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Abstract: Pullorum disease, caused by the Salmonella enterica serovar Gallinarum biovar Pullorum,
is a highly contagious disease in the poultry industry, leading to significant economic losses in
many developing countries. Due to the emergence of multidrug-resistant (MDR) strains, immediate
attention is required to prevent their endemics and global spreading. To mitigate the prevalence
of MDR Salmonella Pullorum infections in poultry farms, it is urgent to develop effective vaccines.
Reverse vaccinology (RV) is a promising approach using expressed genomic sequences to find new
vaccine targets. The present study used the RV approach to identify new antigen candidates against
Pullorum disease. Initial epidemiological investigation and virulent assays were conducted to select
strain R51 for presentative and general importance. An additional complete genome sequence
(4.7 Mb) for R51 was resolved using the Pacbio RS II platform. The proteome of Salmonella Pullorum
was analyzed to predict outer membrane and extracellular proteins, and was further selected for
evaluating transmembrane domains, protein prevalence, antigenicity, and solubility. Twenty-two
high-scored proteins were identified among 4713 proteins, with 18 recombinant proteins successfully
expressed and purified. The chick embryo model was used to assess protection efficacy, in which
vaccine candidates were injected into 18-day-old chick embryos for in vivo immunogenicity and
protective effects. The results showed that the PstS, SinH, LpfB, and SthB vaccine candidates were
able to elicit a significant immune response. Particularly, PstS confers a significant protective effect,
with a 75% survival rate compared to 31.25% for the PBS control group, confirming that identified
antigens can be promising targets against Salmonella Pullorum infection. Thus, we offer RV to discover
novel effective antigens in an important veterinary infectious agent with high priority.

Keywords: S. Pullorum; PstS; reverse vaccinology; chick infection model; immunogenicity

1. Introduction

The Salmonella enterica serovar Gallinarum biovar Pullorum (Salmonella Pullorum), a
Gram-negative poultry-restricted pathogenic bacterium, causes well-recognized Pullorum
disease (PD) [1,2]. Pullorum disease is an acute systemic disease that mainly affects chicks
under three weeks old [3], leading to septicemia and white viscous diarrhea with high
morbidity and mortality [4]. In adult birds, S. Pullorum infection can result in weight loss,
decreased fertility and laying, diarrhea, and reproductive tract abnormalities with a chronic
carrier state [5]. S. Pullorum is challenging to control due to its vertical and horizontal
transmission capabilities [6–8]. It has become more prevalent recently and poses a severe
threat in many developing countries [9]. Antibiotic treatment can reduce the risk of disease,
but the emergence of multidrug-resistant (MDR) strains of Salmonella has raised concerns
about the effectiveness of antibiotic treatments, and it represents a significant threat to the
poultry industry [10–19]. Therefore, developing and implementing effective vaccines to
control and prevent PD is a priority for many developing countries.
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Current Salmonella vaccine candidates have concerns regarding insufficient attenuation
or low immunogenicity [20]. There are two licensed vaccines, including a live attenuated
S. Gallinarum 9R strain (Nobilis® SG 9R) [21] and Salenvac® (Merck, Rahway, NJ, USA), a
killed S. Enteritidis vaccine strain grown under iron-limiting conditions [22]. Live vaccines,
although effective in providing immunity, can also regain their virulence, thereby increasing
the risk of further environmental contamination and endangering the flock’s health [23,24].
On the other hand, killed vaccines are generally considered safe, but they often fail to induce
a sufficient protective effect against the disease. Subunit vaccines consist of a single antigen
or multiple defined antigens, and are well-recognized as an excellent candidate. These
antigenic components are commonly present on the surfaces of bacterial cells and play a
role in virulence [25–28]. Research on Salmonella subunit vaccine candidates, including
SseB [29], FliC [30], OmpD [31], OmpC [32], and PagN [33], was conducted. However,
none of these could provide appropriate immunogenicity or broad protection against
Salmonella infections. Therefore, continuous efforts are being undertaken to discover new
vaccine antigens.

The development of integrated bioinformatics and immunological informatics ap-
proaches, as well as the accumulation of bacterial genomic sequences and protein structures,
have sped up and reduced the cost of vaccine development in recent years [34]. Reverse
vaccinology (RV), a novel and potent in silico prediction approach for identifying new
protein-based vaccine candidates [35], overcomes the current vaccinology limitation [36].
The first successful experience of the reverse vaccinology approach was used to detect
vaccine candidates against Neisseria meningitidis serogroup B (MenB) [37] and eventually
developed a general MenB vaccine [38]. Computational in silico prediction tools were used
to examine all proteins’ physical–chemical characteristics to screen potential immunogens.
For example, the subcellular locations of proteins were predicted to select surface-exposed
proteins as the candidates [25]. In addition, proteins with adhesive capabilities are known
to be involved in bacterial pathogenicity and invasion, so adhesins or adhesin-like proteins
can be used as potential vaccine targets [39]. The number of transmembrane helices is a
limiting factor, as proteins with multiple transmembrane helices are usually challenging
to purify [37]. Here, the high-throughput screening of S. Pullorum surface proteins was
performed to identify novel conserved antigens, using an extensive collection of clinical
isolates from a nationwide epidemiological investigation. Additional immunogenicity
and the protective efficacy of the optimal antigen candidates were further investigated in
chick models.

2. Materials and Methods
2.1. S. Pullorum Strain R51 Isolation and Identification

The strain S. Pullorum R51 was isolated from the liver of a sick chicken on a farm located
in Anhui, China, which was densely covered with white liver spots. The isolation method
was performed as described before [40]. Finally, the single colony grown on a xylose lysine
desoxycholate agar (XLD, Land Bridge, Beijing, China) plate was identified via polymerase
chain reaction (PCR) using two pairs of primers, invA-F/R (S. Pullorum/S. Gallinarum posi-
tive: 517 bp) and ratA-F/R (S. Pullorum positive: 243 bp; Negative: 1047 bp) (Supplementary
Table S1).

2.2. Virulence Assays in Selecting the Candidate Strain

Animal experiments were conducted under the approval and supervision of the
Zhejiang University Animal Ethics Committee. To assess the virulence of strain R51, seven
S. Pullorum isolates (Supplementary Table S2) were randomly selected to conduct the chick
embryo infection and chick infection experiments. The overnight cultured bacterial liquid
suspension was diluted with LB broth to 109 CFU/mL (OD600nm: 0.5), and then 10-fold
diluted with PBS to 104 CFU/mL (plating on LB solid agar, followed by colony counting).
Each 16-day-old chick embryo in the infection and control group was inoculated with
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100 µL bacteria and PBS via allantoic cavity injection, respectively, and monitored daily
until hatching.

For the chick infection, the chick feces were collected to confirm the absence of
Salmonella. The concentration of overnight bacteria was adjusted to 5 × 109 CFU/mL.
One-day-old chicks were orally infected with 200 µL bacteria with 30 chicks in each group,
and observed for 14 consecutive days to monitor their vitality.

2.3. Whole Genomic Sequencing and Additional Clinical Collections

The genomic DNA of R51 was extracted using the SDS-based DNA extraction method [41],
whose quality and quantity were evaluated using agarose gel electrophoresis and a Qubit
2.0 fluorometer. A single-molecule real-time (SMRT) sequencing library with an insert
size of 10 kb was generated using the SMRT bell Template kit v.1.0 (Pacific Biosciences of
California, Shanghai, China), and a high-quality Illumina sequencing library was prepared
using the NEBNext Ultra DNA Library Prep Kit (New England Biolabs, Beijing, China).
The whole-genome sequencing of R51 was accomplished using the PacBio Sequel platform
and Illumina NovaSeq PE150 by Novogene Technology Co., Ltd., Beijing, China, data
upload NCBI GeneBank, login number: nz_cp068386.1.

The proteomic sequences of S. Pullorum R51 have been subjected to different servers
to identify the potential antigenic targets. The whole proteomes of 182 other S. Pullorum
strains were retrieved in our laboratory (Supplementary Table S2). The in silico analytic
approaches used in the present study are summarized in Table 1.

Table 1. A list of programs and web servers used in the present study.

Function Program Web Address

Proteome acquisition NCBI https://www.ncbi.nlm.nih.gov/nuccore/nz_cp068386.1 (accessed on 10 February 2022)
Subcellular location PSORTb https://www.psort.org/psortb/ (accessed on 15 February 2022)
Subcellular location CELLO2GO https://cello.life.nctu.edu.tw/cello2go/ (accessed on 11 February 2022)
Subcellular location BUSCA https://busca.biocomp.unibo.it/ (accessed on 11 February 2022)
Subcellular location SOSUI https://harrier.nagahama-i-bio.ac.jp/sosui/ (accessed on 10 February 2022)

Signal peptide SignalP-5.0 https://services.healthtech.dtu.dk/service.php?SignalP-5.0 (accessed on 16 February 2022)
Antigenicity VaxiJen-3.0 https://www.ddg-pharmfac.net/vaxijen3/ (accessed on 18 February 2022)

Adhesin probability SPAAN https://github.com/3itamura-felipe/adhesin_finder (accessed on 22 February 2022)
Transmembrane domains TMHMM-2.0 https://services.healthtech.dtu.dk/service.php?TMHMM-2.0 (accessed on 23 February 2022)

Solubility SoDoPE https://tisigner.com/sodope (accessed on 23 February 2022)
Conservations in Pullorum BLASTp https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 28 February 2022)

2.4. Selection of Essential Proteins

Pathogens rely on essential proteins to survive within a host. Among these pro-
teins, surface-exposed ones, such as outer membrane and extracellular proteins, are easily
accessible to the immune system’s antigen-presenting cells. Consequently, they make
excellent vaccine candidates. To predict the subcellular localization of all proteins in the
S. Pullorum R51’s proteome, four dedicated online servers were utilized: PSORTb v3.02 [42],
BUSCA [43], SOSUI-GramN [44], and CELLO2GO [45]. Proteins considered as being
surface-exposed by at least one of these servers were selected for further analysis.

2.5. Identification of the Signal Peptide

The signal peptide is typically a 20–40 amino acid extension at the amino terminal.
It provides information about proteins that were initially designated as membranes, and
distinguished between secreted and cytosolic proteins. Signal peptidases remove the signal
peptide during or after translocation [46]. SignalP5.0 was used to predict cleavage sites and
to indicate signal/non-signal peptides in proteins [47,48]. Proteins that contain a signal
peptide will serve as the foundation for the further analysis of vaccine targets.

https://www.ncbi.nlm.nih.gov/nuccore/nz_cp068386.1
https://www.psort.org/psortb/
https://cello.life.nctu.edu.tw/cello2go/
https://busca.biocomp.unibo.it/
https://harrier.nagahama-i-bio.ac.jp/sosui/
https://services.healthtech.dtu.dk/service.php?SignalP-5.0
https://www.ddg-pharmfac.net/vaxijen3/
https://github.com/3itamura-felipe/adhesin_finder
https://services.healthtech.dtu.dk/service.php?TMHMM-2.0
https://tisigner.com/sodope
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.6. Antigenicity Prediction

To determine the antigenic properties of surface-exposed proteins, the VaxiJen online
server was employed [49]. Only proteins with a probability of ≥0.8 were classified as
protective antigens and selected for further analysis.

2.7. Evaluation of Adhesin Probability

Adhesins or adhesin-like proteins have been shown to play a significant role in bac-
terial pathogenicity and invasion, making them promising vaccine targets. To identify
suitable protein candidates, the SPAAN server was utilized to analyze their adhesion
probability [50]. Proteins with a prediction threshold of adhesion ≥ 0.5 were considered for
further analysis.

2.8. Prediction of Transmembrane Domains and Solubility

To further refine the selected proteins, TMHMM v.2.0 servers [51] and SoDoPE
(TISIGNER) https://tisigner.com/ (accessed 15 February 2022) [52] were used to pre-
dict transmembrane domains and solubility, respectively. Proteins with a probability of
solubility ≥ 0.5 were considered as soluble and selected for further analysis, while those
anticipated to be insoluble and having two or more predicted transmembrane domains
were eliminated.

2.9. Protein Sequence Conservation Analysis

To screen out conserved proteins in other S. Pullorum strains, a BLASTp analysis was
conducted to search for similar sequences in 182 S. Pullorum clinical isolates collected
in a Chinese nationwide investigation (Supplementary Table S2). Among the candidate
proteins, those exhibiting > 98% conservation between S. Pullorum strains were selected.

2.10. Bacterial Strains and Growth Conditions

S. Pullorum R51 was isolated from the liver of an infected bird. E. coli TG1 and Rosetta
(DE3) were grown in a Luria-Bertani (LB) medium at 37 ◦C. Bacteria containing recombinant
plasmids were cultured by adding kanamycin (50 µg/mL) to the growth medium.

2.11. Gene Cloning, Protein Expression, and Purification

The selected high-score proteins were subcloned into pET-30a after in silico analyses.
All primers used in this study are listed in (Supplementary Table S1). Gene transformation
was carried out following the protocol of the One Step Cloning Kit (Vazyme Biotech,
Nanjing, China). The recombinant constructs were transformed into E. coli TG1 and
cultured on LB agar plates containing 50 µg/mL kanamycin, and positive colonies were
screened with colony PCR and further confirmed via sequencing.

Proteins were expressed in E. coli Rosetta via auto-induction in a high-density shaking
cultures approach [53]. First, 1 mL overnight bacterial culture was added into 100 mL
fresh LB liquid medium supplemented with 50 µg/mL of kanamycin. The culture was
incubated at 37 ◦C, 180 rpm for 4–6 h until OD600nm: 0.6–0.8. Next, IPTG was added
to a final concentration of 1 mM and protein expression was induced by incubating the
culture at 16 ◦C, 120 rpm for 16 h. After inducing expression, the cells were harvested and
sonicated on ice (150 W, sonicate 4 s, pause 4 s, 45 min). The cell lysate was centrifuged, and
the pellet was solubilized in 8 M urea, followed by centrifugation. Fractions were analyzed
on SDS-PAGE and Western blot by using a His-tag mouse monoclonal antibody (Beyotime,
Shanghai, China) for protein expression.

The inclusion bodies dissolved in 8 M urea require gradual reduction of the urea
concentration for refolding. The dialysis bag containing the inclusion bodies is successively
placed in solutions of 6 M, 4 M, 2 M, 1 M, 0.5 M, and 0.1 M urea for dialysis, with each
concentration being dialyzed for 8–12 h.

Protein purification was carried out using HisSep Ni-NTA agarose resin (YEASEN,
Shanghai, China). After the protein was fully bound to Ni-NTA agarose in column, the

https://tisigner.com/
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column was washed with 10 mL of 50 mM PBS containing 20 mM imidazole 5 times, the
target protein was eluted by adding 10 mL of 50 mM PBS containing 500 mM imidazole,
and the eluted liquid was collected. The purified proteins were confirmed via SDS-PAGE
analysis. The concentration was determined using the BCA method, and the proteins were
finally stored at −20 ◦C.

2.12. In Ovo Vaccination with Candidate Proteins

Fertilized eggs from SPF (Ross 308) broilers were kept at 38 ◦C and 65–75% relative
humidity in a forced-air egg incubator. On embryonic day 18, the eggs were candled to
check for fertilization, and then the eggshell was disinfected by spraying 1.5% hydrogen
peroxide and punctured using a sterile needle. A total of 20 µg of proteins diluted in
100 µL PBS mixed with 100 µL Rhizoma Atractylodis Macrocephalae polysaccharides adjuvant
(1 mg/mL) [54] was injected into the amniotic cavity. The blood sample was taken from
the jugular vein on day 11 post-hatching for antibody analysis.

2.13. Immunogenicity Assay

The indirect Enzyme-Linked Immunosorbent Assay (ELISA) was used to examine the
antibody response to the injected proteins. In duplicate repeats, 2 µg of purified protein in
100 µL coating buffer was added to 96-well microtiter plates (Corning 3590) and incubated
at 4 ◦C for 16 h. The wells were washed with 200 µL PBST (PBS containing 0.05% Tween20)
three times, and then blocked with 150 µL 1% (w/v) casein for 1 h. After washing, serial
serum dilutions in PBST (1/1000) were added and incubated for 2 h at 37 ◦C. Wells were
washed, and 100 µL of diluted (1/15,000) HRP-conjugated anti-chicken IgY (Solarbio,
Beijing, China) was added to wells and incubated for 2 h, followed by washing. TMB
(100 µL) was added as a substrate, and the reaction was stopped with 2 M H2SO4 after color
development. The optical density at 450 nm was quantified. Two negative controls were
used, one with only coating buffer (Ag) and the other with only PBST and no serum (Ab).

2.14. Bacterial Loads after Challenge

All birds were orally inoculated with live R51 (1 × 107 CFU/bird) on day 11 post-
hatching. To prepare the inoculum, 100 µL overnight R51 culture was added to 100 mL
LB broth and incubated until the mid-log phase was reached. The bacterial cells were
then harvested via centrifugation at 8000× g for 20 min and washed with PBS to remove
impurities. The pellet was suspended in PBS to achieve a concentration of 108 CFU/mL. On
day 7 post-challenge, liver and spleen samples were collected from the birds and subjected
to R51 quantification using the plate counting method.

2.15. Immune Protection Assessment

To assess the effectiveness of the vaccine candidates, an experimental survival as-
say was conducted. The immunization procedure was identical to that described above.
On day 11 after hatching, all birds were exposed to R51 strains at a concentration of
1 × 109 CFU/bird. Chick mortality was monitored daily for a period of 14 days.

2.16. Statistical Analyses

In this study, GraphPad Prism 9 software was used for statistical analysis. The antibody
responses of immunized and non-immunized chicks were compared using a Student’s
t-test. The experiments were conducted in duplicate, and a significance threshold of p < 0.05
was set to determine statistical significance.
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3. Results
3.1. Virulence Assay for the Selection of the Candidate Strain

After selecting representative S. Pullorum strains from our laboratory, chick embryo
infection and chick infection experiments were conducted. The results indicated that
the R51 and SAL00737 strains exhibited the highest toxicities in chick embryos, and R51
exhibited the highest lethality in chicks (Figure 1).
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Figure 1. Virulence assays of S. Pullorum R51 and additional seven S. Pullorum clinical isolates in
16-day-old chick embryos and 1-day-old chicks. (A) Chick Embryos, (B) Chicks.

3.2. Complete Genome and Proteome of R51

Pacbio RSII was used to determine its complete genome sequence (Figure 2A). The in
silico approach was used to identify new and potential vaccine candidates in the S. Pullorum
R51 strain. The proteome of the R51 strain has 4713 open reading frames, and all of these
proteins were used for further analysis (Supplementary Table S3). The overview of the
screening process obtained is exhibited (Figure 2B).
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3.3. OMP and Extracellular Protein Preselection

The predicted surface-exposed proteins are summarized in Table 2. Four subcellular
localization prediction programs produced varying percentages of prediction. Among the
4713 proteins of S. Pullorum R51, SOSUI, BUSCA, CELLO2GO, and PSORTb predicted 702,
517, 910, and 344 proteins as surface-exposed, respectively (Supplementary Table S3). From
these predictions, 1141 proteins were selected for further analysis, as they were predicted
by at least one of the four software programs.
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Table 2. Quantity and proportion of predicted subcellular localization of S. Pullorum R51 proteins
according to SOSUI, BUSCA, CELLO2GO, and PSORTb servers.

SOSUI BUSCA CELLO2GO PSORTb

Extracellular
157 438 144 72
3% 9% 3% 2%

Outer Membrane
184 79 171 110
4% 2% 4% 2%

Periplasm 361 NA 595 162
8% NA 12% 3%

Cytoplasmic 2565 3052 2875 2002
54% 65% 61% 42%

Inner membrane
969 1107 928 1158
21% 23% 20% 25%

Unknown
477 37 NA 1209
10% 1% NA 26%

3.4. Identification of the Signal Peptide

To predict the presence of the signal peptide in proteins, the SignalP 4.1 software
was used. Out of the 4713 proteins in S. Pullorum R51, 644 proteins were found to have a
signal peptide on their N-terminus (Supplementary Table S3). The signal peptide plays a
crucial role in transporting proteins to the outer membrane or periplasmic surface. Using
this subtractive proteomics approach, the list was narrowed down to 579 proteins for
further investigation.

3.5. Antigenicity Prediction

High antigenicity proteins can stimulate significant immune responses in the host.
The VaxiJen v2.0 server was used to assess the antigenicity of the proteins. Out of the
4713 proteins of S. Pullorum R51, 564 proteins were evaluated for high antigenicity, and
230 proteins were chosen based on their high level of antigenicity in combination with the
previous results (Supplementary Table S3).

3.6. Evaluation of Adhesive Probability

To interfere with the bacterial interaction with the host, targeting the adhesion proba-
bility of bacteria is crucial. Therefore, the adhesion probabilities of the protein candidates
were analyzed using the SPAAN server, and only those with adhesion probabilities > 0.5
were considered. Based on these results, the 53 shortlisted proteins were selected for further
analysis (Supplementary Table S3).

3.7. Prediction of Transmembrane Domains and Solubility

To facilitate in vivo studies, proteins with fewer transmembrane segments (<2) and
high solubilities were prioritized for purification. First, TMHMM v.2.0 was used to predict
the number of transmembrane segments and 52 proteins were shortlisted. Then, SoDoPE
servers were used to filter the proteins based on solubility prediction, with 31 proteins show-
ing a >0.5 probability of solubility being selected for further analysis (Supplementary Table S3).

3.8. Comparative Analysis

After performing a BLASTp analysis of the 31 candidates, it was found that 22 proteins
showed significant sequence conservation with S. Pullorum virulence serovars (Supplementary
Table S4) with substantial sequence coverage.

Based on surface localization, a high antigenic value, adhesin probability, transmem-
brane domains, and solubility, the 22 selected proteins can be considered as broad-spectrum
vaccine candidates against S. Pullorum. The selected 22 candidate proteins and their func-
tions are listed in Table 3.
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Table 3. Functional annotation of the potential vaccine candidates identified in S. Pullorum R51.

Candidates Annotation

dcrB DcrB is up-regulated by conditions that promote the production of known virulence factors [55]
qseG QseG is an OM protein necessary for translocation of TTSS effectors [56,57]
ompC OmpC is the main protein responsible for the antibody-mediated memory bactericidal response induced by porins [58,59]
pagN Haemagglutinin that facilitates the adhesion to and invasion of epithelial mammalian cells [33,60]

msrP MSR system is involved in the repair of periplasmic proteins oxidized by hypochlorous acid HOCl, which is
generated in particular within phagocytic cells [61,62]

sinH sinH encodes an autotransporter protein that facilitates adhesion and invasion into host cells [63,64]
acrA AcrA protein is a component of multidrug efflux pumps, which can increase drug resistance [65,66]
lpfA Long polar fimbria protein A precursor [67,68]

peg.1230 Putative fimbriae stiH
peg.1041 Fimbrial operons sthB
peg.3954 Minor fimbrial subunit StfF

hslJ Heat shock protein, correlated to E. coli resistance to the antibiotic Nov [69]
sodC Periplasmic superoxide dismutase plays a critical role in this survival by combating phagocytic superoxide [70,71]
yhcN YhcN is involved in the response to hydrogen peroxide stress [72]
nlpD A virulence factor that permits S. Typhimurium to survive under acid stress conditions [73,74]
pstS Phosphate ABC transporter, periplasmic phosphate-binding protein PstS [75,76]

peg.695 Involved in the transport of maltose and maltodextrins
chiP Involved in the uptake of chitosugars [77]

peg.2134 N-acetylneuraminic acid outer membrane channel protein NanC
Fdh-2 Formate dehydrogenase

Peg.1210 Probable secreted protein
lpfB Chaperone protein lpfB precursor [68]

3.9. Protein Expression and Purification

The 22 candidate genes were subcloned into pET-30a (Supplement Figure S1). West-
ern blotting analysis confirmed that the 18 proteins with His-tags were expressed in the
inclusion bodies of E. coli Rosetta cells after the induction with 1 mM IPTG at 16 ◦C for 12 h
(Supplement Figure S2). The approximate molecular weights (Figure 3) after purification
were consistent with their expected weights (Supplementary Table S5).
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3.10. Immunogenicity Assay

To evaluate the immunogenicities of target vaccine proteins, animal experiments
were conducted. A total of 114 eggs were randomly divided into 19 groups on the 18th
day of incubation, and chick embryos were immunized with purified proteins. Blood
samples were collected from chicks on day 14 post-immunization to evaluate the antibody
response. The ELISA results demonstrate that PstS, SinH, LpfB, SthB, OmpC, PagN, and
StiH elicited a significant antibody response compared to the control group (Figure 4). Inter-
and intra-assay variabilities of the ELISA results are listed in Table 4.
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SD: Standard deviation, CV: Coefficient of variation.
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3.11. Bacterial Loads after Challenge

The challenge test with the R51 strain in chicks was carried out to investigate the
protective efficacy of the vaccine candidates. On day 11 post-hatching, all birds were orally
administered 100 µL live R51 (1 × 107 CFU/bird). The bacterial loads in the spleen and
liver were measured on day 7 post-challenge. The results indicate that SinH, PstS, and LpfB
have relatively fewer bacterial loads in the liver, and that SthB and LpfB have relatively
fewer bacterial loads in the spleen than the control (Figure 5).
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3.12. Evaluation of Protective Immunity

Based on previous experimental results, we selected four proteins (PstS, SinH, LpfB,
and SthB) to evaluate protective immunity based on previous experimental results. Eighty
eggs were randomly assigned to 5 groups (PBS, PstS, SinH, LpfB, and SthB) on day 18 of
incubation. Embryos were immunized with purified proteins. The immunization process
is the same as above. On day 11 post-hatching, all the birds were orally inoculated with
100 µL live R51 (1 × 109 CFU/bird). The mortality of 16 birds in each group was monitored
daily for 14 days.

The survival rate results indicate that PstS confers a significant protective effect against
the R51 strain in poultry birds. The survival rate for SinH was 43.75%, 50% for LpfB, 62.5%
for SthB, and a high rate of 75% for the PstS group, compared to 31.25% for the PBS control
group (Figure 6). These findings suggest that PstS may be a promising candidate for further
development as a protective agent.
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4. Discussion

S. Pullorum is a pathogen that causes significant damage to the poultry industry in
developing countries due to a high morbidity and mortality in young broilers. Addition-
ally, adult broilers have a latent infection that is vertically transmitted to chicks through
eggs [3]. Over the past century, enormous control measures have been taken to control
such devastating diseases, including flock culling and antibiotic usage. However, the emer-
gence of multidrug-resistant (MDR) Salmonella [78] necessitated using alternative strategies.
Vaccination is the most effective method for preventing salmonellosis, but conventional
vaccines are expensive with low immunogenicity [79]. Reverse vaccinology could be a
more practical approach to identifying novel vaccine candidates, while such a method has
not been conducted in mitigating Pullorum disease.

Surface-exposed proteins were identified as crucial vaccine targets due to their protec-
tive characteristics as virulence factors and the accessibility of antibodies to them [42,80].
However, available bioinformatics tools cannot predict protein localization, and some are
classified as unknown [81]. Using multiple subcellular localization servers and signal
peptide prediction significantly reduced the possibility of missing valuable vaccine can-
didates. In this study, out of 4713 proteins in Salmonella R51, 22 vaccine candidates were
identified as potential targets. Subsequently, those candidates were validated through
animal experiments, and the results indicated that representative proteins, including PstS,
SinH, LpfB, OmpC, and PagN, could act as immunogens and stimulate chicks to produce
specific antibodies.

The candidate vaccine antigenic proteins identified in this study participate in different
biological processes of Salmonella. PstS, a phosphate ABC transporter, is a periplasmic
phosphate-binding protein [75,76]. Phosphate is an essential nutrient for cell function and
life. It is found in lipids, nucleic acids, proteins, and carbohydrates, and is involved in many
biochemical reactions dependent on phosphoryl transfer [82]. The Pho regulon is a global
regulatory circuit in bacterial phosphate management [83]. Previous studies have shown
that the Pho regulon influences bacterial virulence, and in some bacteria, it directly controls
virulence gene expression [84]. It has also been shown that the ABC transporter has good
antigenicity and is an ideal vaccine candidate [75,85]. LpfA, LpfB, SthB, StiH, and StfF
are all fimbriae-related proteins in the Salmonella genome. These are important virulence
factors and promising vaccine antigens for Salmonella [86,87]. SinH, OmpC, and PagN are
adhesive proteins crucial for bacterial invasion [58,60,88]. Additionally, SinH has also been
identified as a promising vaccine target that reduces E. coli colonization and virulence. A
previous study showed that the immunization of a murine host with SinH-based antigens
elicited significant protection against various strains of the pandemic ExPEC sequence type
131 (ST131) and multiple sequence types in two distinct models of infection [89]. It is worth
mentioning that OmpC and PagN have been confirmed as suitable immunogens that induce
prominent immune responses in the host. A previous study showed that recombinant
OmpC protein from Salmonella Typhimurium was immunized in a 4-week flock, and ELISA
results showed that OpmC induced a significantly higher humoral immune response than
the control. It is also primed a stable cell-mediated immune response at the same time. A
protective index (based on fecal shedding of the organism) of rOmpC-based preparations
ranging between 50 and 75% was observed for 3 weeks after the challenge [61]. According
to a previous study, the detection of constant high titers of serum IgG and intestinal
secretory IgA in immunized mice revealed that PagN (T2544) had been tested as a potential
vaccine candidate in Salmonella Typhi. PagN antiserum increased macrophage uptake and
the clearance of Salmonella, and enhanced complement-mediated lysis in vitro, indicating a
role for T2544-specific antibodies in the killing process [33].

Altogether, our analysis shows that four antigens PstS, SinH, LpfB, and SthB can be
appropriate candidates against Pullorum disease, which is worth further experimental
investigation. Although only serum antibody rise cannot mediate complete protection,
antibodies are essential in the clearance of the S. Pullorum infection and the induction of
anti-Salmonella-protective Th1 responses. The ELISA test in this study revealed a significant
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rise in specific antibody titers in the sera of immunized poultry birds against PstS, SinH,
LpfB, and SthB, as predicted by computational prediction, confirming that these vaccine
candidates could be promising immunogens.

5. Conclusions

In this study, we employed a reverse vaccinology approach to identify potential
vaccine candidates against S. Pullorum. According to epidemiological surveillance, com-
putational pipeline, and animal experiments, we found that PstS, SinH, LpfB, and SthB
could elicit a significant immune response and reduce the bacterial loads in immunized
chicks. Particularly, PstS was confirmed as a potential vaccine candidate against S. Pullorum.
Our findings illustrated that integrating in silico prediction and in vivo experiments could
provide a compelling direction for vaccine development. The selected vaccine candidates,
targeting critical virulence factors in Salmonella infection, make them promising candidates
for further testing and potential use in the poultry industry.
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Figure S2: SDS-PAGE and western blot analysis of 18 recombinant target proteins expressed in
E. coli Rosetta.
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