [52,60,69,97], neuromyelitis optica spectrum disorder [47,
52,60,66,97], primary biliary cholangitis [56,69,97,101], psoriasis [50,69,71,80,97], psori-
atic arthritis [33,35,50,57,69,71,72,74,75,83,88,94,98,99], rheumatoid arthritis (RA) [33,35,36,
39,43,44,47,50,57,58,63,65,72–75,78,82–84,86–89,93–99,101,103], systemic lupus erythemato-
sus (SLE) [33,35,36,39,44,45,47,50,57,61,65,66,68–70,72,74,75,77,78,81,82,84,86–89,92–99,101–
103], sarcoidosis [50,61,88,94,98], spondiloarthritis/spondyloarthropathy [33,35,44,47,49,
50,57,69,71,72,74,75,84,86–89,94–99,101,103], sclerosing cholangitis [56,97], Sjogren syn-
drome/sicca syndrome [33,47,61,65,69,71,74,75,78,88,89,94,96,98,99], systemic sclerosis [33,
44,61,63,65,69,72,74,75,86–89,94,98,99,101,103], and vasculitides/vasculitis [33,35,36,44,47,
50,55,57,58,61,66,69,72,74,75,86–89,92–95,97–99,103].

Autoimmune medications given to the patients included alemtuzumab [29,34,48,66],
abatacept [8,33,35,39,47,57,58,63,72–75,94,98], anti-CD20/-B cell depleting therapy [8,29,
32–35,37,39–41,43,45,47–49,52–55,57,60,62–66,72,74,75,87,89,92,94,96–98,103], antimalarials
including hydroxychloroquine (HCQ) and chloroquine [8,37,39,41,44,45,47,50,55,61,63,
65,68–70,72,75,77,81–84,87–90,93–96,98,99,103], apremilast [94,103], azathioprine [8,33,39–
41,44,45,47,50,52,56–58,60,63,65,68–72,74–76,80–82,84,85,87–90,92,94,95,98,99,101,103], beli-
mumab [8,39,41,44,45,47,50,57,61,65,68,72,74,75,77,89,92,94,95,99], calcineurin inhibitor [33,
41,77,95], caplacizumab [42], certolizumab [50,83,101], cladibrine [29,30,34,48,52,66], colch-
icine [33,89,94,103], corticosteroids [32,33,35–37,39–42,44,45,47,49,50,52,55–58,60,62–64,68–
70,72,73,75–77,80–84,86–94,96,98–101,103], cyclophosphamide (CYP) [45,62–64,72,74–77,87,
89,92,95], cyclosporine (CYC) [45,72,74–76,80–83,85,88,89,94,98], denosumab [94], DMF [29,
34,48,52,53,66], eculizumab [94], everolimus [85], fampridine [98], fingolimod [29–31,34,
47,52,53,64,98], glatiramer acetate (GA) [29,34,48,52,53,64,98], ibrutinib [47,100], igura-
timod [88], IL-1 inhibitor [89,94], IL-6 inhibitor [8,33,35,37,39,40,44,45,47,50,57,60,61,63,
65,72,74,75,83,85,89,94,95,99,101], IL-17 inhibitor [33,35,44,51,57,71,72,74,75,80,83,89,94,98,
99,101], IL-12/23 inhibitor [33,47,71,89,99], IL-23 inhibitor [47,71,99], β interferons [29,
34,48,52,54,66,98], intravenous immunoglobulin (IVIG) [29,32,34,36,52,71,100], Janus ki-
nase (JAK) inhibitor [8,33,35,39,57,58,62,88,89,94,95,99,101], leflunomide [8,36,39,45,47,50,
58,63,69,70,72–77,82–84,87–89,93–95,98,99,103], lenalidomide [87,99], mepolizumab [99],
methotrexate [8,33,35,36,39,41,43,44,47,57,58,61,63,65,68–77,80,82–84,87–90,92–99,101,103],
mycophenolate mofetil [8,33,35–37,39–41,43–45,47,49,56,57,60,61,63,65,68–70,72,74–77,80–
85,87–90,92,94,95,97,100,101,103], natalizumab [29,34,48,52,53,66,98], nintedanib [49], ocre-



Vaccines 2023, 11, 1456 7 of 25

lizumab (OCR) [29,30,34,48,52,60], ofatumumab [48], olumiant [61], omalizumab [80], pem-
brolizumab [99], plasmapheresis (PLEX) [42,52,64], sphingosine-1-phosphate receptor mod-
ulators (S1PRM) [48,66,97], salazopyrin [39], sulfasalazine [8,44,47,51,58,63,69,72,75,83,84,
87,93–98,98,103], tacrolimus [45,61,72,74,75,81–83,85,87,92,94,103], teriflunomide [29,34,48,
52,53,66], thalidomide [89,94], tumor necrosis factor alpha inhibitor (TNFi) [8,33,35,39,44,45,
47,50,51,57,58,62,63,65,71,72,74,83,87,89,91,94,95,97–99,101,103], tofacitinib [37,47,72,74,75,
87,103], upadacitinib [37,47], ustekinumab [50,72,74,75,98], and vedolizumab [47,50,91,92].

3.2. Quality of Assessment

Graphical representation of the studies’ quality is illustrated in the Supplementary
Materials (Figure S1A–D). Risks of bias in the three RCTs were low; twenty-one non-
randomized studies were low-risk, thirty-seven non-randomized studies were moderate-
risk, and seven non-randomized studies had serious risk; four case-series studies were
defined as good; and four cross-sectional studies were considered fair.

3.3. Qualitative Analysis
3.3.1. Efficacy

In the mRNA vaccine studies group, efficacy after primary vaccination was reported
as breakthrough COVID-19 infections [29,35,41,49,63,101], hospitalizations [49,63], and
deaths [29,35,49,63]. Efficacy after booster vaccination was also reported as breakthrough
COVID-19 infections [33,34] and hospitalizations and deaths [33]. In the inactivated virus
vaccine studies, six studies reported breakthrough COVID-19 infections after primary
vaccination as outcomes [72,75–77,80,83], two studies reported hospitalizations [76,77],
and only one study reported death [77]. One study on adenovirus vector vaccines re-
ported breakthrough infections [87]. In the mRNA vaccine and adenovirus vector vac-
cine studies, efficacy after primary vaccination was reported as breakthrough COVID-19
infections [45,69,97,98], hospitalizations [95,97], and deaths [100]. Efficacy after booster vac-
cination was reported as breakthrough COVID-19 infections, hospitalizations, deaths [89],
and hospitalizations or deaths due to breakthrough infections [90]. In the inactivated
virus vaccine and adenovirus vaccine studies, one study reported breakthrough COVID-19
infections after primary vaccination [103]. In the mRNA vaccine, inactivated virus vaccine,
and adenovirus vector vaccine studies, efficacy was reported as breakthrough COVID-19
infections and hospitalizations after primary vaccination [88,94]. Breakthrough COVID-19
infections and deaths after booster vaccination were reported in only one study [94].

mRNA vaccination, either primary or booster, has been found to have a protective
effect on breakthrough infections where the risk of getting infections after vaccination is
lower compared with the unvaccinated group [33]. According to Bieber et al., patients with
autoimmune rheumatic disease who received a third booster of mRNA vaccination had
lower SARS-CoV-2 infection rates [33]. However, Kim et al. observed both patients and
healthy controls to have SARS-CoV-2 omicron breakthrough infections after a third dose of
vaccination [95]. Mena-Vázquez et al. also reported that patients who were not infected
with SARS-CoV-2 received vaccinations more frequently. Moreover, COVID-19-infected
patients took rituximab and glucocorticoids more frequently [63].

Symptomatic breakthrough COVID-19 infections among patients and in a healthy
control group were reported in two studies after the participants had had a primary inacti-
vated COVID-19 vaccination [76,77], although only one patient required hospitalization
and no patients died [77]. Non-severe infections were reported after a mean period of
fourteen weeks from full vaccination, where half of the infected participants were patients
with negative total anti-SARS-CoV-2 IgG antibodies and neutralizing antibodies [83].

Studies in which autoimmune patients received an mRNA or adenovirus vector
vaccine reported a higher hospitalization rate in the unvaccinated group compared with the
vaccinated group, as well as a higher rate of severe COVID-19 cases, which appeared less
frequently in third-dose-vaccinated patients than in second-dose-vaccinated patients and
an unvaccinated group [89]. Breakthrough infections were also more frequent in patients
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on strongly impairing immunosuppressants, including anti-CD20 combination therapy,
sphingosine 1-phosphate modulators, and mycophenolate mofetil therapy, as opposed to
patients on other immunosuppressants [97].

According to the results from a study on inactivated and adenovirus vaccines, the
strongest predictor of breakthrough infections is the absence of an antibody response.
Vaccine platform and mycophenolate mofetil were found to be the other breakthrough
infection predictors [103]. Patients with autoimmune disease receiving Covaxin showed
higher rates of breakthrough infection than those receiving the AstraZeneca vaccine [103].
Another result from a study on adenovirus vector vaccines reported that there was no
significant difference in the frequency of breakthrough infections between patients who
received a second dose of vaccine after 4–6 weeks versus 10–14 weeks [87]. Furthermore,
results from a study reporting on autoimmune patients given mRNA, inactivated virus,
or adenovirus vector vaccines showed no breakthrough infections in patients vaccinated
with mRNA. Meanwhile, inactivated-virus-vaccinated patients had a higher percentage of
breakthrough infections after full vaccination than adenovirus-vector-vaccinated patients,
although the difference was not significant [88].

3.3.2. Immunogenicity

There were 54 studies reporting immunogenicity: 27 studies on mRNA vaccines
(13 studies on Pfizer/BioNTech [30,31,34,36,38,39,43,46,54,59,61,67,68], 1 study on Mod-
erna [101], and 13 studies on Pfizer/BioNTech or Moderna [8,35,41,44,47,50–53,60,62,65,71]);
9 studies on inactivated virus vaccines using CoronaVac [72–77,79,80,83]; 2 studies on ade-
novirus vector vaccines [84,87]; 12 studies on mRNA and adenovirus vector vaccines
(5 studies on Pfizer/BioNTech, Moderna, Vaxzevria, or Janssen [55,57,66,95,98], 2 stud-
ies on Pfizer/BioNTech, Moderna, or Vaxzevria [56,58], 3 studies on Pfizer/BioNTech or
Vaxzevria [91–93], 1 study on Moderna or Vaxzevria [96], and 1 study on Pfizer/BioNTech
(BNT162b2), Moderna (mRNA-1273), or Janssen (Ad26.COV2.S)) [85]; 1 study on inactivated
virus vaccines and adenovirus vector vaccines using Covaxin or AstraZeneca [103]; 3 studies
on mRNA vaccines, inactivated vaccines, and adenovirus vector vaccines using Pfizer, Coron-
avac, or Vaxzevria [81], Pfizer, Coronavac, Sinopharm or Vaxzevria [82], and Pfizer, Moderna,
Sinopharm, Sputnik, and AstraZeneca [99]. Immunogenicity was determined by measur-
ing antibody titers [8,30,31,34–36,38,39,41,43,46,47,50–54,56–62,65–68,75,76,80–85,87,92,93,96,
98,99,101,103], seroconversion [8,30,31,35,36,39,41,43,44,46,47,52–57,60,61,65,66,71–77,80,82,84,
92,95,97–99,101], neutralization antibodies [38,41,47,50,51,53,54,58,62,68,72–77,80,81,83,84,95,
99,101,103], T-cell response [41,43,46,53–57,60,62,65,66,68,71,81–83,91,95,99,101], lymphocyte
count [31,93], IgA titer [38,50,58,85,93], IgG avidity [51,54], B-cell counts [43,49,53,56–58,93],
T-cell counts [55,58,62,93], and IgM titer [93].

Patients with autoimmune diseases who received CoronaVac had neutralizing an-
tibodies and neutralizing activity lower than in the control group [72,74,75] as well as
lower seroconversion [74,75]. Factors associated with poor immunogenicity were older age,
obesity, and use of prednisone, biologics, and immunosuppressants [74,75]. Another study
on patients given CoronaVac also found that mycophenolate and prednisone were related
to reduced seroconversion, whereas hydroxychloroquine caused seroconversion to rise [77].
In another study on Pfizer, CoronaVac, Sinopharm, and Vaxzevria vaccination, anti-RBD
titers were lower in the inactivated vaccine group, followed by Vaxzevria, then Vaxzevria or
Pfizer [82]. The inactivated vaccine was also associated with the lowest humoral response,
whereas the adenovirus-vectored/mRNA vaccine was associated with the highest humoral
response [82].

Patients with multiple sclerosis who received the Pfizer vaccine while being treated
with anti-CD20 therapy [54], fingolimod continuation [31], and other immunosuppres-
sants [34] had lower IgG titers compared with untreated patients or patients who dis-
continued the therapy. In comparison with healthy controls, patients with autoimmune
neurological disorder who had received the Pfizer or Moderna vaccines had decreased
seroconversion rates [34] and anti-S1 IgG [53,60] and anti-S(RBD) specific IgG levels [52].
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In comparison with healthy controls or patients not receiving immunotherapy, patients re-
ceiving anti-CD20 [52,53,60], fingolimod [52,53], azathioprine [52], and steroid therapy [52]
exhibited lower levels of anti-S1 IgG and anti-S(RBD) specific IgG. Lower seroconversion
rates were observed in multiple sclerosis patients receiving anti-CD20 or sphingosine
1-phosphate receptor modulators who were given the Pfizer, Moderna, or AstraZeneca
vaccines compared with other disease-modifying therapies or untreated patients [66].

Additional research on the Pfizer or Vaxzevria vaccine indicated that seroconversion
and anti-S IgG levels after the second dose were significantly lower in patients with autoim-
mune disease than in the control group and that this was associated with B-cell depletion at
the time of vaccination [92]. Rituximab was significantly associated with no antibody vac-
cine response after adjusting for diagnosis and hydroxychloroquine, according to research
in patients with SLE and RA who received the Pfizer vaccine [39]. A study of patients with
SLE who had been given the Pfizer vaccination found that mycophenolate and methotrexate
treatment were associated with a drastically diminished BNT162b2 antibody response [68].
Another study on the Moderna and Vaxzevria vaccines showed that individuals given
hydroxychloroquine, low-dose steroid, methotrexate, and/or sulfasalazine therapy had
significantly lower anti-SARS-CoV-2 spike IgG titers than those who were not on these
therapies [96].

Studies of patients with autoimmune or autoinflammatory diseases, including RA, SLE,
Sjogren syndrome, Behcet’s disease, polymyalgia rheumatica, connective tissue disease,
vasculitis, adult-onset Still’s disease, and sarcoidosis who received the Pfizer vaccination
showed lower seroconversion [46,61], anti S1/S2 IgG [36,38,43,61], neutralization [38,43],
total IgA [38,43], and anti-RBD IgG [61] than the control group. The lowest antibody titers
were detected in patients with antineutrophil cytoplasmic-antibody-associated vasculitis
(AAV) and idiopathic inflammatory myopathy/myositis (IIM), while the highest titers
were detected in SLE and RA patients [37]. Another study showed that antibody titers
were also reduced with two or more immunosuppressants in combination therapy [61].
Studies in patients with systemic autoimmune disease, RA, SLE, inflammatory bowel
disease, Sjogren syndrome, autoimmune hepatitis, psoriatic arthritis, IIM, sarcoidosis, and
vasculitis who received the Pfizer and Moderna vaccines found that their anti-S IgG titers
were lower than those of the control group, and these differences were particularly signifi-
cant [8,35,50,51] in those who were receiving B-cell-depleting therapies, prednisone, JAK
inhibitors, antimetabolites [47], TNFi [51], mycophenolate, and calcineurin inhibitors [44].
Moreover, compared with the control group, anti-RBD titers were lower in patients [41].
The differences remained significant in individuals receiving treatment with rituximab
and belimumab [41]. According to another study, Ab levels and neutralization efficacy
against variants of concern in anti-TNF-treated patients were substantially lower than in
healthy controls, and by three months following the second dose of the vaccination they
were undetectable against Omicron [71].

Seroconversion was considerably higher among Pfizer vaccine recipients when doses
were given less than a month apart compared with AstraZeneca recipients, and tendencies
towards higher antibody levels in vaccine responders were seen when either vaccine was
given using short-interval dosing [93]. A study by Mehta et al. on the AstraZeneca vaccine
showed that diabetes mellitus and vaccine interval were significantly associated with anti-
RBD antibody titer [87]. A delayed (10–14 weeks) second dose of AstraZeneca vaccine was
associated with a higher antibody titer [87]. A study by Ahmed et al. on AstraZeneca and
Covaxin revealed that Covaxin and methotrexate treatment were associated with lower
antibody titers [103]. Another study that focused on Vaxzevria vaccination in patients with
autoimmune inflammatory rheumatic diseases revealed that single-dose-vaccinated pa-
tients who had had prior COVID-19 infections showed significantly higher seroconversion
and neutralization activity than those who had received a double-dose vaccine [84].

In a study that focused on CoronaVac vaccination, neutralizing antibodies in RA
patients on methotrexate therapy were lower than in the control group [73,83], as was the
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seroconversion rate [73]. Prednisone and mycophenolate usage were both highly linked to
a negative NAb [83].

A study on mRNA and inactivated virus vaccines reported that IFN-γ and anti-
RBD Abs levels have a slight but significant positive correlation [43]. Another study
on mRNA, inactivated virus, and adenovirus vector vaccines reported that neutralizing
anti-RBD-specific antibodies and the percentage of positive anti-RBD antibody responses
were higher in participants vaccinated with mRNA vaccine compared with inactivated
virus and adenovirus vaccines [99]. Additionally, patients who received the adenovirus
vector or mRNA vaccines had a higher proportion of TNF-a-producing CD4+ T-cells upon
SARS-CoV-2 antigen exposure compared with those who received the inactivated virus
vaccine [99].

A third booster dose of mRNA or adenovirus vector vaccine after a primary inactivated
vaccine produced a significant humoral and cellular immune response in SLE patients
with inactive disease maintaining immunosuppressive treatment [81]. However, another
study found that, after booster vaccination, neutralization responses against the Omicron
variant were significantly lower in patients than in the healthy control group [92]. Certain
medications, such as TNFi, aCD20-BCD- and fingolimod, antimetabolites, and calcineurin
inhibitors were able to impair humoral and cellular responses, especially in autoimmune
patients [51,53,81]. For instance, Achiron et al. found that a fingolimod continuation
group had lower IgG titers than a fingolimod discontinuation group even at 3 months
after the third vaccine dose [31]. In addition, anti-BA.2 neutralizing antibodies were not
detectable in TNFi-treated patients [51]. Meyer et al. found that patients taking fingolimod
failed to develop either humoral or CD4+ T cellular immune responses [53]. In contrast,
Meyer et al. also reported that untreated patients showed an increase in anti-S1 IgG,
neutralizing capacity, RBD- and S2-specific B cells, and spike-specific T cells after their first
booster [53]. Lastly, however, a booster dose, particularly from an mRNA or viral vector
vaccine, enhanced strong cellular immune responses, though responses were weaker in
patients taking antimetabolites or calcineurin inhibitors [81].

3.3.3. Safety

Following primary vaccination in mRNA vaccine studies, autoimmune relapse was re-
ported as a safety outcome in 12 studies [29,40,60,63,68,70,80–82,86,88,99]; local symptoms
in 11 studies [8,29,35–37,40,50,52,60,67,68]; systemic symptoms in 13 studies [8,34–37,40,50,
52,60,63,67,68,101]; and other symptoms in 12 studies [29,35,36,40,50,52,60,64,88,100–102].
Following booster vaccination in mRNA vaccine studies, autoimmune relapse was reported
as a safety outcome in three studies [32,34,42] and local and systemic symptoms were also
reported in one study [34]. Among the inactivated vaccine studies, following primary
vaccination, autoimmune relapse was reported as a safety outcome in two studies [79,80]
and local symptoms and systemic symptoms in six studies [72,73,75–78].

Among the mRNA vaccine and adenovirus vector vaccine studies, following primary
vaccination, two studies reported autoimmune relapse after vaccination [20,69]. Local
symptoms were reported as a safety outcome in three studies [45,69,72]. Systemic symp-
toms after primary mRNA and adenovirus vector vaccinations were reported in three
studies [45,48,102]. Other symptoms were described in one study [82]. Meanwhile, among
the inactivated virus vaccine and adenovirus vector vaccine studies, only one study re-
ported autoimmune relapses and local and systemic symptoms as safety outcomes [86].
Among the mRNA vaccine, inactivated virus vaccine, and adenovirus vector vaccine stud-
ies, following primary vaccination, autoimmune relapse was reported as a safety outcome
in two studies [88,94]; local symptoms in three studies [88,94]; systemic symptoms in four
studies [82,88,94,99]; and other adverse events in two studies [88,94].

Patients who had been vaccinated with an mRNA vaccine reported no difference in
relapse incidence before and after vaccination [8,52,68]. De Santis et al. and Ferri et al.
also reported that, in the majority of cases, vaccine-related adverse effects were mild, and
incidence rates were comparable in autoimmune patients and healthy controls with no
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differences based on current medications [8,101]. Mild cases, such as headache, occurred
more frequently in SLE and cryoglobulinemic vasculitis patients, while pain at the injection
site did in systemic vasculitis patients [8]. Moyon et al. found no related serious adverse
events caused by vaccination [68]. Most of the relapse cases had significantly higher
disease activity scores when compared with patients without post-vaccination relapses [40].
Additionally, De Santis et al. did not find any differences between patients with and
without serum responses or in the prevalence of vaccine-related side effects [101]. In terms
of booster vaccinations, a study reported more than 10% ITP exacerbations among ITP
patients after booster vaccinations [32].

Patients who had been vaccinated with an inactivated virus vaccine were reported to
have no moderate or severe adverse events [76,77]. Medeiros-Ribeiro et al. reported that
overall reactions, such as arthralgia, back pain, malaise, nausea, and sweating, were more
frequently and significantly found to occur in patients with autoimmune rheumatic disease
than in a control group [75]. In patients with RA, myalgia and vertigo were significantly
more frequent in those patients who were stopping methotrexate therapy at the time of
receiving their second vaccination [73]. Headaches had a higher prevalence in patients
with systemic autoimmune myopathies compared with healthy controls after a first dose
of inactivated vaccine [76]. Autoimmune flare was also detected more frequently in a
methotrexate-stopping RA patient group in comparison with a methotrexate-maintaining
group at day 69 after vaccine administration [73].

Studies on mRNA and adenovirus vector vaccines reported that there was no differ-
ence in self-reported side effects between patients with neuroinflammatory diseases and a
control group, whether after first vaccine dose or second vaccine dose, even after adjusting
for age, BMI, and comorbidities [48]. Epstein et al. also reported that younger age was
associated with an increased rate of reported side effects, whereas patients on high-efficacy
therapy were associated with a lower risk of reported side effects [48]. The high-efficacy
therapies referred to were therapies using ocrelizumab, rituximab, ofatumumab, alem-
tuzumab, cladribine, fingolimod, ozanimod, siponimod, and natalizumab [48]. Headaches
were more common in patients with neuroinflammatory disease after mRNA vaccination
than adenovirus vector vaccination, although no significant differences were observed [48].
Additionally, patients on high-efficacy therapy had a significantly lower rate of reported
side effects compared with patients not on medication at the time of vaccination [48]. In
terms of flare, there were no differences observed regarding age, comorbidities, number
of autoimmune diseases associated, and years from disease diagnosis to the year prior to
vaccination [69]. There were no significant differences in flare-up development among
Cominarty, Vaxzevria, and Spikevax [69].

Additionally, studies on mRNA, inactivated virus, and adenovirus vector vaccines
reported significantly more injection site pain in patients receiving AstraZeneca or Pfizer
vaccination than in those who received inactivated vaccination, followed by fatigue and
fever [82]. Another study on a third booster dose with an mRNA or viral vector vaccine
following inactivated virus vaccination in SLE patients revealed more reactogenicity after
the booster dose than the initial CoronaVac vaccination, but this was mild and no SLE flare
was reported [81].

3.4. Meta-Analysis

For meta-analysis, we included 20 studies that compared the efficacy, immunogenic-
ity, and safety of COVID-19 vaccines between patients with autoimmune diseases and
healthy controls. There were six studies for efficacy [72,75–77,97,98], 18 studies for immuno-
genicity [8,35,36,43,50,52,54,61,62,65,72,74–77,80,83,101], and four studies for safety that
could be included [72,75–77]. These studies were on inactivated vaccine, mRNA vaccine,
and mRNA/adenovirus vector vaccine. All studies were non-randomized studies and
on primary doses (two doses) of COVID-19 vaccine. Meta-analysis could not be done
from the RCTs because there were only three RCTs [31,73,96] in our systematic review and
only one RCT comparing the efficacy, immunogenicity or safety of the COVID-19 vaccine
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(primary dose) among patients with autoimmune disease (multiple sclerosis) and healthy
controls [31].

3.4.1. Efficacy

Six studies were included to evaluate the efficacy of COVID-19 vaccines in patients
with autoimmune diseases. Four studies used the inactivated virus vaccine [72,75–77],
whereas the other two studies used mRNA and adenovirus vector vaccines [97,98] Break-
through COVID-19 infections were used to assess vaccine efficacy.

Based on Figure 2, the overall effect on breakthrough COVID-19 infection after re-
ceipt of a COVID-19 inactivated virus vaccine was in favor of the healthy controls. The
combined risk ratio was 1.93 (95% CI: 1.14–3.29, I2 = 0%), and the difference was sta-
tistically significant (p = 0.02). According to the GRADE system, the certainty of the
evidence on breakthrough COVID-19 infections after inactivated vaccination was moderate
(Supplementary Materials, Table S3). Four studies included in this meta-analysis involved
patients with various autoimmune diseases: SLE, systemic autoimmune myopathies, and
other autoimmune diseases. Patients involved in these four studies received various im-
munosuppressive treatments: steroids, methotrexate, hydroxychloroquine, mycophenolate
mofetil, azathioprine, biologic agents, and others.
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inactivated vaccine. Blue squares represent effect sizes for a single study, and black rhombus represent
pooled results for all studies [72,75–77].

We also analyzed the combined risk ratio for breakthrough infections after mRNA
or adenovirus vector vaccination, but no statistically significant difference was observed
(RR = 0.97; 95% CI: 0.85–1.11; I2 = 0%) (Figure 3). According to the GRADE system, the
certainty of the evidence on breakthrough COVID-19 infections after mRNA or adenovirus
vector vaccination was moderate (Supplementary Materials). Three studies included in
this meta-analysis involved patients with various autoimmune diseases: SLE, rheuma-
toid arthritis, spondiloarthopathy, vasculitis, and others. Patients involved in these four
studies received various immunosuppressive treatments: steroids, methotrexate, hydroxy-
chloroquine, leflunomide, mycophenolate mofetil, azathioprine, biologic agents, and others.
Subgroup analysis regarding autoimmune diagnosis and treatment could not be done
because of limited studies or a lack of subgroup data.
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3.4.2. Immunogenicity

Eighteen studies were included in the meta-analysis to evaluate the immunogenic-
ity of COVID-19 vaccines in patients with autoimmune disease compared with healthy
controls [8,35,36,43,50,52,54,61,62,65,72,74–77,80,83,101]. Studies included in this meta-
analysis involved patients with various autoimmune diseases: multiple sclerosis, systemic
autoimmune diseases, and other autoimmune diseases. Patients involved in these studies
received various immunosuppressive treatments: steroids, methotrexate, hydroxychloro-
quine, mycophenolate mofetil, azathioprine, biologic agents, and others.

Eleven studies were on mRNA vaccines [8,35,36,43,50,52,54,61,62,65,101] and seven
studies [72,74–77,80,83] on inactivated vaccines. Seroconversion, proportion of neutralizing
antibodies (NAb) positive, log total antibody (TAb) titer, and neutralizing activity were
analyzed.

As shown in Figure 4, seven studies reported TAb titers after mRNA vaccination.
Patients with autoimmune disease showed significantly lower log TAb (log BAU/mL)
titers than healthy controls. Heterogeneity was low (SMD = −0.11, 95% CI = −0.2–0.02,
I2 = 0%). According to the GRADE system, the certainty of the evidence on TAb after
mRNA vaccination was high (Supplementary Materials, Table S3).
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As shown in Figure 5, five studies reported Tab titers after inactivated vaccination.
Patients with autoimmune disease showed significantly lower log Tab (log BAU/mL) titers
compared with healthy controls. Heterogeneity was considerably low (SMD = −0.10, 95%
CI = −0.19–0.00, I2 = 43%). According to the GRADE system, the certainty of the evidence
on TAb titer after inactivated vaccination was high (Supplementary Materials, Table S3).
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As shown in Figure 6, 11 studies reported IgG seroconversion after mRNA vaccina-
tion compared with healthy controls. IgG Seroconversion after mRNA vaccination was
significantly lower among patients with autoimmune disease than healthy controls. Het-
erogeneity was high (RR = 0.82, 95% CI = 0.75–0.90, I2 = 97%). According to the GRADE
system, the certainty of the evidence on IgG seroconversion after mRNA vaccination was
moderate (Supplementary Materials).
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As shown in Figure 7, seven studies reported IgG seroconversion after inactivated vac-
cination compared with healthy controls. IgG seroconversion after inactivated vaccination
was significantly lower among patients with autoimmune disease than healthy controls.
Heterogeneity was considerably high (RR = 0.77, 95% CI = 0.71–0.84, I2 = 86%). According
to the GRADE system, the certainty of the evidence on IgG seroconversion after mRNA
vaccination was moderate (Supplementary Materials, Table S3).

Vaccines 2023, 11, x FOR PEER REVIEW 14 of 26 
 

 

 

Figure 5. Log TAb titer after inactivated vaccination. Green squares represent effect sizes for a sin-

gle study, and black rhombus represent pooled results for all studies [72,75,76,80,83]. 

As shown in Figure 6, 11 studies reported IgG seroconversion after mRNA vaccina-

tion compared with healthy controls. IgG Seroconversion after mRNA vaccination was 

significantly lower among patients with autoimmune disease than healthy controls. Het-

erogeneity was high (RR = 0.82, 95% CI = 0.75–0.90, I2 = 97%). According to the GRADE 

system, the certainty of the evidence on IgG seroconversion after mRNA vaccination was 

moderate (Supplementary Materials). 

 

Figure 6. IgG seroconversion after mRNA vaccination. Blue squares represent effect sizes for a single 

study, and black rhombus represent pooled results for all studies [8,35,36,43,50,52,54,61,62,65,101]. 

As shown in Figure 7, seven studies reported IgG seroconversion after inactivated 

vaccination compared with healthy controls. IgG seroconversion after inactivated vaccina-

tion was significantly lower among patients with autoimmune disease than healthy con-

trols. Heterogeneity was considerably high (RR = 0.77, 95% CI = 0.71–0.84, I2 = 86%). Ac-

cording to the GRADE system, the certainty of the evidence on IgG seroconversion after 

mRNA vaccination was moderate (Supplementary Materials, Table S3). 

 

Figure 7. IgG seroconversion after inactivated vaccination. Blue squares represent effect sizes for a 

single study, and black rhombus represent pooled results for all studies [72,74–77,80,83]. 

Figure 7. IgG seroconversion after inactivated vaccination. Blue squares represent effect sizes for a
single study, and black rhombus represent pooled results for all studies [72,74–77,80,83].

As shown in Figure 8, three studies reported neutralizing antibodies after mRNA
vaccination. Patients with autoimmune disease showed a lower proportion of positive NAb
than healthy controls, but the difference was not statistically significant. Heterogeneity
was high (RR = 0.79, 95% CI = 0.54–1.14, I2 = 97%). According to the GRADE system, the
certainty of the evidence on neutralizing antibodies after mRNA vaccination was very low
(Supplementary Materials, Table S3).

As shown in Figure 9, seven studies reported neutralizing antibodies after inactivated
vaccination. Patients with autoimmune disease had a significantly lower proportion of
positive NAb than healthy controls. Heterogeneity was considerably low (RR = 0.71, 95%
CI = 0.68–0.74, I2 = 37%). According to the GRADE system, the certainty of the evidence on
neutralizing antibodies after inactivated vaccination was high (Supplementary Materials,
Table S3).

As shown in Figure 10, six studies reported neutralizing activity after inactivated vac-
cination. Patients with autoimmune disease showed lower mean neutralizing activity after
inactivated vaccination than healthy controls, but the result was not statistically significant.
Heterogeneity was high (SMD = −0.52, 95% CI = −1.34–0.30, I2 = 98%). According to the
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GRADE system, the certainty of the evidence on neutralizing antibodies after the first dose
of vaccine was very low (Supplementary Materials, Table S3).
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all studies [72,74–77,80,83].
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3.4.3. Safety

Four studies were eligible for pooling of vaccine-associated adverse events, including
local and systemic adverse events. All included studies were on inactivated COVID-19 vac-
cines [72,75–77]. Four studies included in this meta-analysis involved patients with various
autoimmune diseases: SLE, systemic autoimmune myopathies, and other autoimmune
diseases. Patients involved in these four studies received various immunosuppressive treat-
ments: steroids, methotrexate, hydroxychloroquine, mycophenolate mofetil, azathioprine,
biologic agents, and others.

We observed that the combined risk ratio for local adverse events after a first dose of
COVID-19 inactivated vaccine was 1.26 (95% CI: 1.05–1.51; I2 = 0%) (Figure 11). Patients
with autoimmune diseases had a statistically significant (p = 0.01) risk of local adverse
events after receiving a first dose of COVID-19 inactivated vaccine in comparison with
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healthy controls. According to the GRADE system, the certainty of the evidence on local
adverse events after first dose COVID-19 inactivated vaccine was high (Supplementary
Materials, Table S3).
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Figure 11. Local adverse events after receiving a first dose of COVID-19 inactivated vaccine. Blue
squares represent effect sizes for a single study, and black rhombus represent pooled results for all
studies [72,75–77].

We observed that the combined risk ratio for local adverse events after a second dose
COVID-19 inactivated vaccine was 1.11 (95% CI: 0.91–1.35; I2 = 1%) (Figure 12). Patients
with autoimmune diseases had a higher risk of local adverse events than healthy controls
after receiving a second dose of COVID-19 inactivated vaccine, but the difference was not
statistically significant (p = 0.31). According to the GRADE system, the certainty of the
evidence for local adverse events after a second dose of COVID-19 inactivated vaccine was
high (Supplementary Materials, Table S3).
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Figure 12. Local adverse events after receiving a second dose of COVID-19 inactivated vaccine. Blue
squares represent effect sizes for a single study, and black rhombus represent pooled results for all
studies [72,75–77].

We observed that the combined risk ratio for systemic adverse events after a first
dose of COVID-19 inactivated vaccine was 1.31 (95% CI: 1.15–1.48; I2 = 0%). Patients with
autoimmune diseases had a statistically significant (p < 0.0001) risk of systemic adverse
events after receiving a first dose of COVID-19 inactivated vaccine in comparison with
healthy controls (Figure 13). According to the GRADE system, the certainty of the evidence
on systemic adverse events after a first dose of COVID-19 inactivated vaccine was high
(Supplementary Materials, Table S3).

The combined risk ratio for systemic adverse events after a second dose of COVID-19
inactivated vaccine was 1.13 (Figure 14), but no statistically significant difference was
observed (95% CI: 0.88–1.45; I2 = 62%). According to the GRADE system, the certainty of
the evidence on local adverse events was moderate (Supplementary Materials, Table S3).
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squares represent effect sizes for a single study, and black rhombus represent pooled results for all
studies [72,75–77].
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Blue squares represent effect sizes for a single study, and black rhombus represent pooled results for
all studies [72,75–77].

3.5. Publication Bias

We used a funnel plot to assess publication bias for a meta-analysis involving more
than 10 studies: IgG seroconversion after mRNA vaccination (Supplementary Materials,
Figure S2). The funnel plot was asymmetrical, which could indicate that there was publica-
tion bias.

4. Discussion

There are some issues regarding COVID-19 vaccination in autoimmune patients, such
as how autoimmune medications might affect the efficacy and immunogenicity of the
vaccines and possible adverse reactions following COVID-19 vaccination. Therefore, the
efficacy, immunogenicity, and safety of COVID-19 vaccines in autoimmune patients were
the primary outcomes in this systematic review and meta-analysis.

Only a few studies were identified that addressed all three outcomes. In the meta-
analysis, we compared efficacy, immunogenicity, and safety between patients with au-
toimmune diseases and healthy controls. Because of the heterogeneity of the studies, we
only had non-randomized studies that could be used for this purpose. We also could
not conduct a meta-analysis on booster (third-dose) COVID-19 vaccination due to limited
studies sharing similar outcomes and interventions.

Regarding the efficacy of COVID-19 vaccination, our meta-analysis showed that the
risk of breakthrough COVID-19 infection significantly increased in patients with autoim-
mune diseases compared with healthy controls after receipt of an inactivated virus vaccine.
On the other hand, a meta-analysis with studies using mRNA or adenovirus vectors did
not show significant differences in breakthrough infections among patients with autoim-
mune disease compared with healthy controls. Breakthrough COVID-19 infection can be
related to viral profile, host factors (comorbidities, immunosuppressive drugs), and vaccine
platform or dose. The mRNA vaccine platform shows stronger neutralizing antibody and
T cell responses compared with other vaccine platforms [104].

Ahmed et al. reported that only small numbers of breakthrough infections occurred
in patients with autoimmune diseases after they received either an inactivated or aden-
ovirus vector vaccine [103]. Furer et al. observed no symptomatic COVID-19 infections in
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patients with autoimmune diseases, and only one subject in the healthy control group was
diagnosed with a breakthrough COVID-19 infection after a second dose of mRNA vaccine
during the study follow-up [35]. Moreover, Stalman et al. reported breakthrough COVID-19
infections after mRNA or adenovirus vector vaccine in both autoimmune patients and
healthy controls, with no differences in the trends in the incidence rates [97]. Kim et al. also
reported breakthrough infections after booster vaccination with an mRNA vaccine in sub-
jects given an mRNA or adenovirus vector vaccine as their primary COVID-19 vaccination,
but the result was not significantly different between patients with autoimmune disease
and healthy controls (healthcare workers) [95].

Studies included in a meta-analysis of breakthrough infections after mRNA or ade-
novirus vector vaccination involved patients with various diagnoses and treatments for
autoimmune diseases. Patel et al. and Paik et al. explained that increased breakthrough
infections were associated with the use of multiple immunomodulatory therapies, such as
methotrexate, mycophenolate mofetil, anti-CD20, and TNF inhibitors [105,106]. A study by
Bieber et al. also showed higher doses of steroids and higher proportions of patients given
TNF alpha inhibitors, rituximab, and calcineurin inhibitors among cases of breakthrough
COVID-19 infection [33].

Regarding the immunogenicity of the vaccine, our meta-analyses showed that patients
with autoimmune diseases had reduced total antibody (TAb) titers, IgG seroconversion,
and neutralizing antibodies after COVID-19 inactivated vaccination compared with healthy
controls. Patients with autoimmune diseases also showed reduced TAb titers and IgG
seroconversion after COVID-19 mRNA vaccination compared with healthy controls. A
study by Kim et al. on mRNA vaccine boosters showed that limited neutralization of the
Omicron variant in the sera of patients with autoimmune disease could contribute to a
shorter median time between third-dose vaccination and the time of breakthrough infection
compared with a control group [95].

Patients with autoimmune diseases showed noticeably different humoral responses
following vaccination, which may be attributed to the use of B-cell-depleting agents,
antimetabolites, glucocorticoids, other immunosuppressive drugs, and waning immu-
nity [106]. This was proven by Ferri et al. in a study that showed an increased prevalence
of non-responders to vaccines in patients with systemic autoimmune disease treated with
glucocorticoids, mycophenolate mofetil, and rituximab [8]. So et al. found that impaired
humoral response in SLE patients significantly correlated with the use of mycophenolate
and the type of vaccine, especially inactivated virus vaccines in comparison with mRNA
vaccines [107]. Paik et al. reported that B-cell-depleting agents, antimetabolites, gluco-
corticoids, and combination immunosuppressive therapy achieved significantly lower
seroconversion, while immunomodulators, such as hydroxychloroquine and intravenous
globulin, did not reduce antibody titers [106]. However, patients treated with hydroxy-
chloroquine, combined with other therapies such as methotrexate and/or sulfasalazine,
still had significantly lower anti-SARS-CoV spike IgG antibody titers than those who did
not receive such a combination [96].

In terms of the safety of vaccination, the overall estimate from the meta-analysis
showed a significantly higher risk for patients with autoimmune disease experiencing local
and systemic adverse events after a first dose of COVID-19 inactivated vaccine in compar-
ison with healthy controls; however, no statistically significant difference after a second
dose of vaccine was observed. Higher frequencies of adverse events were reported among
seropositive patients than in seronegative patients and healthy controls [72]. No moderate
or severe adverse events related to the vaccine were reported [72,75–77]. Vaccine-related
adverse events after the inactivated COVID-19 vaccine, especially systemic symptoms,
were fewer than those reported with the mRNA vaccine [75].

In our systematic review, flare (worsening of autoimmune disease activity) was ob-
served in more than 10% of patients with SLE after primary mRNA vaccination [70], and
in patients with hematologic autoimmune diseases including immune-mediated throm-
botic thrombocytopenic purpura and immune thrombocytopenia after a booster mRNA
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vaccination [32,42]. Meanwhile, this occurred in less than 5% of patients with multiple
sclerosis [29] and with systemic autoimmune diseases including cryoglobulinemic vas-
culitis, rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis after
primary mRNA vaccination [8]. For the other vaccine types, flare was observed in 7% of
autoimmune skin disease patients after primary inactivated virus vaccine and in less than
5% of SLE and autoimmune rheumatic disease patients [77,80]. Other adverse events, such
as face tingling, herpes reactivation, bleeding, and urinary tract infection, also occurred in
a small number of patients, together with severe adverse events such as high blood pres-
sure, immune thrombocytopenic purpura, myocarditis, and death [29,80,101]. However,
causal and temporal relationships between vaccine administration and adverse events or
worsening disease activity following vaccination were difficult to determine due to limited
data and the lack of a specific analysis of the causal relationship.

Based on our qualitative findings, breakthrough infections occurred less frequently in
autoimmune patients after a booster dose. Autoimmune patients still had lower humoral
and cellular responses even after having a third vaccine dose. Most of the patients were
on immunosuppressant therapy, while untreated patients had better humoral and cellular
responses. These findings support some previous evidence regarding the effects of booster
vaccination. Regardless of the lower antibody titers in autoimmune patients, a potential
increase in titer could be achieved after administering a third dose of vaccine, though the
titer was still lower compared with a healthy control group. Evidence from a study by
Joudeh et al. indicates that a booster vaccine dose is associated with a higher seroconversion
rate, particularly in patients with a history of COVID-19 infection [108]. Further evidence
comes from Cardelli, et al., who showed that a time-dependent decrease in protective
antibody titer was restored after receipt of a booster dose. After a booster dose, five of nine
non-responders developed adequate anti-RBD and neutralizing antibody titers. Three of
them reduced their dose of or discontinued mycophenolate mofetil or azathioprine therapy
before booster administration [109]. In addition, in terms of efficacy and safety, Dreyer at
al. found no relapse activity or breakthrough infections after the third dose of vaccine [34].

This study has several limitations. First, the number of studies used to combine the
efficacy, immunogenicity, and safety findings was relatively small. Second, considering that
only one RCT was available comparing patients with autoimmune diseases and healthy
controls after a primary dose of COVID-19 vaccine, we only included non-randomized
studies. Third, since we only included a small number of studies in our meta-analysis, we
might have significant publication bias. However, we also included pre-printed studies
in our systematic review to reduce the possibility of this bias. Fourth, the variety of
autoimmune diagnoses and immunosuppressive treatments could have an impact on the
outcome of COVID-19 vaccination. This could affect our meta-analysis, and we could not
address this by subgroup analysis due to the limited studies available.

5. Conclusions

In conclusion, from this meta-analysis, we found that patients with autoimmune
diseases showed significantly more breakthrough COVID-19 infections and lower total
antibody (TAb) titers, IgG seroconversion, and neutralizing antibodies after inactivated
COVID-19 vaccination compared with healthy controls. They also had more local and
systemic adverse events after a first dose of inactivated vaccination compared with healthy
controls, but this result was not seen after a second dose. Patients with autoimmune
diseases also showed significantly lower TAb titers and IgG seroconversion after COVID-19
mRNA vaccination compared with healthy controls.

A second dose of vaccine was, however, found to be important, since it is associated
with improved antibody titers and seroconversion. It is important to consult a healthcare
provider before taking a vaccine, since immunosuppressants might affect the immuno-
genicity of vaccines. Additionally, the administration of third doses of COVID-19 vaccines
should be considered due to improved seroprotection in these patients.
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