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Abstract: Personalized cancer vaccines based on neoantigens are a new and promising treatment for
cancer; however, there are still multiple unresolved challenges to using this type of immunotherapy.
Among these, the effective identification of immunogenic neoantigens stands out, since the in
silico tools used generate a significant portion of false positives. Inclusion of molecular simulation
techniques can refine the results these tools produce. In this work, we explored docking and
molecular dynamics to study the association between the stability of peptide–HLA complexes
and their immunogenicity, using as a proof of concept two HLA-A2-restricted neoantigens that were
already evaluated in vitro. The results obtained were in accordance with the in vitro immunogenicity,
since the immunogenic neoantigen ASTN1 remained bound at both ends to the HLA-A2 molecule.
Additionally, molecular dynamic simulation suggests that position 1 of the peptide has a more
relevant role in stabilizing the N-terminus than previously proposed. Likewise, the mutations may
have a “delocalized” effect on the peptide–HLA interaction, which means that the mutated amino
acid influences the intensity of the interactions of distant amino acids of the peptide with the HLA.
These findings allow us to propose the inclusion of molecular simulation techniques to improve the
identification of neoantigens for cancer vaccines.

Keywords: molecular docking; molecular dynamics; personalized cancer vaccines; cancer
immunotherapy

1. Introduction

Personalized neoantigen-based vaccines have proven to be a useful tool for im-
munotherapy of aggressive tumors, such as metastatic melanoma, glioblastoma, and
non-small-cell lung cancer [1–6]. This type of vaccine promotes a highly specific response
of T lymphocytes that do not undergo the tolerance induction process in the thymus
because they recognize neoantigens encoded in the somatic mutations of the tumor [7–9].

Currently, tumor neoantigens are predicted using in silico strategies, which compare
the tumor DNA sequence with that of healthy patient tissue to identify tumor-specific
somatic mutations. Once the mutations have been identified, the neoantigens are predicted
by using trained algorithms to estimate the probability that they will be processed and
presented in the context of the major histocompatibility complex (MHC) molecules, also
called human leukocyte antigen (HLA), of the patient [10–15]. Once the identity of the
neoantigens is established, the sequence of the tumor transcriptome allows the expression
levels of the predicted neoantigens to be verified. Other parameters incorporated in
bioinformatic tools for the identification of immunogenic neoantigens are the relative
affinity of the MHC molecule–neoantigen complex (IC50) [16–18] and the half-life of the
binding of the MHC–neoantigen complex [19].
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These in silico strategies allow the prioritization of potentially immunogenic neoanti-
gens. However, despite the promising results of some studies on the design and clinical
response of tumors to personalized vaccines, clinical studies have shown a limited in vivo
immunogenicity of the selected neoantigens [20], likely due to a limited capacity of in
silico methods to identify immunogenic epitopes in vivo. Despite the progress of in silico
prediction tools, they still have a high rate of false positives (low specificity) [21,22], which
is mainly due to two factors: (1) the dataset used to train these tools is usually based on
information generated from a limited number of HLA alleles, and they do not take into
account results of in vitro or in vivo evaluation of neoantigens; and (2) predictive tools rely
on sequence data only and therefore do not satisfactorily incorporate molecular aspects
of epitope processing and presentation by antigen-presenting cells, such as stability of
the MHC–peptide complex and recognition of the MHC–peptide complex by the T cell
receptor (TCR) on T cells, which are important factors determining the immunogenicity of
antigens [23].Therefore, it is necessary to search for new tools to improve the selection of
peptides with immunogenic potential in vivo.

Docking and molecular dynamics are computational tools that allow the understand-
ing of non-covalent receptor–ligand interactions at an atomic level useful in rational drug
design [24] and in the study of the interaction of the HLA–peptide complex with the TCR
molecules [25–29]. The use of these tools in the selection of immunogenic tumor neoanti-
gens have not been explored. Docking and molecular dynamics might make it possible to
generate additional information on the interaction of HLA molecules with neoantigens and,
perhaps, to obtain a better selection of neoantigens efficiently presented by MHC molecules
and recognized by T cells in vivo.

In this work, molecular docking and molecular dynamics were used to discriminate
molecular interactions among HLA-A*02:01 molecules and two neoantigens, one immuno-
genic and one non-immunogenic, for T cells. Based on the study by Strønen et al., [30],
we chose two melanoma neoantigens that, according to predictive algorithms, could bind
to HLA-A*02:01 molecules with high affinity and whose data on immunogenicity were
available. To elucidate the structural properties of a neoantigen in a complex with HLA-
A*02:01 leading the expansion of the human cytotoxic CD8+ T cell that efficiently recognizes
and destroys melanoma cells, we analyzed both complexes through the aforementioned
techniques and found remarkably different structural features on each complex.

2. Materials and Methods
2.1. Neoantigen Selection

Based on the study published by Strønen et al. [30], 21 neoantigens and their wild-
type counterparts were selected (see Table 1). The peptides had the following charac-
teristics: (i) the amino acid sequence of the mutated peptide included a single amino
acid change, compared to the wild-type sequence; (ii) the affinity score of the mutant
peptide was <1000 nM (according to NetMHC 3.2); (iii) the stabilities of the peptide–HLA-
A*02:01 complexes were measured; and (iv) the immunogenicity for CD8+ T cells were
assessed experimentally.

Table 1. Peptide sequences of the wild-type and mutant neoantigens selected for assessment using
molecular docking amino acid substitutions in the mutant neoantigens are presented in red.

Gene Associated Wild-Type Sequence Mutant Sequence

Neoantigen
Predicted
Binding

Affinity (nM)

Neoantigen
t1/2 β2

Microglobulin
(Hours)

Immunogenicity:
CD8+ T Cell
Response 1

AKAP6 WLIDMESLV WLIDMKSLV 24 12.3 NO

ASTN1 KPYGLDWAEL KLYGLDWAEL 43 8.4 YES

BCSIL ALALARKGV ALALAQKGV 925 9.2 NO



Vaccines 2023, 11, 1174 3 of 15

Table 1. Cont.

Gene Associated Wild-Type Sequence Mutant Sequence

Neoantigen
Predicted
Binding

Affinity (nM)

Neoantigen
t1/2 β2

Microglobulin
(Hours)

Immunogenicity:
CD8+ T Cell
Response 1

BCSIL ALARKGVQL ALAQKGVQL 914 4.4 NO

CDK4 ARDPHSGHFV ALDPHSGHFV 119 47.5 YES

DC1 VMKFKNPPV VMKFKNPLV 350 3.4 NO

GCNIL1 ALLETLSLLL ALLETPSLLL 27 39.9 YES

GNL3L NLNRCSVPV NLNCCSVPV 17 23.5 YES

GOLGA3 SLDPTTSPV SLDLTTSPV 33 13.7 NO

HELLS VTNSGKFLI VTYSGKFLI 888 3.7 NO

KIF3B SALGNVISA FALGNVISA 238 4.6 NO

LAMA1 STASDFLAV STAFDFLAV 363 3.7 NO

MLL2 ALSPVIPLI ALSPVIPHI 18 47.7 YES

MRM1 LLFGMTPCL LLFGMPPCL 37 14 YES

PGM5 AVGSHVYSV AVGSYVYSV 15.8 12.4 YES

PGM5 QQFAVGSHV QQFAVGSYV 73.53 5.4 YES

SIVA1 ALCGQCVRT ALCGQCVRI 633 5 NO

SLC38A1 IWAALFLGL ILAALFLGL 18 6 YES

SMARCD3 KLFEFLVHGV KLFEFLVYGV 6 83.7 YES

SNX24 KLSHQPVLL KLSHQLVLL 42 24 YES

USP28 LIIPCIHLI LIIPFIHLI 28 10 YES
1 CD8 response was evaluated by multimers, and subsequent reactivity was measured by the expression of CD107
A/B and IFN-y of tetramer-positive clones against tumor cells in vitro [30].

The peptide–HLA-A*02:01 complexes of these 42 peptides were modeled by molecular
docking, and the number of total and hydrophobic interactions were analyzed with Lig-
Plot+ [31]. Due to the elevated computational cost of molecular dynamics, only two neoanti-
gens and their wild-type counterparts were selected for this simulation. The selection was
based on the number of total interactions between the peptide and HLA (Table 2) and the
immunogenicity reported by Strønen (Table 1). Considering these criteria, the wild-type
and neoantigen associated with the gene ASTN1 (10 amino acids in length) and AKAP6
(9 amino acids in length) were chosen as immunogenic and non-immunogenic neoantigens,
respectively.

Table 2. Number of total interactions and hydrophobic interactions of mutant peptides with the
corresponding HLA molecule.

Peptide Sequence Total Interactions Hydrophobic Interactions

AKAP6 WLIDMKSLV 29 18

DC1 VMKFKNPLV 28 18

ASTN1 KLYGLDWAEL 26 16

GCNIL1 ALLETPSLLL 25 14

GNL3L NLNCCSVPV 25 14

HELLS VTYSGKFLI 24 15

SMARCD3 KLFEFLVYGV 24 13

USP28 LIIPFIHLI 24 15



Vaccines 2023, 11, 1174 4 of 15

Table 2. Cont.

Peptide Sequence Total Interactions Hydrophobic Interactions

GOLGA3 SLDLTTSPV 23 13

MRM1 LLFGMPPCL 23 15

PGM5 QQFAVGSYV 23 11

MLL2 ALSPVIPHI 22 13

SIVA1 ALCGQCVRI 21 11

SLC38A1 ILAALFLGL 21 13

BCSIL ALAQKGVQL 20 11

CDK4 ALDPHSGHFV 19 10

LAMA1 STAFDFLAV 19 9

SNX24 KLSHQLVLL 19 10

BCSIL ALALAQKGV 18 11

KIF3B FALGNVISA 18 9

PGM5 AVGSYVYSV 16 8

2.2. Evaluation of Peptides through Sequence-Based In Silico Tools

The NetMHC 4.0 tool for HLA-A*02:01 binding affinity assessment [32], NetMHCstab-
pan 1.0 to predict MHC-I binding stability (19), NetCTL 1.2 and NetTepi 1.0 to determine
proteasome processing, TAP transport, and HLA binding [33,34] were all used to predict
the immunogenicity of the CD8+ T cells of the four peptide sequences listed in Table 3.

2.3. Molecular Docking

To generate the peptide–HLA complex model for each case, molecular docking was
performed. To model the peptide pair derived from ASTN1 (wild-type and mutant neoanti-
gen), the structure 5C0G from the Protein Data Bank (PDB) [35] was used as a reference
structure. For the pair of peptides derived from AKAP6, the 5NMH structure was used.
The FlexPepDock Ab-Initio protocol [36] integrated in the Rosetta package [37] was imple-
mented for docking, where 50,000 poses were calculated for each peptide. According to the
Rosetta scoring function, the best pose generated for each peptide was selected. The num-
ber of interactions (hydrogen bonds and hydrophobic interactions) of the peptide–MHC
complex were evaluated through Ligplot+ v2.2.

2.4. Molecular Dynamics Simulation

Subsequently, a molecular dynamics simulation was performed for each peptide
using the Visual Molecular Dynamics (VMD) [38] and Nanoscale Molecular Dynamics
(NAMD) [39] tools. For the generation of the topology of the system, the VMD AutoPSF
tool [38] was used together with the CHARMM36 force field [40], the system was solvated
using the TIP3P explicit solvent model, the size of the water box was 67 × 70 × 70 A3, the
system was neutralized using the VMD AutoIonize tool [38], and the particle mesh Ewald
(PME) method was used to calculate the electrostatic energy, with a distance truncation
of 11 Å. The simulation was carried out under NPT conditions, that is, constant pressure
(1 atm) and temperature (310 K), and was composed of 3 stages: (i) minimization, for
which the system was brought to room temperature (310K), (ii) system stabilization for
~15 ns, and (iii) the simulation itself, with a duration of 295ns. Lastly, the VMD [38] and
Pycontact [41] tools were used to analyze both the peptide–protein interactions and to
assess the complex stability.
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Table 3. Results of analyses of four peptides assessed by using the different tools traditionally used for the identification of neoantigens.

Associated
Gene

Gene Function Mutation Peptide
Sequence

In Silico In Vitro

NetMHC 4.0
(Afinity: nM)

NetTepi 1.0
(Epitope)

NetCTL 1.2
(Epitope)

NetMHCstabpan
1.0

(Stability: hours)

t1/2 β2
Microglobulin

(Stability:
hours)

CD8+ T Cell
Response

Observed in
Patient 1

CD8+ T Cell
Response

Induced in
Donor 1

ASTN1

Neuronal
adhesion molecule

required for
migration of
neuroblasts

WT KPYGLDWAEL 12,901 NO NO 0.26 - NO NO

P/L KLYGLDWAEL 14.23 YES NO 2.52 8.4 NO YES

AKAP6

Binds to the
regulatory subunit
of protein kinase

A, highly
expressed in brain
and cardiac tissue

WT WLIDMESLV 7.29 YES YES 4.14 - NO NO

E/K WLIDMKSLV 13.55 YES YES 4.20 12.3 NO NO

1 CD8 response was evaluated by multimers, and subsequent reactivity was measured by the expression of CD107 A/B and IFN-y of the tetramer-positive clones against tumor cells
in vitro [30].
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3. Results

Initially, molecular docking was carried out to model the peptide–MHC complexes
(p-MHC) of the 21 neoantigens listed in Table 1 and their wild-type counterparts. The
best pose of each of the peptides on HLA-A*02:01 was analyzed using the Ligplot+ tool to
determine the number of hydrophobic interactions and hydrogen bonds in the p–MHC
complex for both the mutant version (Table 2) and the wild-type version (Table S1). Overall,
the total interactions ranged from 16–29 without observing a pattern that allowed us to
correlate immunogenicity with the number of interactions. Due to the elevated compu-
tational, we proceeded to select only two neoantigens, one immunogenic and the other
non-immunogenic, to perform the simulation of the p–MHC complex through molecular
dynamics to analyze the peptide–protein interactions and the stability of the complex
over time. Therefore, based on the number of interactions by molecular docking and the
immunogenicity reported by Strønen, the AKAP6 peptide with 29 total interactions was
selected as the non-immunogenic neoantigen, and ASTN1 with 26 total interactions was
selected as the immunogenic neoantigen to continue with the molecular simulations.

3.1. Limitation of the Predictive Tools Based on Sequence

The AKAP6 neoantigen was generated by substituting glutamic acid for a lysine (E/K)
at position 6 (P6). The predictive analysis of the AKPK6 neoantigen sequence (IC50 and
complex stability values) suggested that both the wild-type and the mutant sequences
should be more immunogenic than the ASTN1 neoantigen for CD8+ T cells; however,
the in vitro evaluation carried out by Strønen proved that neither the wild-type nor the
mutant sequence of AKAP6 were immunogenic. On the other hand, the ASTN1 neoantigen
was generated by changing a proline for a leucine (P/L) at position 2 (P2), whereas the
NetCTL tool (which predicts cleavage by the proteasome and efficiency of transport by
TAP) revealed that ASTN1 did not meet the characteristics of an immunogenic sequence.
The NetMHC 4.0 and NetMHCstabpan 1.0 tools revealed that ASTN1 neoantigen had a
higher affinity for the HLA-A*02:01 molecule and formed stable MHC–peptide complexes,
predicting a more immunogenic sequence than that formed by the wild-type sequence.
This was proved experimentally by Strønen, since the in vitro evaluation of this neoantigen
clearly demonstrated that this neoantigen was highly immunogenic for CD8-T cells (Table 3).
Altogether, our results suggest that predictive algorithms provide conflicting results that
are hard to conceal with epitope immunogenicity and argue for the need to have other
techniques to improve the prediction of immunogenic epitopes.

3.2. Molecular Simulations

From the structures derived from molecular docking for AKAP6 and ASTN1, both for
the wild-type versions and for the neoantigens, a peptide–HLA binding was observed, with
a conventional orientation with the side chains of the P2 and P9/P10 residues arranged
in the pockets of HLA-A2 (Figure 1A,B). For AKAP6, P2 was leucine, and P9 was valine;
for ASTN1, P2 was proline/leucine (WT/Neo), and P10 was leucine. The exposed side
chains for AKAP6 were P1, P5, and P8, and for ASTN1, they were P1, P5, P6, P8, and P9, all
projected away from the HLA-A2 binding pockets, forming a surface with the potential to
interact with HLA-A2.

In both cases, the peptide–MHC complexes showed structural deviations between the
wild-type version and the neoantigen (Figure 1C,D). In particular, the wild-type and mutant
peptides of AKAP6 overlapped in all the side chains except for P1, P3, and P6, which were
the last ones where the mutation occurred. For its part, in ASTN1, only P2 and P3 changed,
being the first where the mutation occurred. Therefore, the structural differences between
the peptide–MHC complexes for the wild-type and the mutant versions in both neoantigens
appeared not to be restricted solely to the mutation site.
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the ASTN1wt–HLA-A2 and ASTN1–neo-A2 complexes. The wild version is in yellow, and the mu-
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HLA-A2) or pink (neo-HLA-A2). (C). Side view of overlapping AKAP6 mutant and wild-type pep-
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Figure 1. Conformers of wild-type and mutant peptides for AKPK6 and ASTN1 bound to HLA-
A*02:01. (A) Top view of the AKAP6wt–HLA-A2 and AKAP6 neo-A2 complexes. (B) Top view
of the ASTN1wt–HLA-A2 and ASTN1–neo-A2 complexes. The wild version is in yellow, and the
mutant is in cyan. The point mutation is marked in a red circle. The HLA-A2 backbone is in white
(WT-HLA-A2) or pink (neo-HLA-A2). (C). Side view of overlapping AKAP6 mutant and wild-type
peptides. (D) Side view of overlapping wild-type and mutant ASTN1 peptides. Carbon atoms are in
yellow (WT) or in cyan (Neo); nitrogen atoms are in blue; oxygen atoms are in red.

The molecular dynamics simulations showed very different structural attributes of
both neoantigens bound to the HLA-A*0201 molecule. On one hand, for AKAP6, both the
wild-type (link to visualize online the simulation: https://mmb.irbbarcelona.org/3dRS/
shared/61b278eec0a8d2.72605506 (accessed on 10 December 2021), corresponding files are
also available at Zenodo with https://doi.org/10.5281/zenodo.5772726
(accessed on 10 December 2021)) and the mutant versions (link to visualize online the
simulation: https://mmb.irbbarcelona.org/3dRS/shared/61b27a3cdfdef2.66763559 (ac-
cessed on 10 December 2021), corresponding files are also available at Zenodo with
https://doi.org/10.5281/zenodo.5772726 (accessed on 10 December 2021)) bound to the
HLA-A*02:01 molecule; however, by the end of the simulation, the C-terminus end of
both peptides dissociated from the peptide binding groove (PBG) of the HLA-A*02:01
molecule, remaining anchored only by the N-terminus (P1 to P5). In the case of ASTN1,
the simulations showed that the wild-type version of the peptide (link to visualize online
the simulation: https://mmb.irbbarcelona.org/3dRS/shared/61b27dac052904.99817841
(accessed on 10 December 2021), corresponding files are also available at Zenodo with
https://doi.org/10.5281/zenodo.5772726 (accessed on 10 December 2021)) detached from
the N-terminus end and remained anchored to the MHC molecule through the C-terminus
end (P7 to P10). In contrast, the neoantigen sequence of ASTN1 remained anchored at
both ends of the MHCI throughout the simulation time, meaning that the amino acid
change in P2 allowed the ASTN1 neoantigen to form the most stable peptide–HLA-
A*02:01 complex of the four MHCI–peptide complexes analyzed (link to visualize online
the simulation: https://mmb.irbbarcelona.org/3dRS/shared/61b27c62dc9300.82271714
(accessed on 10 December 2021), corresponding files are also available at Zenodo with
https://doi.org/10.5281/zenodo.5772726 (accessed on 10 December 2021)).
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3.3. Atomic Interactions

Atomic interactions between the peptide and HLA-A*02:01 were analyzed using the
Pycontact tool [41]. Pycontact is a bioinformatics tool that identifies and characterizes
non-covalent interactions between molecules in a molecular dynamic simulation. More
specifically, it calculates the intensity of interactions through a magnitude called “contact
score.” The stronger the interaction between two atoms/residues, the higher the “contact
score.” This analysis focused on stable interactions over time, that is, those interactions
with a median “contact score” greater than zero. At first, the number and type of stable
interactions were analyzed, with the predominant types of interactions being hydrophobic
and hydrogen bonds (Figure 2). Regarding the types of interactions considered here, it
is worth clarifying that the “other” category corresponds to the interactions that did not
strictly meet the classification thresholds of any of the other categories.
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Figure 2. Number and type of interactions between each of the amino acids of the antigens and
HLA-A*02:01. Molecular dynamics simulations were performed for the wild-type and the mutant
version for both neoantigens, by analyzing the number and type of non-covalent interactions between
the amino acids of the epitopes and HLA-A2 using the Pycontact tool. (A,B) Bar graphs for the
non-immunogenic neoantigen AKAP6. (C,D) Bar graphs for the immunogenic neoantigen ASTN1.
In blue are hydrogen bonds, in orange are hydrophobic interactions, in green are salt bridges, and in
red are other types of interactions.

In the case of AKAP6, even though both the wild-type peptide and the neoantigen
detached from the C-terminus end (more precisely, positions P6 to P9), the mutated peptide
presented a reduction in the number of interactions in the C-terminus part, generating
faster release, compared to the wild-type version (Figure 2A). In the case of ASTN1, the
mutation in this neoantigen generated an increase in the number of stable interactions
with HLA, not only at the position where the amino acid change occurred (P2), but also
at other positions (notably at the P9). This increase in interactions favored the stability
of the complex, as evidenced in the molecular simulation, since it was this peptide that
remained anchored at both ends, contrary to the wild-type, which was released from the
N-terminus end.
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On the other hand, the variability of the types of interactions between neoantigens and
their wild-types were striking. This illustrates the complexity of the dynamics of protein–
peptide interactions and helps to understand why current tools trained primarily on sequence
information are unable to accurately predict the stability of peptide–HLA complexes.

3.4. Intensity of Interactions (Contact Score)

The intensity of interactions between atoms/residues is of great interest when it comes
to characterizing the stability of a complex. In AKAP6, a significant increase in the average
intensity of interaction in P3 and P4 between the wild-type and the mutated versions was
observed (Figure 3). However, this change was irrelevant in the global stabilization of the
peptide, since, in both cases, the peptide was released from the C-terminus end.
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Figure 3. Contact scores of the interactions between amino acids of the antigens and HLA-A*02:01.
Molecular dynamics simulations were performed for the wild-type and the mutant version for both
neoantigens, by analyzing the intensity of the non-covalent interactions between the amino acids
of the epitopes and HLA-A2. (A,B) Box-and-whisker plots for the non-immunogenic neoantigen
AKAP6. (C,D) Box-and-whisker plots for the immunogenic neoantigen ASTN1.

As for ASTN1, the mutation in P2 generated increases in the intensity of the interaction
not only at the site of the mutation but also at other positions, such as P1, P7, and P9 (see
Figure 3). This result is particularly interesting because it indicates a “delocalized” (long-
distance) impact of a point mutation on the global peptide–HLA interaction. In other
words, a point mutation can modulate the interactions of other peptide amino acids with
the PBG of the HLA molecule.

3.5. Atomic Interactions of P1 of AST1 with the HLA-A*02:01 Molecule

We focused the docking and molecular dynamics analyses on the atomic interac-
tions between residues of P1 with the peptide binding groove of HLA-A*02:01 in ASTN1,
particularly in the ten strongest atomic interactions (Table 4).
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Table 4. Top 10 atomic interactions between ASTN1 and HLA-A*02:01. Highlighted in yellow are
the interactions differentially expressed in the neoantigen and not in its wild-type counterpart. The
nomenclature of the atoms corresponds to that used in the CHARMM36 force field.

ASTN1 Wild-Type ASTN1 Neoantigen

# Contact Type Mean Score Interaction (HLA–Peptide) Contact Type Mean Score Interaction
(HLA–Peptide)

1 H-bond 0.977 Resid. 147, atom
NE1—Resid. 9, atom O H-bond 0.988 Resid. 147, atom

NE1—Resid. 9, atom O

2 Other 0.961 Resid. 146, atom NZ—Resid.
10, atom C H-bond 0.965 Resid. 146, atom

NZ—Resid. 10, atom OT2

3 H-bond 0.96 Resid. 146, atom NZ—Resid.
10, atom OT1

H-bond 0.965 Resid. 159, atom
OH—Resid. 1, atom O

4 H-bond 0.946 Resid. 146, atom NZ—Resid.
10, atom OT2

Other 0.96 Resid. 146, atom
NZ—Resid. 10, atom C

5 Other 0.781 Resid. 143, atom
OG1—Resid. 10, atom C H-bond 0.958 Resid. 146, atom

NZ—Resid. 10, atom OT1

6 Other 0.778 Resid. 146, atom CE—Resid.
10, atom OT1

H-bond 0.944 Resid. 99, atom
OH—Resid. 3, atom N

7 Other 0.759 Resid. 147, atom
CD1—Resid. 9, atom O

H-bond 0.891 Resid. 63, atom
OE2—Resid. 1, atom N

8 Other 0.734 Resid. 146, atom CE—Resid.
10, atom OT2

H-bond 0.881 Resid. 63, atom
OE1—Resid. 1, atom N

9 Other 0.715 Resid. 147, atom
NE1—Resid. 8, atom CB

H-bond 0.877 Resid. 70, atom
NE2—Resid. 7, atom NE1

10 Other 0.694 Resid. 146, atom CE—Resid.
10, atom C

Other 0.871 Resid. 63, atom
CD—Resid. 1, atom N

Interactions of P1 with the HLA-A*02:01 molecule in the neoantigen were not found
in the wild-type version of the sequence interacting with this molecule. (Where three out
of four interactions were hydrogen bonds, the rest corresponded to a different type of
non-covalent interaction; see Figure 4). This observation is interesting, since it allowed
us to measure the magnitude of the “delocalization effect” of the mutation in P2 on other
positions along the peptide. By this effect, P1 became the position that fostered the most
intense interactions stabilizing the peptide.
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Figure 4. Visualization of the four interactions differentially present in the ASTN1 mutant peptide,
compared to its wild-type counterpart. The first amino acid of the neoantigen ASTN1 (K) is shown in
orange, and the amino acids 159 and 63 of the HLA are in yellow and green, respectively. Hydrogen
bonds are shown in red, and another type of interaction is shown in blue.
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3.6. Atomic Interactions between P2 and Its Neighbors in ASTN1

Due to the mutation, the intensity of the interactions of P1 with the HLA-A*02:01
changed considerably between the ASTN1 neoantigen and the wild-type sequence (Figure 3).
Therefore, we investigated the effect of the mutated position on neighboring amino acids, and
we found that in the wild-type peptide, the proline in P2 established a very strong interaction
with P1 that resulted in an accumulated contact score that reached a value of 19.14 against
13.33 in the case of the neoantigen (Supplementary Tables S2 and S3). This could explain the
interactions observed at P1 of the ASTN1 neoantigen (Table 4) that were lost between the
P1 of the wild-type peptide and the HLA-A*02:01 molecules, which would be hindered by
proline. Regarding the interactions between P2 and P3, it is worth noting that no significant
changes were found in the accumulated contact score (12.67 in the case of the wild type and
11.72 in the case of the neoantigen; see Supplementary Tables S4 and S5).

These findings highlighted new features governing the complexity of peptide–HLA
interactions that might explain why current bioinformatics tools are unable to accurately
predict the affinity and stability of this type of complex.

3.7. Analyses of Immunogenic vs. Non-Immunogenic Interactions

When comparing the non-immunogenic with the immunogenic neoantigens (AKAP6
vs. ASTN1, respectively), it was noticed that not only the amount and intensity of the
interactions mattered, both ends (N-terminus and C-terminus) remained stably bound to
the HLA’s PBG throughout the time. Also noteworthy was the fact that in the case of both
AKAP6 peptides (wild-type and mutant) and in the ASTN1 neoantigen, which are the
peptides that remained anchored in the N-terminus part, P1 had both a significant number
of interactions and a high intensity (even higher than P2, Figure 3), which would indicate
that this position played a more relevant role than traditionally accepted in the stabilization
of the N-terminus part of peptide epitopes.

4. Discussion

In the present work, we explored the use of molecular simulation techniques, such
as docking and molecular dynamics, to study the interaction and stability of peptide–
HLA complexes. For this, AKAP6 was selected as the non-immunogenic neoantigen and
ASTN1 as the immunogenic antigen, according to the results obtained in healthy donors for
Strønen et al. [30], to use these tools in silico and analyze the characteristics that define their
immunogenicity at the pMHC complex level. When comparing the in vitro immunogenicity
results with the results obtained by traditional prediction tools, the failures of algorithms
based solely on the sequence were evident, since AKAP6 was a clear false positive. These
results can be explained by the lack of structural information on the interaction of the
p–MHC complex that these tools have. Therefore, the inclusion of docking and molecular
dynamics may help to strengthen the prediction of immunogenic neoantigens.

Regarding the two cases selected for this work, the results provided by molecular
dynamics highlighted three characteristics when comparing these two neoantigens: (i) the
importance of P1 and P2 for the binding of the peptide and the MHC; (ii) the delocalized
effect that mutations can have and how this can influence the stability of the peptides; and
(iii) the importance of having high affinity and stability of the complex at both ends.

First, the results provided by the molecular dynamics of this study indicated that the
P1 position of the peptide played more of a key role in the stabilization of the peptide by
the N-terminus than previously assumed, since classically, P2 and P9 were the residues of
the most important peptides for anchoring to the MHC [42]. This prominent role of P1 is
evident in Figure 2, where significantly more important contact scores were observed in P1
than in P2 in the three peptides that remained anchored in their N-terminus part (ASTN1
neo, AKAP6 WT, and AKAP6 neo). The two neoantigens followed the classically reported
amino acid sequence pattern for class I epitopes for binding to MHC-I: X-(L/I)-X(6−7)-
(V/L), where L/I and V/L represent the residues, whose side chain anchors the peptide
to the MHC [42,43]. In the case of AKAP6, this was generated by a mutation in a non-
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anchor position (P6), which caused the mutant peptide to be released more quickly from
the MHC through the C-terminus. On the other hand, in ASTN1, the mutation occurred
right at an anchor position (P2) with a change from a proline to a leucine, which improved
the anchoring of the peptide to the MHC and increased the number of hydrophobic
interactions. These two characteristics, mutations in the anchoring residues (P2 and P9)
that improve the affinity and increase the hydrophobicity of the amino acids, were reported
in literature as properties related to immunogenicity, since stable interactions are generated
between the anchoring amino acids and the HLA, which allow the correct presentation of
the antigen [44,45].

Second, the “delocalized” impact of a point mutation on the overall peptide–HLA
interaction was evidenced, meaning that a mutation could modulate the interactions of
other peptide amino acids with HLA (see Table 4). This kind of effect was previously shown
in the context of interaction with the TCR, since certain mutations induce structural changes
in the amino acids involved in recognition by the TCR, due to movement fluctuations that
the side chains may have, due to the mutation [46–48]. This means that substitutions in a
peptide can alter the intra-residual interactions, which can potentially alter its conformation
and, therefore, its recognition by the TCR.

Finally, the stability results of the pMHC complexes obtained agreed with the in vitro
immunogenicity results, which would indicate the utility of this type of in silico strategy
in identifying peptides that form stable complexes with HLA proteins. When comparing
the two neoantigens, it was possible to show that the immunogenic peptide (ASTN1) was
linked to both ends (N-terminus and C-terminus) in a stable manner, over time, on HLA.
These results support the importance of stability, in addition to binding affinity, as a key
factor for the selection of immunogenic neoantigens [30,33,49], since it plays a key role in
the adequate presentation of the peptide to the LT and thus triggers an immune response.
This is reinforced by previous studies that reported failures in the selection of neoantigens
when the main or only parameter considered was the binding affinity [23,50–52].

Even though only two peptides were analyzed, the results shed light on characteristics
of immunogenicity; however, these must be validated in larger cohorts to define the role
they have in binding affinity and stability in the MHC and, finally, on immunogenicity.
However, due to the considerable computational cost of this type of strategy, its use would
be restricted to the final stages of the immunogenic neoantigen identification pipelines,
when a small number of candidates remain. These tools have the potential to work not only
at the level of the interaction within the peptide and the MCH but also to determine the
interactions between the p–MHC complex and TCR, which can eventually be implemented
to select the best TCRs for adoptive therapy purposes.

5. Conclusions

Personalized cancer vaccines are presented as a novel and promising alternative
to cancer immunotherapy, especially in cases where effective treatments do not yet exist.
Currently, most selections of neoantigens are made by in silico methodologies [15]; however,
the results of clinical studies reveal that the in vivo immunogenicity of in silico epitopes is
very limited. Therefore, it is important to search for new tools that allow the selection of
immunogenic epitopes that yield better clinical results in vivo when used as a vaccine. An
important attribute of immunogenic MHC–peptide complexes is the long half-life these
complexes have [33,49,53–55]; therefore, we believe that molecular simulation can play an
important role in the fine-tuning of the selection process required to select neoantigens to
be included in a neoantigen vaccine. In the present work, we explored the use of molecular
simulation techniques, such as docking and molecular dynamics, to analyze the role of
peptide–HLA complex stability in immunogenicity for CD8+ T lymphocytes. The analysis
of the stability of the analyzed complexes collated with the results of immunogenicity
in vitro confirmed that kind of relationship. These results point to the suitability of this
type of in silico strategy to identify peptides that form stable complexes with HLA proteins
that are highly immunogenic for CD8+ T cells.
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