
Citation: Shakya, A.K.; Nandakumar,

K.S. Polymer Chemistry Defines

Adjuvant Properties and Determines

the Immune Response against the

Antigen or Vaccine. Vaccines 2023, 11,

1395. https://doi.org/10.3390/

vaccines11091395

Academic Editor: Eduardo

Gomez-Casado

Received: 8 May 2023

Revised: 16 August 2023

Accepted: 21 August 2023

Published: 22 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Polymer Chemistry Defines Adjuvant Properties and
Determines the Immune Response against the Antigen
or Vaccine
Akhilesh Kumar Shakya 1,* and Kutty Selva Nandakumar 2,*

1 Whitacre College of Engineering, Texas Tech University, Lubbock, TX 79409, USA
2 Department of Environmental and Biosciences, School of Business, Innovation and Sustainability,

Halmstad University, 30118 Halmstad, Sweden
* Correspondence: akhilesh.shakya@ttu.edu (A.K.S.); kutty-selva.nandakumar@hh.se (K.S.N.)

Abstract: Activation of the immune system is a needed for designing new antigen/drug delivery
systems to develop new therapeutics and for developing animal disease models to study the disease
pathogenesis. A weak antigen alone is insufficient to activate the immune system. Sometimes,
assistance in the form of polymers is needed to control the release of antigens under in vivo conditions
or in the form of an adjuvant to activate the immune system efficiently. Many kinds of polymers
from different functional groups are suitable as microbial antigens for inducing therapeutic immune
responses against infectious diseases at the preclinical level. The choice of the functionality of
polymer varies as per the application type. Polymers from the acid and ester groups are the most
common types investigated for protein-based antigens. However, electrostatic interaction-displaying
polymers like cationic polymers are the most common type for nucleic acid-based antigens. Metal
coordination chemistry is commonly used in polymers designed for cancer immunotherapeutic
applications to suppress inflammation and induce a protective immune response. Amide chemistry is
widely deployed in polymers used to develop antigen-specific disease models like the experimental
autoimmune arthritis murine model.

Keywords: immune response; polymer chemistry; antigen; drug delivery; functional moiety; cancer;
autoimmunity; polymer

1. Introduction

Understanding the influence of polymers on the immune system is an essential pre-
requisite to applying various polymers for biomedical applications. Over the past several
decades, immunological research has shifted towards polymer science to design a biocom-
patible system for delivering antigens/vaccines and activating the immune system [1].
The use of polymers gained popularity in immunological applications due to their ease
of synthesis, characterization, and customization according to the nature of the antigen.
Polymers physically or chemically hold the antigen and release it slowly, thus acting as a
depot generation to keep activating the immune system for a long duration [1,2].

The polymers used in immunological applications are biocompatible and biodegrad-
able while still assisting in activation of the immune system via regulating the release
of an antigen. Polymers also offer the advantage of easy conjugation of biological moi-
eties such as antigens/ligands to enhance the specificity of a delivery system. Atom
transfer radical polymerization and reversible addition–fragmentation chain transfer poly-
merization methods facilitated polymer synthesis by adding many commercially avail-
able and custom-made monomers with specific functionality and unique polymer struc-
tures [3,4]. Interestingly, functional properties from several monomers can be incorpo-
rated into a single macromolecule using the reversible-deactivation radical polymerization
(RDRP) procedure.
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The immune response mediated by polymer and antigen generally depends on extrin-
sic and intrinsic properties like physical format, molecular weight, and nature of monomers
involved in the polymer [2]. Based on the nature of the antigen, an appropriate balance
of extrinsic and intrinsic properties is needed to design an effective way to activate the
immune system. From an immunological point of view, polymers act as an adjuvant to
improve the efficacy of an antigen [5–8]. Generally, an adjuvant helps antigens presented
to the antigen-presenting cells (APCs) and enhances the costimulatory signals for activa-
tion of Th cells. Activated Th cells downstream activate the plasma B cells to produce
the antibodies against the delivered antigens [1,2]. Although many specific cell signal-
ing pathways are involved in polymer-mediated activation of the immune system, the
polymers can act as agonists to different pattern recognition receptors (PRRs) [9]. Injected
polymers are recognized by various PRRs present in the host cells, including, for example,
integrins like αMβ2 (Mac-1); toll-like receptors and C-type lectin receptors involved in the
regulation of inflammation and the activation of immune responses; scavenger receptors
like SR-A I, SR-A II, and MARCO; and other surface proteins interacting with any foreign
body [10]. Apart from recognition by PRRs, depot generation and the activation of comple-
ment pathways by polymers are likely to play a significant role in activating the immune
system [11,12]. When polymers are introduced into the host, a protein layer is adsorbed
onto the polymer surface [13], which could mediate the immune responses [14,15]. Pre-
adsorption of fibrinogen and other serum proteins like antibodies, complement component
C3, fibronectin, high molecular weight kininogen, vitronectin, and coagulation cascade
proteins, especially on the hydrophobic polymer surface, could very well initiate the host
response to such polymers, leading to typical inflammatory responses [16,17]. Protein
coating on the polymers attracts the inflammatory cells, like monocytes, macrophages,
and neutrophils, that can amplify the inflammatory cascade by secreting various oxygen
and nitrogen radicals and granules [18] apart from proteolytic enzymes, cytokines, and
chemokines. Size, shape, surface charge, hydrophobicity, controlled release of antigens,
encapsulation of co-adjuvants, and the capacity to induce cell- and humoral-mediated
immune responses of polymers contributing to their adjuvant properties were discussed in
detail elsewhere [19].

Fine tuning of polymer can directly or indirectly affect the antigen-specific immune
response. The parameters including chemistry of monomers, molecular weight, and format
have been found to be important factors in defining the polymer-mediated antigen immune
response. The effect of molecular weight and formats were discussed previously [20,21].
This review is primarily focused on the chemistry of polymers and their effects on the
immune system (Table 1).

Table 1. Summary of various polymer chemistries utilized for different immunological applications.

Functionality Polymer Antigen/Vaccine Application Reference

Anhydride
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Doxorubicin Anticancer immunotherapy [31]

§ 8-bis-(p-carboxy phenoxy)-3,6-dioxaoctane + 1,6-bis-(p-carboxy phenoxy)-hexane, §§ 8-bis-(p-carboxy phenoxy)-
3,6-dioxaoctane + sebacic anhydride, † collagen type II.

The following paragraphs discuss different polymer chemistries and their role in
deciphering antigen-specific immune response.

2. Anhydride Chemistry

Polyanhydrides are the class of biodegradable polymers which are the favorite choice
for use as a carrier system to deliver cancer vaccines. Polyanhydrides are biodegradable
and FDA approved. Polyanhydrides follow zero-order release kinetics, using surface
erosion to release the antigen over a longer duration [32]. A slow and long duration release
of an antigen can be helpful to maintain immunity, especially in cancer treatment [33].
The antigen/protein release profile can be tuned easily according to the application via
changing the monomer type and its ratio in copolymer composition. The balance of both
charges in the form of amphiphilic copolymers represents a promising system to maintain
the functionality of encapsulated biomolecules and their release in a specific environment.
In the context of immune system activation, polyanhydrides have been demonstrated to be
an adjuvant in innate immunity via acting as possible agonists for toll-like receptors [34].

To study the effect of polyanhydride chemistry (PAC), polyanhydride-containing
copolymers sebacic anhydride (SA), 1,8-bis-(p-carboxy phenoxy)-3,6-dioxaoctane (CPTEG),
and 1,6-bis-(p-carboxy phenoxy)-hexane (CPH) in different combination-based nanoparti-
cles were studied with Ova as a model antigen (Figure 1). Three different compositions
of CPTEG+CPH (50:50), CPTEG+CPH (20:80), and CPH+SA (20:80) NPs encapsulated
Ova with or without CpG as an adjuvant were evaluated in the prevention of cancer
development in C57BL/6J mice. The NPs were synthesized through a double emulsion
solvent evaporation method with a comparable size range regardless of the combination.
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An unprotonated carboxylic acid may account for the negative charge, which might fa-
cilitate the attachment of Ova on the NP’s surface. Increased negative charges on the
polymer increase the hydrophilicity, which produces a high encapsulation efficiency. The
high hydrophilic content in this polymer is SA, which affects the Ovalbumin encapsu-
lation efficiency in these polymeric NPs in the following order: 20:80 CPH+SA > 50:50
CPTEG+CPH > 20:80 CPTEG+CPH. The surface chemistry of the NPs influences their
interaction with the antigen-presenting cells, which, finally, generates the magnitude of the
immune response. The high hydrophobicity of particles promotes a greater opsonization of
particles, which may be attributed to the danger signals that can facilitate and generate the
immune response. Moreover, hydrophobicity releases the antigen slowly and continuously,
which might enhance the sustaining of an ongoing immune response. A similar effect of
hydrophobicity was observed in PAC-containing NPs (20:80 CPTEG+CPH). In mice, the
20:80 CPTEG+CPH NPs generated the highest level of Ova-specific antibodies and CD8+
T lymphocytes compared to the other compositions’ NP formulation. Moreover, in mice
immunized with two subcutaneous injections of 20:80 CPTEG+CPH NPs encapsulated
with Ova, a greater protection against tumor development was induced than with the other
combination [22]. Overall, polyanhydrides have been proven as an effective adjuvant to
sustain the release of a model or different cancer antigens. However, their role in controlling
microbial antigens needs to be addressed in the future.
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3. Zwitterionic Chemistry

Generally, zwitterion polymers possess equal parts of cationic and anionic components
to maintain a neutral charge. The combination of both charges gives them good hydration
properties. Because of this hydration property, a zwitterionic polymer can inhibit the
nonspecific interaction of proteins [35]. Thus, this unique property makes them attractive
to biomedical scientists, especially for bioengineering applications [36]. However, for the
first time, their immunomodulation property was demonstrated by Li and colleagues, who
synthesized a zwitterionic phosphoserine-mimetic polymer (ZPS)–uricase conjugate. The
enzyme conjugates inhibiting the immunogenicity properties of the enzyme showed an
improvement in their pharmacokinetic profile. Under in-vitro conditions, the enzyme
conjugate considerably affected the antigen-presenting cells by suppressing the expression
of cell surface maturation markers CD40+CD80+ compared to the naïve enzyme [37]. An-
other zwitterionic polymer, poly(carboxybetaine methacrylate) (pCBMA), which exhibited
the nonspecific protein interaction, has shown promising application in the formation of
complex blood media. Structurally, CBMA contains a glycine and betaine structure and
exhibits an acid–base equilibrium. Carboxyl groups of CBMA are available to conjugate for
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amino groups on the protein surface [38]. A microgel based on pCBMA cross-linked with
tetratheylene glycol diacrylate (TTEGDA) has demonstrated effectiveness for immunoglob-
ulin (Ig) delivery. The microgel has shown good biocompatibility and sustains released
immunoglobulin (Ig) under in-vitro conditions. The release Ig was functional and showed
binding ability to Ig receptors [23].

Qiao and colleagues have modified cationic liposomes with zwitterionic lipids (dis-
tearoyl phosphoethanolamine-polycarboxylic- betaine, DSPE-PCB) to facilitate cellular
uptake of DNA vaccines and increased release of DNA. In their study, they used zwitteri-
onic lipid mannosylated DSPE-PCB (mannose-DSPE-PCB), cationic lipid, 1,2-Dioleoyl-3-
trimethylammonium propane (DOTAP), and cholesterol as the helper lipid to develop a
DNA adjuvant. In this system, mannose-DSPE-PCB enhanced DNA’s cellular accumula-
tion and antigen presentation, DOTAP helped to complex with the DNA, and cholesterol
stabilized the cationic liposomes. HIV DNA plasmid Env was used as the antigen. These
man-ZCL/DNA lipoplexes have significantly increased the immunogenicity and anti-HIV
immune responses compared to naked DNA, CpG/DNA, and Lipo2k/DNA [39].

Moreover, zwitterionic bacterial polysaccharides possessing highly dense positive-
and negative-charged carbohydrate residues can be used as adjuvants [40]. The struc-
ture of natural zwitterionic polysaccharides and their mode of action, especially in ac-
tivating acquired and innate immune responses, were discussed earlier [41,42]. Nat-
ural polysaccharides from Group B Streptococcus bacteria capsules are anionic and T-
independent antigens. Zwitterionic polysaccharides (ZPS) synthesized through the chemi-
cal introduction of positive charges into these anionic polysaccharides activated human
and mouse antigen-presenting cells through toll-like receptor 2 [43]. Later, the authors
demonstrated that ZPS-containing glycoconjugate vaccines were more immunogenic than
the native polysaccharide conjugates [44]. Despite their effectiveness, comprehensive
biocompatibility characterization is needed to further explore zwitterionic polymers for
immunological applications.

4. Amide Chemistry

Amide chemistry has biological importance, as it combines both hydrophilicity and
hydrophobicity properties. Structurally, the primary amine group of amide provides
an essential character, while the carboxyl group contributes to its acidic properties. A
familiar example of amide chemistry’s role in activating the immune system was observed
in the studies of a synthetic poly-N-isopropyl acrylamide polymer (PNiPAAm) as an
adjuvant. Subcutaneous injection of PNiPAAm mixed with collagen type II (CII) induced a
considerably higher CII-specific immune response than the antigen alone. Molecular weight
also affects the adjuvant property of PNiPAAm, as high Mw PNiPAAm generated a higher
anti-CII response than low Mw PNiPAAm. Moreover, the physical interaction of CII looks
more promising than the CII covalently attached to PNiPAAm for activation of CII-specific
immune responses [6,7]. PNiPAAm behaved differently at different temperatures, thus
making it an essential component for the delivery of biomolecules. A temperature point
widely known as a cloud point or lower critical solution temperature below it, PNiPAAm,
remains in a solution form that allows the incorporation of biomolecules, while above
the cloud points, PNiPAAm precipitates with encapsulated molecules and releases them
slowly, producing a long-term depot effect [4,45].

A balance between hydrophilic and hydrophobic properties has also been studied in
the antigen-specific immune response elicited by injecting various amide-containing poly-
mers and CII. Four various amines containing polymers polyacrylamide (PAAm), poly-N-
isopropyl acrylamide (PNiPAAm), poly-N-isopropylacrylamide-co-poly-N-tertbutylacrylamide
(PNiPAAm-co-PNtBAAm), and poly-N-tertbutylacrylamide (PNtBAAm) were synthesized
and tested with CII for the development of collagen-induced arthritis in mice. The hy-
drophobic character in these polymers was increased by increasing the alkyl group N-
substitution (Figure 2). PAAm was highly hydrophilic, while PNtBAAm held high hy-
drophobic characteristics. Upon injecting these polymers, PNiPAAm mixed with CII
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induced arthritis symptoms in 75% of the mice compared to those injected with other
polymers plus CII. A balance of both properties might recruit more APCs at the injec-
tion site for a high cellular uptake of antigen, which can lead to a more robust response
than the highly hydrophilic or hydrophobic polymers [5]. Amide chemistry has proven
to be an effective adjuvant to activate an auto-antigen-specific immune response. How-
ever, their adjuvant properties need to be addressed with microbial antigens to explore
them in vaccines.
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5. Acid and Ester Chemistry

Polyglycolic acid (PGA) and its copolymers like poly-lactide-co-glycolide (PLGA) are
familiar examples of the role of amide chemistry in developing antigen-specific immune
responses. Generally, PLGA-based polymers are polyesters of lactic and glycolic acids at a
molar ratio of 50:50. The molecular weight and copolymer composition influence the PLGA
polymers’ immunogenicity via changes in degradation and antigen release profiles [46].
PLGA polymers are highly biocompatible and biodegradable [47]. Under in-vivo condi-
tions, PLGA microparticles are phagocytosed by the phagocytic cells, and hydrolysis occurs
inside the specialized vacuoles of these phagocytic cells. The ester linkage of PLGA breaks
down into lactic and glycolic acid moieties [46]. This produces an immunosuppressive
effect via inhibitory phenotype and resistance maturation of murine bone marrow-derived
dendritic cells [48]. The hydrophobicity and release rate of incorporated materials can be
varied by changing the ratio of individual lactic and glycolic acid monomers [49]. The
presence of higher-level glycolic acid in the polymer results in a rapid burst and release
of antigens [50].

On the other hand, the capacity of PLGA microparticles loaded with autoantigenic
peptides has reduced the hyperglycemic condition in autoimmune type 1 diabetes in
a mouse model [51]. Therefore, PLGA effects were immunosuppressive, and different
studies can show activation properties. In another study, the effect of PLGA particles
was studied with double-stranded RNA adjuvant Riboxxim and an antigen in anticancer
immunotherapy. Antigen and adjuvant-loaded PLGA particles activated the murine and
human dendritic cells and upregulated the tumor-specific CD8+ T cell responses. This
PLGA-based formulation inhibited tumor growth, prevented metastasis, and increased the
survival of the mice possessing tumor load [24].

In addition to the amide linkage, the opposite charge effect is also studied using PLGA
particles. For instance, three different kinds of PLGA particles with additional charges
were synthesized in a study to observe their impact on the immune system. The immune
potential of an antigen-loaded model negatively charged with PLGA NPs Angelica sinensis
polysaccharide (ASI-PLGA-Ova), positively charged with polyethyleneimine PLGA NPs
(PEI-PLGA-Ova), and PEI-modified negatively charged ASI-PLGA-Ova particles was
demonstrated in mice. Unlike negatively charged NPs, both PEI-coated PLGA NPs were
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biased for antigen escape from the endosome, leading to the antigen delivery into the
cytoplasm to enhance cross-presentation. Moreover, both PEI-modified NPs induced more
effective long-term antigen-specific immune responses in mice [25]. In a different study,
another acid moiety containing polymer polymethylmethacrylate (PMMA)-based NPs
was demonstrated to deliver the HIV microbial Tat antigen to activate the antigen-specific
immune system. NPs constituted PMMA in the inner core while positively charged PEG
molecules reside on the outer shell for adsorption of microbial antigen. Upon intramuscular
injection of plasmid, pCV-tat delivered through PMMA-PEG NPs successfully activated
Tat-specific humoral and cellular immune responses. However, the response was biased
toward the Th1 cell signaling pathway [26]. PLGA polymer can successfully present
antigens to stimulate cellular and humoral immune responses [52]. Dendritic cells and
macrophages are involved in the internalization of PLGA particles [53] and release antigens
to present via the MHC class I pathway to induce cytotoxic T cells [54]. Apart from inducing
secretion of cytokines from dendritic cells [50], the PLGA particles can also induce IgG and
IGA responses [50,55,56].

Polyacrylic acid polymers (carbomers) are used as adjuvants in veterinary vaccines.
The original synthetic carbomer, Carbopol, is an anionic polymer of acrylic acid cross-linked
with polyalkenyl ethers or divinyl alcohol and used in humans for topical application and
drug delivery purposes. Antigens can be directly mixed with carbopol gel, which has no
apparent toxic effects in animals [57,58]. Carbopol promotes cellular immunity without
PRR activation [59].

6. Alcohol Chemistry

In general, alcohol functionality in a polymer structure contributes a hydrophilic
property and inhibits the binding of proteins under in-vivo conditions. Polyethylene
glycol (PEG) is the most common example of a polymer used in biomedical applications.
Hypersensitive reactions, including life-threatening anaphylaxis, are the most common
side reactions documented in preclinical and clinical studies. For instance, anti-PEG
IgM antibodies were observed in mice vaccinated with PEGylated liposomes containing
oligonucleotides as an antigen. Furthermore, immunized mice developed anaphylactic
shock after the second dose of PEGylated liposomes [27]. In a different study, PEGylated
liposomes encapsulated with DNA induced PEG-specific antibody responses in mice. This
led to common hypersensitive reactions including lethargy, puffiness around the eyes,
cyanosis, labored breathing, and mortality [60]. Therefore, in-vivo performance of other
alcohol-based polymers needs to be demonstrated in the future.

7. Ionic Interactions

Ionic interactions are vital in activating immune responses by stabilizing loaded
antigens. For instance, the cationic trimethyl chitosan polymer interacts with a peptide
antigen which is further coupled with polyglutamic acid (PGA). The peptide antigen
contains a B cell conserved sequence and a universal T cell epitope conjugated PGA via
cycloaddition reaction, producing the anionic conjugate. The cationic conjugate further
ionically interacts with cationic TMC to form NPs. These NPs induced highly systemic
and mucosal immune responses like the antigen mixed with the cholera toxin B subunit,
which served as a positive control. The systemic antibodies were observed to be opsonized
against the group A streptococcus pathogenic strains [61]. In this sense, the effect of a
quaternization charge on the activation of the immune system has also been studied. For
example, 2-hydroxypropyl trimethyl ammonium chloride chitosan (HTCC) hydrogel with
different degrees of quaternization (0, 21, 41, 60, 80%) was synthesized. The positive
charge increased as the DQ increased, increasing the hydrogel’s gelation time. Upon nasal
administration of this different hydrogel with the H5N1 vaccine, it was found that 41%
quaternization HTCC hydrogel induced a more potent H5N1-specific systemic immune
response. HTCC with 0% quaternization caused a high level of mucosal immune responses,
compared to the other hydrogels, because of more interactions with the mucosal surface [28]
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(Figure 3). In addition to protein-based antigens, nucleic acid antigens have been explored
with polymers with ionic charges. Polyethyleneimines (PEIs) are the common examples
which have been constantly explored in studies on the delivery of NA-based vaccines.
PEI-based polymers form nanocomplexes upon mixing with NA-based antigen through
electrostatic interactions. These nano complexes can be easily internalized by APCs for
delivery of NAs. The immune response generated in NA-based studies is superior to that
of the NA alone [29,30].
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8. Coordination Interactions

The coordination interactions between metal ions and organic ligands attract biomedicine
scientists to apply them for immunomodulation of the immune system. For instance,
Imidazole-based compounds provide a better scaffold for developing therapeutic drugs [62].
A coordination complex of Zn ions with 4-phenyl imidazole (PI) was explored as an
inhibitor of indoleamine 2,3-dioxygenase in cancer immunotherapy. The Zn-PI complexes
were modified with PEG and loaded with a cancer drug, doxorubicin, to target the cancer
cells. The Zn ion of the complex influenced the calreticulin proteins on the cancerous cells to
enhance DOX-triggered immunogenic cell death. However, Zn ligand PI helped reverse the
immunosuppressive environment by inhibiting the IDO enzyme. The DOX-PEG-loaded
Zn-PI complexes effectively inhibited tumor growth via chemo- and immune-therapy
ways [31]. In a different study, the immune potential of Au-phosphane dithiocarbamate
coordination complexes was demonstrated using ovarian cancer cells. Le et al. synthesized
a series of Au-dialkyl dithiocarbamate complexes that were an excellent cytotoxic for cancer
cells by inducing oxidation stress, endoplasmic reticulum stress-mediated oxidation stress,
and endoplasmic reticulum stress-mediated p53-independent apoptosis of cancer cells.
Moreover, these complexes interact with the cancer cells’ calreticulin proteins to activate
anticancer immune responses. However, the true potential of these Au-based complexes
needs to be addressed in the future [63].

9. Combination of Different Interactions

The combination of different functionalities has also been demonstrated to activate
an antigen-specific immune response. For instance, the role of different interactions was
studied with gold NPs via attaching different functional groups on NPs’ surface. Despite its
ease in conjugation, Au displays an excellent immunomodulation property [64]. Different
Au NPs with other hydrophobic characteristics were synthesized, and their capacity to
activate the immune system was demonstrated. The Au NPs with R groups possessing
a more cyclic structure were found to be more potent in immune system activation. The
explanation for this observation was their higher hydrophobic index compared to the other
Au NPs with hydrophilic R groups. The R groups of alcohol and primary amino groups
responded poorly, as a low cytokine expression level was found after exposing them to
murine splenocytes. Upon administration to mice, a similar effect of NPs’ hydrophobicity
was observed [65].
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10. Conclusions

Decoding polymer interactions with the biological system is needed to improve or
develop new polymer systems as adjuvants. In our current knowledge, polymers physically
or chemically interact with biologics via different functional groups and control their release
in vivo. In some cases, polymers act as agonists for innate immune receptors to activate the
immune system. Altering polymer functionality has been shown to have a direct biological
effect, to some extent. However, more fine tuning is needed to design polymers to activate
the immune system more effectively.
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