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Abstract: Several effective COVID-19 vaccines are administered to combat the COVID-19 pandemic
globally. In most African countries, there is a comparatively limited deployment of vaccination
programs. In this work, we develop a mathematical compartmental model to assess the impact of
vaccination programs on curtailing the burden of COVID-19 in eight African countries considering
SARS-CoV-2 cumulative case data for each country for the third wave of the COVID-19 pandemic.
The model stratifies the total population into two subgroups based on individual vaccination status.
We use the detection and death rates ratios between vaccinated and unvaccinated individuals to
quantify the vaccine’s effectiveness in reducing new COVID-19 infections and death, respectively.
Additionally, we perform a numerical sensitivity analysis to assess the combined impact of vaccination
and reduction in the SARS-CoV-2 transmission due to control measures on the control reproduction
number (Rc). Our results reveal that on average, at least 60% of the population in each considered
African country should be vaccinated to curtail the pandemic (lower the Rc below one). Moreover,
lower values of Rc are possible even when there is a low (10%) or moderate (30%) reduction in the
SARS-CoV-2 transmission rate due to NPIs. Combining vaccination programs with various levels of
reduction in the transmission rate due to NPI aids in curtailing the pandemic. Additionally, this study
shows that vaccination significantly reduces the severity of the disease and death rates despite low
efficacy against COVID-19 infections. The African governments need to design vaccination strategies
that increase vaccine uptake, such as an incentive-based approach.

Keywords: COVID-19; vaccination impact; compartmental model; reproduction number; Africa

1. Introduction

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) [1] invaded the world unexpectedly in 2019 and changed
human life tremendously [2]. The disease outbreak first emerged in Wuhan City, Hubei
Province of China [3], and after that, it spread to the United States, Europe, Asia, and later
on, to other continents. Despite its rampant spread, studies indicated that the spread of the
disease in Africa had not followed an exponential path as for the rest of the world (Europe,
United States, Asia), implying that Africa has not yet experienced the predicted heavy
disease burden [4]. By the end of November 2022, approximately 12.7 million cases and
257,984 deaths, representing 2.1% and 4.3%, respectively of the global figures, were reported
in Africa [5]. In an effort to curb the transmission of SARS-CoV-2, many African countries
have implemented non-pharmaceutical interventions (NPIs), such as social distancing,
quarantine of suspected infection cases, use of face masks, contact tracing and testing,
among others [6]. Several studies [7–9] have investigated the effectiveness of NPIs on
the transmission dynamics of COVID-19 using various approaches. Findings from these
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studies have indicated that NPIs have been sufficiently effective in mitigating the burden
of the pandemic, at least for the first and second waves. However, the emergence of new
SARS-CoV-2 variants, which are currently categorized as Variants of Concern (VOC) by the
WHO, such as Alpha, Beta, Omicron, and Delta strains [10] have reduced the effectiveness
of NPIs, creating the need for more effective control measures such as vaccination [11].

Vaccination against COVID-19 has been identified as one of the most viable options
to suppress the SARS-CoV-2 transmission globally [12] and as well achieve herd immu-
nity [13]. Several COVID-19 vaccines have been approved for use, and they are commonly
administered as either a single dose such as Johnson & Johnson (52.0–72.0% of efficacy) or
two-doses vaccine such as AstraZeneca (62.1–90.0%), Pfizer-BioNTech (95.0%) and Mod-
erna (94.1%) [14,15]. The first mass vaccination program began in early 2020. By the end of
November 2022, more than 5.46 billion vaccine doses have been administered worldwide,
representing 71.1% of the global population [16]. Over 2.6 million additional doses (boost-
ers) have been administered to fully vaccinated people [16]. COVID-19 vaccination rates
remain low in most African countries. As of November 2022, only 33% of the population
had received at least one dose of the vaccine compared to the global average of 69.0% [16].
Vaccine hesitancy due to widespread misconceptions and beliefs about vaccines, a lack
of adequate infrastructure and logistics to handle vaccination campaigns, and a low-risk
perception of the pandemic, notably with the recent decline in cases, are the major bar-
riers to low vaccination uptake in Africa [17,18]. Several clinical trials have shown that
COVID-19 vaccines are effective in reducing disease severity and individual symptoms, de-
creasing fatalities, hospitalizations, and admissions to intensive care units [19,20]. However,
the emergence of new variants may outweigh some of these gains. Given the contagious
nature of infectious diseases, particularly COVID-19, there is mounting evidence that poor
vaccine uptake may not only amplify disease transmission in unvaccinated subpopulations
but also heighten the risk for vaccinated populations, especially in situations where vac-
cines confer imperfect immunity. A recent study by the US Centers for Disease Control
and Prevention on an outbreak of COVID-19 in a federal prison in Texas showed an equal
transmission rate among vaccinated and unvaccinated individuals [21]. Mathematical
models are important tools to describe and predict the spread of epidemics and can be used
to quantify the potential impact of vaccination programs on disease dynamics. Currently,
several mathematical models have been developed to predict and assess the impact of
vaccination on the transmission dynamics of COVID-19 [22–26].

Machado et al. [27] analyzed the impact of vaccination on the control of the pandemic
using a simple SEIR-based simulation model. The authors believe that an increased vacci-
nation rate combined with continued adherence to non-pharmaceutical interventions can
greatly delay the peak of infection. With the ongoing vaccination program, the trajectory
of a pandemic is determined by how the virus spreads in unvaccinated and vaccinated
individuals. The effect of mixing vaccinated and unvaccinated populations on the risk of
SARS-CoV-2 infection among vaccinated people was investigated in a study by [28] using a
basic SIR model. Under all mixing assumptions, their model demonstrated that the risk of
infection was significantly higher in the unvaccinated group than in the vaccinated group.
However, the author acknowledges that the simplicity of the model does not reflect the
real-world process of the pandemic, for instance, demographics, waning of the vaccine,
and natural loss of immunity, among others.

Even though various research studies are being conducted in Africa, they largely focus
on COVID-19 vaccination prioritization strategies [29–31] or vaccine acceptance [32–34].
To the best of our knowledge, however, studies that use real-world vaccination data to
evaluate the impact of COVID-19 vaccination programs on the dynamics of the disease in
African countries are still very few [35]. Despite the contributions of these studies, they
showed some limitations. Thus, the previous studies ignore the fact that transmission
can occur both within vaccinated and unvaccinated people and between vaccinated and
unvaccinated people (i.e., an infectious unvaccinated person can infect a vaccinated person
and vice versa).
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In this study, we developed a mathematical model to quantitatively assess the impact
of vaccination programs on the dynamics of COVID-19 in Africa, focusing on eight coun-
tries (Algeria, DR Congo, Kenya, Lybia, Namibia, Nigeria, Rwanda, and South Africa),
representing the four main regions of the continent. The model was used to (i) assess the
impact of vaccination on COVID-19 incidence and mortality in a mixed population of vac-
cinated and unvaccinated individuals and (ii) evaluate the combined impact of vaccination
with different levels of NPIs on the dynamics of COVID-19.

2. Materials and Methods
2.1. Model Formulation

In this study, we developed a deterministic compartmental model of COVID-19 strati-
fied by infection status and vaccination status to describe the impact of an imperfect vaccine
on the transmission dynamics of the disease. The proposed model is a modification of
a previously developed compartmental model [36] where vaccination was incorporated
in the COVID-19 model as a pharmaceutical intervention strategy in South Africa. The
mathematical model comprises eight epidemiological states depending on the individual’s
health and vaccination status. The total population at time t denoted by N(t) is divided
into two groups, i.e., unvaccinated and vaccinated, which are represented by subscripts u
and v, respectively.

The unvaccinated population denoted by N(u) is further subdivided into eight sub-
populations of individuals that are: unvaccinated susceptible (Su(t)), unvaccinated exposed
(Eu(t)), unvaccinated pre-symptomatic infectious (Ipu(t)), unvaccinated asymptomatic in-
fectious (IAu(t)), unvaccinated symptomatic infectious (ISu(t)), the detected infectious
unvaccinated via testing (Cu(t)), unvaccinated recovered (Ru(t)), and unvaccinated de-
ceased Du(t). Thus, the total population for the unvaccinated is given by:

Nu(t) = Su(t) + Eu(t) + Ipu(t) + IAu(t) + ISu(t) + Cu(t) + Ru(t).

Similarly, the vaccinated population denoted by N(v) is also further subdivided into
eight subpopulations of individuals that are: vaccinated susceptible (Sv(t)), vaccinated
exposed (Ev(t)), vaccinated pre-symptomatic infectious (Ipv(t)), vaccinated asymptomatic
infectious (IAv(t)), vaccinated symptomatic infectious (ISv(t)), detected infectious vacci-
nated via testing (Cv(t)), vaccinated recovered (Rv(t)) and vaccinated deceased Dv(t).
The total population for the vaccinated is given by:

Nv(t) = Sv(t) + Ev(t) + Ipv(t) + IAv(t) + ISv(t) + Cv(t) + Rv(t).

Therefore, the total population at time t (denoted by N(t)) is

N(t) = Nu(t) + Nv(t).

When developing the mathematical model, we made some assumptions or comments,
which are as follows.

(i) Vaccination is administered to unvaccinated individuals that are susceptible, exposed,
pre-symptomatic, asymptomatic, and naturally recovered from the virus. The model
does not consider the vaccination of symptomatic and confirmed infectious individu-
als.

(ii) The COVID-19 vaccine administered is imperfect, i.e., it provides only partial protec-
tion against COVID-19 infections. Thus, infections for the vaccinated can occur but at
a reduced rate compared to that of the unvaccinated susceptible individuals.

(iii) Both vaccine-derived and natural immunity may wane over time in individuals, im-
plying that individuals rejoin the fully susceptible class after a certain period [36–38].

(iv) We assume that there is homogeneous mixing among the population, which means
that every individual in the community is equally likely to mix and acquire infections
from each member when they make contact.
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(v) Since the COVID-19 pandemic has persisted for a long time, we include the vital
dynamics (birth and natural death) in the model.

We suppose that all the births and the immigration from the population are recruited
into the unvaccinated susceptible class at rate Λ. Susceptible unvaccinated individu-
als become exposed following effective contact with either unvaccinated or vaccinated
pre-asymptomatic, asymptomatic, symptomatic, and confirmed infectious individuals
at a rate λu. After the latent period, the unvaccinated exposed individuals become pre-
asymptomatic at a progression rate αE. At the end of the incubation period, unvaccinated
pre-symptomatic infectious individuals either develop clinical symptoms and move to
the unvaccinated symptomatic infectious (ISu ) at a rate ρ1αp (where ρ1 is the probability
of developing symptoms), or they continue to show no symptoms and move on to the
unvaccinated asymptomatic class ( IAu ) at the rate (1− ρ1)αp. The asymptomatic and
symptomatic unvaccinated infectious individuals are tested and confirmed positive at a
detection rate qa1 and qs1 , respectively, and move to the unvaccinated confirmed class (Cu).
The symptomatic and confirmed unvaccinated infectious individuals might die due to
COVID-19-related complications at the rate δs1 and δc1 , respectively. The parameters γa1 ,
γs1 and γc1 account for the recovery rates for unvaccinated individuals in the asymptomatic,
symptomatic and confirmed classes, respectively. The recovered unvaccinated individuals
may lose their natural immunity at a rate du, and thus, they can become susceptible.

We assume that unvaccinated individuals in the susceptible, exposed, pre-symptomatic,
asymptomatic and recovered classes are vaccinated at rate ν. Due to the imperfect vaccine
administrated, vaccinated individuals are not immune from infection. The vaccine-induced
immunity of the susceptible vaccinated individuals wanes at a per capita rate ω. Hence,
after a given time, the susceptible vaccinated population can become infected by the virus
when they make contact with either unvaccinated or vaccinated pre-asymptomatic, asymp-
tomatic, symptomatic, and confirmed infectious individuals at a rate λv. The population in
the class Ev becomes infectious at a rate αE and moves to the pre-asymptomatic class Ipv .
After the pre-asymptomatic period, proportion ρ2 develops COVID-19 symptoms and
moves to the symptomatic infectious class (ISv ), while the rest continue to show no symp-
toms and move on to the vaccinated asymptomatic class (IAv ). The asymptomatic and
symptomatic vaccinated infectious individuals are tested and confirmed positive at a de-
tection rate qa2 and qs2 , respectively, and move to the vaccinated confirmed class (Cv). The
symptomatic and confirmed vaccinated infectious individuals may die due to COVID-19-
related complications at the rate δs2 and δc2 . The parameters γa2 , γs2 and γc2 account for the
recovery rates of vaccinated individuals in the asymptomatic, symptomatic and confirmed
classes. The recovered vaccinated individuals may lose derived vaccine immunity at a rate
dv, and thus, they can become susceptible. Each subpopulation is reduced by a natural
death at a constant rate µ.

The flowchart of the formulated model using all the above assumptions is given in Figure 1.
Additionally, all the model state variables and the parameters with their description are presented
in Table 1 and Table 2, respectively. Hence, the COVID-19 dynamics for the unvaccinated
population are described by the following system of differential equations:

Ṡu = Λ− (λu + µ + ν)Su + Svω + duRu,

Ėu = λuSu − (αE + ν + µ)Eu,

İPu = αEEu −
(
αp + µ + ν + qp1

)
IPu ,

İAu = (1− ρ1)αp IPu − (µ + ν + γa1 + qa1)IAu ,

İSu = ρ1αp IPu − (µ + γs1 + qs1 + δs1)ISu ,

Ċu = qa1 IAu + qs1 ISu + qp1 IPu − (δc1 + γc1 + µ)Cu,

Ḋu = δs1 ISu + δc1 Cu,

Ṙu = γa1 IAu + γs1 ISu + γc1 Cu − (du + µ + ν)Ru,

(1)
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where λu is the force of infection for the unvaccinated individuals, which is defined by:

λu =
buu(θPu IPu + θAu IAu + θsu ISu + θcu Cu)(1− ψu)

N
,

+
buv(θPv IPv + θAv IAv + θSv ISv + θcv Cv)(1− ψv)

N
.

Similarly, using the same model assumptions and parameter description, the COVID-19
dynamics for the vaccinated population are described by the following system of differen-
tial equations:

Ṡv = νSu + dvRv − (λv + µ + ω)Sv,

Ėv = νEu + λvSv − (αE + µ)Ev,

İPv = νIPu + αEEv −
(
αp + qp2 + µ

)
IPv ,

İAv = νIAu + (1− ρ2)αp IPv − (µ + γa2 + qa2)Iav ,

İSv = ρ2αp IPv − (µ + γs2 + qs2 + δs2)ISv ,

Ċv = qa2 IAv + qs2 ISv + qp2 IPv − (δc2 + γc2 + µ)Cv,

Ḋv = δs2 ISv + δc2 Cv,

Ṙv = νRu + γa2 IAv + γs2 ISv + γc2 Cv − (dv + µ)Rv,

(2)

where λv is the force of infection for the vaccinated individuals, which is defined by;

λv =
bvu(θPu IPu + θAu IAu + θSu ISu + θcu Cu)(1− ψu)

N
,

+
bvv(θPv IPv + θAv IAv + θSv ISv + θcv Cv)(1− ψv)

N
,

where 0 < ψu < 1 and 0 < ψv < 1 represent the percentage decrease in the transmission rate
due to control measures among the unvaccinated and vaccinated individuals, respectively.

Figure 1. Flowchart of the formulated model.

Table 1. State variables and their description.

State Variable Description

Su(Sv) Susceptible unvaccinated (vaccinated) population
Eu(Ev) Exposed unvaccinated (vaccinated) population
Ipu (Ipv ) Pre-symptomatic infectious unvaccinated (vaccinated) population
IAu (IAv ) Asymptomatic infectious unvaccinated (vaccinated) population
ISu (ISv ) Symptomatic infectious unvaccinated (vaccinated) population
Cu(Cv) Confirmed infectious unvaccinated (vaccinated) population
Ru(Rv) Recovered unvaccinated (vaccinated) population
Du(Dv) COVID-deceased unvaccinated (vaccinated) population
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Table 2. Description of the fixed and estimated model parameters.

Parameter Description Unit

Λ Recruitment rate Individual day−1

µ Natural death rate day−1

ν Vaccination rate day−1

ω Vaccine-derived immunity rate day−1

1/αE Latent period days
1/αp Pre-symptomatic period days

du (dv) Rate at which recovered unvaccinated (vaccinated) individuals from COVID-19 lose
acquired immunity day−1

ρ1(ρ2)
Proportion of pre-symptomatic infectious unvaccinated (vaccinated), who develop
COVID-19 symptoms dimensionless

bij
Infection probability of a susceptible individual in class i by an infectious individual
in class j, for (i, j ∈ u, v) dimensionless

δs1 (δs2 ) COVID-19 death rate of symptomatic infectious unvaccinated (vaccinated) individuals day−1

δc1 (δc2 ) COVID-19 death rate of confirmed infectious unvaccinated (vaccinated) individuals day−1

γa1 (γa2 ) Recovery rate of asymptomatic unvaccinated (vaccinated) individuals day−1

γs1 (γs2 ) Recovery rate of symptomatic unvaccinated (vaccinated) individuals day−1

γc1 (γc2 ) Recovery rate of symptomatic unvaccinated (vaccinated) individuals day−1

θpu (θAu , θSu , θCu )
Relative infectiousness of unvaccinated pre-symptomatic (asymptomatic,
symptomatic, confirmed) individuals dimensionless

θpv (θAv , θSv , θCv )
Relative infectiousness of unvaccinated pre-symptomatic (asymptomatic,
symptomatic, confirmed) individuals dimensionless

qp1 (qa1 , qs1 )
Per capita rate at which unvaccinated individuals from the pre-symptomatic
(asymptomatic, symptomatic) infectious class test positive day−1

qp2 (qa2 , qs2 )
Per capita rate at which vaccinated individuals from the pre-symptomatic
(asymptomatic, symptomatic) infectious class test positive day−1

δs1 (δs2 )
COVID-19 induced death rate of unvaccinated (vaccinated) symptomatic
infectious individuals day−1

δc1 (δc2 )
COVID-19 induced death rate of unvaccinated (vaccinated) confirmed
infectious individuals day−1

2.2. Data

Five countries per African region were randomly selected among those for which
COVID-19 data are available. However, during the modeling process, two countries,
namely Benin and Gabon, were excluded due to the poor quality of the data. Consequently,
eight African countries, namely, DR Congo, Rwanda, Kenya, Algeria, Libya, Namibia,
South Africa, and Nigeria, were selected for analysis in this study. Data on the daily
COVID-19 cases, cumulative confirmed cases, and vaccination (number of individuals
vaccinated with at least one dose) for each selected country were obtained from COVID-19
data respiratory by Our World in Data (https://github.com/owid/covid-19-data/tree/
master/public/data, accessed on 15 july 2022).

The country-specific demographic data such as birth rates and death rates were ob-
tained from the Worldbank via (https://data.worldbank.org/indicator/SP.DYN.CBRT.IN,
accessed on 15 july 2022), while data on annual net migration and life expectancy for
each country were obtained from Worldmeter, which was available via (https://www.
worldometers.info/world-population/population-by-country/, accessed on 15 july 2022).

2.3. Model Fitting and Parameter Estimation Procedure

In this subsection, a single model with sixteen compartments was used for the calibra-
tion. We consider a mixed population where both vaccinated and unvaccinated individuals
interact, and the transition from the unvaccinated classes to the vaccinated classes is de-
scribed by some parameters. Thus, we estimated the best values of unknown parameters
in models (1–2). We used the data of COVID-19 cumulative cases for each country from the
first day of vaccination to the end of the third pandemic wave (end of November 2021). The
choice for cumulative case data over daily case data is because it mitigates the effect of re-

https://github.com/owid/covid-19-data/tree/master/public/data
https://github.com/owid/covid-19-data/tree/master/public/data
https://data.worldbank.org/indicator/SP.DYN.CBRT.IN
https://www.worldometers.info/world-population/population-by-country/
https://www.worldometers.info/world-population/population-by-country/
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porting errors in modeling COVID-19 dynamics. The start dates and the end dates for each
country are presented in Table A1. The fixed parameters used in the model-fitting process
were obtained from the literature as presented in Table A2, while other fixed parameters
that vary per country were calculated and are presented in Table A3.

We define a vaccinated individual as one who has received at least one dose of the
COVID-19 vaccine since the available data only give the new vaccination doses delivered
per day and make no distinction between the first and second doses. The vaccination rate, ν,
for each country is given by

ν =
Vaccine coverage

Vaccination period
,

where vaccine coverage is the proportion of individuals vaccinated with at least one dose
of the COVID-19 vaccine at the end date for each country.

Two demographic parameters were computed for each country, i.e., daily recruitment
rate (Λ) of unvaccinated susceptible (through births and net migrations) per (individu-
als/day) and the natural death rate (µ) per day were computed.

The daily recruitment rate, Λ for each country, was computed using the
following expression [39].

Λ =
rbN̄

L
, (3)

where rb = χp +
AI
N̄ , L is the vaccination time period for each country, χp represents

the annual births during the vaccination period, L for each country, N̄ is the average
population size during the vaccination period, L in each country and AI represents the
net annual migration in the country during vaccination period L. Let us take the example
of Rwanda. The start date (the first day of vaccination) in Rwanda was 5 March 2021 ,
and the end date is 13 December 2021 (which corresponds to the last day of the third wave
of the pandemic). Thus, the vaccination period considered is L = 284 days. The mean
total population of Rwanda as of 13 December 2021 is N̄ = 13, 461, 888. Using the annual
birth rate (30.725/1000) and the net annual migration (−9000 individuals) in Rwanda, we
obtained the rates rb = (30.725/1000)− (9000/N̄) = 0.030056. Using Equation (3), we
computed Λ = 1427.7060 individuals/day. For each country, the natural death rate of
individuals per day was calculated as the reciprocal of the life expectancy (L.E) at the
end date (last day of the third wave of the pandemic). For example, in Rwanda, as of
13 December 2021, the average annual life expectancy was L.E = 70 years, then, the natural
death rate was µ = 1/(70× 365), which gives µ = 3.9112× 10−5 day −1.

To find the best set of parameters and initial conditions for each country, we used the
nonlinear least square technique in Matlab (2021) with fminsearchbnd, which is a built-in
Matlab function. Here, we minimize the root mean square of squared differences between
each observed cumulative case data and the corresponding cumulative case obtained from
the model (RMSE1). We repeated this procedure 2000 times to increase the precision of
the estimation.

The value for Sv0 for each country was obtained from the vaccination data, corre-
sponding to the total number of people vaccinated on the first day of vaccination, such
that Sv0 = Nv0. We suppose that on the first day of vaccination, no individuals are infected
with COVID-19 and vaccinated. Then, we set Ev = Ipv = IAv = Isv = Cv = Rv = Dv = 0.
The solutions to the model Equations (1) and (2) were obtained using the built-in func-
tion ODE45 of Matlab. We used the cross-validation technique for parameter estimation
to improve the prediction power of the model. To do this, we divided the data into train-
ing (90%) and testing (10%) datasets and computed the root mean square error, RMSE1
(computed using the training dataset) and RMSE2 (using the testing dataset), respectively.
The whole model was repeated about 100 times, and the final values of the estimates were
those with the smallest value for RMSE2 and RMSE1. We also obtained the 95% confidence
interval for the estimated parameters considering the normal distribution. The values
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for initial conditions and the corresponding estimated parameters and their 95% CI are
presented in Tables A4–A6, respectively.

A numerical simulation was carried out to evaluate the impact of vaccination on
COVID-19 incidence and mortality in the selected African countries. To quantify the
vaccine impact, we determined the vaccine effectiveness in terms of the detection and death
rates ratio for vaccinated individuals in relation to unvaccinated, respectively.

Additionally, numerical sensitivity analysis was performed to assess the combined
impact of vaccination with different levels of adherence to non-pharmaceutical interven-
tions (NPIs) on the control reproduction number (Rc). The combined impact was assessed
by generating contour plots of control reproduction number (Rc) as a function of vac-
cine coverage (VC) and control measures (ψ) among both unvaccinated and vaccinated.
We suppose that the implementation and lifting of NPIs are related to changes in the
transmission rate. We considered varying levels (0 to 1) of adherence to NIPs by both vacci-
nated and unvaccinated individuals to represent behaviors that reduce the transmission
of the SARS-CoV-2 virus. The level of NPI intensity was categorized as follows: low level
(self-protection, use of face masks, hand hygiene, and social distancing), moderate level
(mobility limitation), and high level (imposition of lockdown, closure of schools, work-
places, churches, etc.). The levels of NPIs adherence among vaccinated and unvaccinated
individuals were quantified as low (10%), moderate (30%), and high (50%).

3. Results
3.1. Analytical Results
3.1.1. Computation of Control Reproduction Number

To assess if the implemented control measures, such as vaccination and NPIs, are
effective in controlling the COVID-19 outbreak, we computed the control reproduction
number, Rc. The control reproduction number is the average number of COVID-19 sec-
ondary infections generated by a single infectious individual when introduced in a mixed
population of vaccinated and unvaccinated individuals. We used the next-generation
approach as described by Diekmann et al. [40] to compute the control reproduction number
of our model.

Let us first define the disease-free equilibrium (DFE) of model (1) and (2). At DFE,
we have
Eu = Ipu = IAu = Isu = Cv = Ru = Du = Ev = Ipv = IAv = Isv = Cv = Rv = Dv = 0 ;
λu = λv = 0 ; Ṡu > 0 and Ṡv > 0.

Hence, the disease-free equilibrium point of our model is given by

X0 = (S0
u, 0, 0, 0, 0, 0, 0, 0, S0

v, 0, 0, 0, 0, 0, 0, 0)

where S0
u = Λ(µ+ω)

µ(µ+ω+ν)
, and S0

v = Λν
µ(µ+ω+ν)

.

Let X = (Eu, Ipu , IAu , Isu , Cu, Ev, Ipv , IAv , Isv , Cv)T be a vector of infected classes.



Vaccines 2023, 11, 857 9 of 26

• Let F be a column vector for all new infections and F = =F be the jacobian of F at
disease-free equilibrium, X0

F =



Suλu
0
0
0
0

Svλv
0
0
0
0


and F =



0 A1 A2 A3 A4 0 A5 A6 A7 B8
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 B1 B2 B3 B4 0 B5 B6 B7 B8
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


where

A1 =
S0

ubuuθpu (1−ψu)
N A2 =

S0
ubuuθAu (1−ψu)

N A3 = S0
ubuuθsu (1−ψu)

N

A4 = S0
ubuuθcu (1−ψu)

N A5 =
S0

ubvuθpv(1−ψu)
N A6 = S0

ubvuθcv (1−ψu)
N

A7 = S0
ubvuθsv (1−ψu)

N A8 = S0
ubvuθcv (1−ψu)

N

B1 =
S0

vbuvθPv (1−ψv)
N B2 =

S0
vbuvθAv (1−ψv)

N B3 =
S0

vbuvθSu (1−ψv)
N

B4 =
S0

vbuvθCv (1−ψv)
N B5 =

S0
vbvvθPv (1−ψv)

N B6 =
S0

vbvvθAv (1−ψv)
N

B7 =
S0

vbvvθSv (1−ψv)
N B8 =

S0
vbvvθCv (1−ψv)

N

• Let V be the matrix of net transitions

V =



(αE + ν + µ)Eu
−αEEu + (αP + µ + ν)IPu

−(1− ρ1)αP IPu + (µ + ν + γa1 + qa1)IAu

−ρ1αP IPu + (µ + γs1 + qs1 + δs1)ISu

−qa1 IAu − qs1 ISu + (δc1 + γc1 + µ)Cu
−νEu + (αE + µ)Ev

−νIPu − αEEv + (αP + µ)IPv

−νIAu − (1− ρ2)αP IPv + (µ + γa2 + qa2)Iav

−ρ2αP IPv − (µ + γs2 + qs2 + δs2)ISv

−qa2 IAv − qs2 ISv + (δc2 + γc2 + µ)Cv


• The Jacobian matrix (V = =V) of matrix V, at disease-free equilibrium, X0 is given as:

V =



a1 0 0 0 0 0 0 0 0 0
−αE a2 0 0 0 0 0 0 0 0

0 −αp(1− ρ1) a3 0 0 0 0 0 0 0
0 −αpρ1 0 a4 0 0 0 0 0 0
0 −qp1 −qa1 −qs1 a5 0 0 0 0 0
−ν 0 0 0 0 a6 0 0 0 0
0 −ν 0 0 0 −αE a7 0 0 0
0 0 0 −ν 0 0 −αp(1− ρ2) a8 0 0
0 0 0 0 0 0 −αpρ2 0 a9 0
0 0 0 0 0 0 −qp2 −qa2 −qs2 a0
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where

a1 = αE + µ + ν a2 = αp + µ + ν + qp1 a3 = αp + µ + ν + qp1
a4 = γa1 + µ + ν + qa1 a5 = γc1 + µ + δc1 a6 = αE + µ
a7 = αp + µ + qp2 a8 = γa2 + µ + qa2 a9 = δs2 + γs2 + µ + qs2
a0 = γc2 + µ + δc2.

Using the next-generation matrix approach, the control reproduction number Rc of the
model is computed as the spectral radius ρ

(
F×V−1) of the next generation matrix F×V−1, i.e.

Rc = ρ
(

F×V−1
)

.

The expression for the control reproduction number, Rc, is the sum of three quanti-
ties, i.e.,

Rc = Rc1 + Rc2 + Rc3, (4)

where quantities Rc1 and Rc2 are contributions of the unvaccinated and vaccinated infec-
tious classes, respectively, while Rc3 is the contribution from the interaction between the
vaccinated and unvaccinated infectious classes to the control reproduction number.

The component Rc1 is the sum of the four components, i.e., Rc1Pu , Rc1Au , Rc1Su , and Rc1Cu ,
which represent the contribution of the pre-asymptomatic, asymptomatic, symptomatic,
and confirmed infectious unvaccinated classes, respectively.

Rc1 = Rc1Pu + Rc1Au + Rc1Su + Rc1Cu , (5)

where

Rc1Pu =
αES0

ubuu(1− ψu)θPu

2N0a1a2
,

Rc1Au =
αES0

ubuu(1− ψu)αp(1− ρ1)θAu

2N0a1a2a3
,

Rc1Su =
αES0

ubuu(1− ψu)αpρ1θSu

2N0a1a2a4
,

Rc1Cu =
αES0

ubuu(1− ψu)
[
a3a4 + a4qa1 αp(1− ρ1) + a3qs1 ρ1

]
θCu

2N0a1a2a3a4a5
,

N0 is the initial population at disease-free equilibrium and is given by N0 = S0
u + S0

v.
Similarly, the component Rc2 is the sum of the four components, i.e., Rc2Pv , Rc2Av , Rc2Sv ,

and Rc2Cv , which represent the contribution of the pre-asymptomatic, asymptomatic, symp-
tomatic, and confirmed infectious vaccinated individuals, respectively.

Rc2 = Rc2Pv + Rc2Av + Rc2Sv + Rc2Cv , (6)

Rc2Pv =
αES0

vbvv(1− ψv)θPv

2N0a6a7
,

Rc2Av =
αES0

vbvv(1− ψv)αp(1− ρ2)θAv

2N0a6a7a8
,

Rc2Sv =
αES0

vbvv(1− ψv)αpρ2θSv

N0a6a7a9
,

Rc2Cu =
αES0

vbvv(1− ψv)
[
a8(a9qp2 + qs2 αpρ2) + a9qa2 αp(1− ρ2)

]
θCv

2N0a0a6a7a8a9
.
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The quantity, Rc3 is also defined as;

Rc3 = Rc1V +

√
[Rc1 + Rc1V − Rc2 ]

2 +
4

m2
(m1Rc1 + m2Rc1V ),

where

Rc1V = Rc1Pv + Rc1Av + Rc1Sv + Rc1Cv , m1 = bvu
buu

, and m2 = bvv
buv

.
We define Rc1V as the sum of four components, i.e., Rc1Pv , Rc1Av , Rc1Sv , and Rc1Cv ,

which represent the contribution from the interaction of the unvaccinated individuals with
the pre-asymptomatic, symptomatic, and confirmed infectious vaccinated individuals.

Rc1Pv =
αEνS0

ubuv(1− ψv)θPv

2N0a1a2a6a7
,

Rc1Av =
αEνS0

ubuv(1− ψv)[a3(1− ρ2)(a2 + a6 + a6a7(1− ρ1))]θAv

2N0a1a2a3a6a7a8
,

Rc1Sv =
αEνS0

ubuv(1− ψv)αpρ2(a2 + a6)θSv

2N0a1a2a6a7a9
,

Rc1Cv =
αEνS0

ubuv(1− ψv)
[
a3(a2 + a6)

(
a8(a9qp2 + αPqs2 ρ2) + a9αPqa2(1− ρ2)

)
+ D

]
θCv

2N0a0a1a2a3a6a7a8a9

where D = a9a6a7qa2 αP(1− ρ1).

3.1.2. Computation of Basic Reproduction Number

In the absence of vaccination and non-pharmaceutical interventions, the control re-
production number reduces to the basic reproduction number, denoted by R0, which is
given by

R0c = Rc|S0
v = ν = ψu = ψv = 0.

The expression for the basic reproduction number, Rc0 , is the sum of two quantities
since in the absence of vaccination S0

v = 0, then R0c2 = 0.

R0c = R0c1 + R0c3, (7)

where quantities R0c1 represent the contribution of the unvaccinated infectious classes
while R0c3 is a contribution from the interaction between the vaccinated and unvaccinated
infectious classes to the basic reproduction number.

The component, R0c1 is the sum of the four components, i.e., R0c1Pu
, R0c1Au

, R0c1Su
,

and R0c1Cu
, which represent the contribution of the pre-asymptomatic, asymptomatic,

symptomatic, and confirmed infectious unvaccinated classes, respectively.

R0c1 = R0c1Pu
+ R0c1Au

+ R0c1Su
+ R0c1Cu

, (8)
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where

R0c1Pu
=

αEbuuθPu

2(αE + µ)
(
αp + µ + qp1

) ,

R0c1Au
=

αEαpbuuθAu(1− p1)

2(αE + µ)
(
αp + µ + qp1

)
(γa1 + µ + qa1)

,

R0c1Su
=

αEαpbuuρ1θ3u

2a4(αE + µ)
(
αp + µ + qp1

) ,

R0c1Cu
=

αEbuuθCu
(
αpqa1(1− ρ1)a4 + qp1(γa1 + µ + qa1)a4 + qs1ρ1(γa1 + µ + qa1)

)
2a5a4(αE + µ)

(
αP + µ + qp1

)
(δc1 + γc1 + µ)

.

The quantity, R0c3 is also defined as:

R0c3 =

√
R0

2
c1 +

4
m2

(m1R0c1).

3.2. Numerical Results

Results from the model fitting show a good match between the number of cumulative
confirmed cases from the data (red curve) and the number of cumulative confirmed cases
obtained from the model (blue curve) for the eight selected countries shown in Figure A1.

3.2.1. Dynamics of COVID-19 Infectious Classes Over Time

We explore how infectious class populations evolve over time with an imperfect
vaccine. The estimated model parameters presented in Tables A5 and A6 were used to
compute the ratio of the number of breakthrough infections that would arise among the
vaccinated in relation to the unvaccinated subpopulations for the four infectious classes.
Figure 2 shows the evolution of the ratio of infected vaccinated individuals to the num-
ber of infected unvaccinated for each infectious class (pre-symptomatic, asymptomatic,
symptomatic, and confirmed) for the considered countries. Since the COVID-19 vaccines
provide partial protection coupled with the emergence of new variants of concern, many
breakthrough infections have been reported in most African countries.

Overall, the computed ratios for all eight countries are less than one (varying from 0
to 0.5), indicating that the number of breakthrough infections that arise from the vaccinated
infectious classes is relatively lower than that for the unvaccinated. Rwanda and Algeria
have the highest ratios, while DR Congo has the least computed ratios (Figure 2).

Results also demonstrated that the ratio of pre-symptomatic and asymptomatic in-
fected individuals increases as the vaccination period increases. For example, in August
2021, the number of vaccinated asymptomatic individuals in Rwanda was 0.28 times that
of the unvaccinated. However, this ratio increased to 0.45 by the end of November 2021
(Figure 2). This shows that the proportion of undetected cases (i.e. pre-symptomatic and
asymptomatic) for both vaccinated and unvaccinated are generally high in all the African
countries as indicated by the blue and red lines (Figure 2).

For all countries, the symptomatic infections among the vaccinated and unvaccinated,
except for South Africa, exhibit parallel trends over time. This implies no significant differ-
ence in the number of primary infections from unvaccinated and breakthrough infections
from the vaccinated symptomatic class, thus demonstrating the vaccine’s effectiveness
in reducing the number of both vaccinated and unvaccinated individuals who develop
COVID-19 symptoms.

Countries such as Algeria, Namibia, and Libya have similar parallel trends for con-
firmed and symptomatic cases. The findings from Figure 2 show that DR Congo has
the least computed ratios for the four infectious classes due to the low vaccine coverage.
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For instance, the computed ratio for the number of vaccinated confirmed individuals to
unvaccinated is ≈0.0001 as of November 2021. This means that the number of vaccinated
individuals confirmed positive for COVID-19 is ≈0. Notably, the number of breakthrough
infections from the confirmed vaccinated individuals was higher in countries such as
Rwanda, Kenya, South Africa, and Algeria than in other countries.
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Figure 2. Evolution trend of each infectious compartment for vaccinated and unvaccinated individ-
uals over time in each country. The first line (purple) in the legend depicts the ratio of the number
of confirmed infectious vaccinated individuals to confirmed infectious unvaccinated individuals,
the second line (green) depicts the ratio of the number of symptomatic infectious vaccinated individ-
uals to the symptomatic infectious unvaccinated, the third line (red) depicts the ratio of the number
of asymptomatic infectious vaccinated individuals to asymptomatic infectious unvaccinated, and the
last line (blue) depicts the ratio of the number of pre-symptomatic infectious vaccinated individuals
to pre-symptomatic infectious unvaccinated.
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3.2.2. Impact of Vaccination on the Control Reproduction Number per Country

We computed the values for the control reproduction number, Rc using the fixed
and estimated model parameters. Overall, the estimates for the Rc for the eight African
countries during the third wave of the epidemic ranged from 1.911 (for Kenya) to 1.432 (for
Libya), with an average of Rc = 1.693 (Table A7). Similarly, in the absence of vaccination
and other control measures, we computed the values for the basic reproduction numbers,
R0, for each of the eight countries considered. The results indicated that overall, the values
for these countries for R0 are approximately two times higher than those for Rc. With an
average of R0 = 2.843, estimates for the R0 were lowest for DR Congo (2.408) and highest
for Algeria (3.640).

3.2.3. Impact of Vaccination on the Transmission Dynamics

We simulated the model to assess the impact of vaccination on the transmission dy-
namics of COVID-19 in each of the selected eight countries. Results from the simulation
(Figure A2) suggest that vaccinated individuals had a much lower force of infection (the
rate at which the susceptible individuals become infected per unit time or mass-action
transmission) of COVID-19 and a reduced capacity for virus transmission. The reduction
in the transmission rate (per capita rate at which two different individuals come in effec-
tive contact per unit time) due to vaccination was higher for countries such as Algeria,
DR Congo, and Nigeria. However, in Kenya, the force of infection for vaccinated and
unvaccinated individuals varies similarly over time.

In addition, we also estimated the infection probabilities and the relative infectiousness
to describe the transmission dynamics of vaccinated and unvaccinated populations. The
results in (Figure A3) show that the infection probability of disease transmission among
the vaccinated population is lower than that among the unvaccinated. Furthermore, the in-
fection probability of disease transmission from infectious unvaccinated to susceptible
vaccinated is higher than that from infectious vaccinated to susceptible unvaccinated.
The results from Figure A4 also revealed that the pre-symptomatic and asymptomatic
vaccinated are less infectious than the vaccinated. However, both the vaccinated and
unvaccinated are symptomatic and confirmed to be highly infectious.

3.2.4. Impact of Vaccination on COVID-19 Incidence among the Vaccinated and
Unvaccinated Individuals

The vaccine effectiveness (expressed as a detection rate ratio) in reducing new infec-
tions for the pre-symptomatic, asymptomatic, and symptomatic cases for the vaccinated
as compared to the unvaccinated across the considered African countries are presented in
Figures 3a–c. The results from Figure 3 indicate higher heterogeneity in the vaccine efficacy
(measured in terms of the detection rate ratio) among the asymptomatic cases compared to
the pre-symptomatic and symptomatic cases. The results also showed that higher values for
vaccine efficacy against new infections were reported among symptomatic cases (ranging
from 0.3 to 5.22) as compared to the asymptomatic (0.118–1.0247) and pre-symptomatic
(0.0492–0.89087) cases, indicating lower vaccine efficacy against new symptomatic cases.

The vaccine efficacy against new pre-symptomatic cases was generally less than one
across the considered countries. With an expectation of Nigeria, the rest of the countries
had detection rate ratio values less than 0.5. In Nigeria, the detection rate of COVID-19
infections among the pre-symptomatic vaccinated was about four times higher than that
for the unvaccinated pre-symptomatic cases.

Similarly, the vaccine efficacy against new asymptomatic cases is relatively high (>0.5)
for the majority of the considered African countries, as shown in Figure 3b. In DR Congo,
there is no significant difference in the detection rates for new infections among vaccinated
and unvaccinated individuals. On the other hand, in Algeria, the detection rate among the
vaccinated was about 88.2% lower among the vaccinated as compared to the unvaccinated.
Results further indicated that countries such as Namibia, South Africa, Libya, and Rwanda
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had a similar detection rate ratio, implying that vaccinated individuals were at about 25%
lower risk of becoming COVID-19 cases compared to the unvaccinated.

The results in Figure 3c also presented the vaccine efficacy against symptomatic cases
across the considered African countries. The results indicate that countries with relatively
high vaccine coverage, for instance, Rwanda, Kenya, and Algeria, had values for the
detection rate ratio greater than one. For instance, in Rwanda, vaccinated people appear
to be more than 5-fold to test positive for COVID-19 compared to unvaccinated people.
However, in Kenya, since the detection rate ratio is approximately one, vaccinated and
unvaccinated individuals are likely to have the same detection rate. On the other hand,
in Namibia, the detection rate for the vaccinated symptomatic cases is 65% lower than that
for the unvaccinated.
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Figure 3. Vaccine effectiveness against COVID-19 infections and deaths. Panels (a–c) depict
vaccine effectiveness against pre-symptomatic, asymptomatic, and symptomatic new infections
Panels (d,e) present vaccine effectiveness against symptomatic and confirmed deaths.

3.2.5. Impact of Vaccination on COVID-19 Mortality among the Vaccinated and
Unvaccinated Individuals

The impact of the vaccination on COVID mortality was quantified by the death rate
ratio of the vaccinated compared to the unvaccinated for symptomatic and confirmed cases.
The results are presented in Figure 3d,e. Our findings indicated a high variation in the
vaccine efficacy against COVID-19 deaths among symptomatic and confirmed cases across the
considered countries. Overall, vaccination had a higher impact in reducing COVID-19 deaths
from confirmed cases compared to those from symptomatic cases, as shown by the lower
values of the detection rate ratio for the confirmed. High vaccine efficacy against symptomatic
COVID-19 deaths was recorded in the DR Congo (0.0023) and lowest in Rwanda (0.83) and
Algeria (0.664). For instance, in DR Congo, the risk of COVID-19 among the symptomatic
individuals is 99.76% lower among vaccinated individuals than the unvaccinated. For the
confirmed cases, except for DR Congo and Rwanda, the vaccine efficacy against COVID-19
deaths is less than 0.5. A high vaccine efficacy against COVID-19-related deaths from
confirmed cases was recorded in Algeria (0.041), South Africa (0.114) and Nigeria (0.132),
while low vaccine efficacy was recorded in Rwanda (0.954).
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3.2.6. Impact of Vaccine Coverage with Different Levels of Reduction in the Transmission
Rate due to NPIs (ψ) among Unvaccinated and Vaccinated Individuals

Figure 4 shows the variation of Rc with respect to the vaccine coverage and different
levels of reduction in the transmission rate due to adherence to non-pharmaceutical inter-
ventions (NPIs) among both vaccinated and unvaccinated individuals for each country.
The results obtained, depicted in Figure 4, show that overall, in each of the considered
countries, there is a decrease in the values of Rc with increasing vaccine coverage com-
bined with a high reduction in the transmission rate due to NPIs by both vaccinated and
unvaccinated individuals. The results showed that on average, at least 60% of each African
country’s population should be vaccinated to curtail the COVID-19 pandemic (lower the
Rc below one). Moreover, lower values of Rc are possible even when there is a low or
moderate reduction in the transmission rate due to NPIs.

Figure 4. Contour plots of the control reproduction number (Rc) as functions of the vaccine coverage
for different levels of reduction in the SARS-CoV-2 transmission rate due to control measures (ψ)
among the unvaccinated and vaccinated individuals.
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For instance, in Algeria, the minimum vaccine coverage required for Rc < 1 is 80%,
assuming that there is no reduction in the transmission rate due to NPIs in vaccinated and
unvaccinated populations (i.e., ψ = 0). However, when the reduction in the transmission
rate due to NPIs among the unvaccinated and vaccinated individuals is increased to 10%
(low) and 30% (moderate) during the vaccination period, the minimum vaccine coverage
required to bring Rc to one is reduced to 75% and 70%, respectively.

In DR Congo, findings indicated that at least 65% of the unvaccinated population
should be vaccinated for Rc < 1. In addition, the pandemic is curtailed when a 10%,
30%, and 50% reduction in the transmission rate due to NPIs is associated with 58%, 54%,
and 50% vaccine coverage. The results further indicated that in most of the countries
considered, vaccinating less than 50% (i.e., VC > 50%) requires a high reduction in the
transmission rate due to NPIs to contain the pandemic. For instance, in Kenya, when the
proportion of unvaccinated individuals is below 50%, the Rc > 1.5. To reduce Rc < 1,
a high reduction in the transmission rate due to NPIs is required (i.e., ψ > 0.75).

4. Discussion

In this study, we developed a mathematical model to assess the impact of vaccina-
tion programs on curtailing the burden of COVID-19 in eight selected African countries.
The model stratifies the total population into two subgroups according to vaccination status.
The model is fitted to cumulative daily case data for each selected country corresponding
to the third wave of the pandemic. The unknown parameters are estimated using the
nonlinear least square method. Overall, the model fits well with the actual cumulative
number of confirmed cases for the selected countries.

Our results show the effectiveness of the COVID-19 vaccine against transmission of
the SARS-CoV-2 virus to the susceptible contacts from infected vaccinated cases, which
is shown by the lower infection probabilities among the vaccinated individuals. These
findings are consistent with a study by As et al. [41] that showed a substantial reduction in
the transmission risk of PCR-confirmed SARS-CoV-2 infection among vaccinated healthcare
workers. Most studies have shown viral load to be an important indicator of the relative
infectiousness of both vaccinated and unvaccinated individuals [42]. Our findings suggest
that the relative infectiousness of the vaccinated asymptomatic infectious individuals is
lower than that of the symptomatic infectious individuals. For example, in South Africa,
asymptomatic vaccinated individuals were about three times more infectious than pre-
symptomatic. This would be because the asymptomatic individuals shed the virus faster
than the pre-symptomatic and symptomatic cases, implying a shorter infectious period [43].

According to the study by Chen et al. [44], asymptomatic cases of COVID-19 are a po-
tential source of substantial spread of the disease, accounting for two-thirds of COVID-19
infections in Africa. Our study findings support this hypothesis, which is indicated by the
increased number of both vaccinated and unvaccinated asymptomatic and pre-symptomatic
individuals over time. The high proportion of infected individuals without symptoms will
likely lead to an under-representation of the number of infections reported in African coun-
tries. Therefore, in addition to vaccination, strategies such as mass testing and testing of the
asymptomatic close contacts should be implemented to control SARS-CoV-2 transmission in
African countries. On the other hand, vaccination programs significantly reduced the number
of symptomatic individuals.

The results show that the average control reproduction number across the eight
African countries during the first months of vaccination is 1.693, which is greater than
one. This suggests that each infectious individual can transmit COVID-19 to two people.
The epidemiological implication is that COVID-19 will continue to spread in most African
countries even after vaccination but at a slower rate than in the absence of a vaccine. Our
findings show that the vaccine’s effectiveness in reducing the detection of new infections is
higher among the asymptomatic and pre-symptomatic cases than the symptomatic cases.
For instance, in Rwanda, the vaccinated symptomatic individuals are 5-fold more likely to
test positive for COVID-19 than the unvaccinated individuals. This implies low vaccine



Vaccines 2023, 11, 857 18 of 26

efficacy against new symptomatic infections. This is evidenced by the high detection rates
for the symptomatic individuals ranging from 0% to 0.86%. This may be partly due to the
low efficacy of the vaccines currently administered to people in many African countries.
These findings align with the vaccine impact on new COVID-19 infections reported in
clinical trials [45,46].
Vaccination also had a significant impact in reducing COVID-19 deaths that arise from
confirmed cases as compared to symptomatic cases. We also observed high variation in the
vaccine effectiveness against COVID-19 deaths across all the considered countries. This
would be due to different levels of vaccine coverage, economic levels, control measures,
testing, and reporting efforts [47]. Furthermore, we observed that countries with high
vaccination coverage, such as South Africa and Algeria, had a greater reduction in the
mortality rates for confirmed cases compared to largely unvaccinated countries.

Numerical sensitivity analysis performed to evaluate the combined impact of vacci-
nation with different levels of adherence to NPIs showed that to eradicate the pandemic,
at least 60% of the population in each African country should be vaccinated, combined with
low to high NPI adherence by unvaccinated and vaccinated individuals. Our findings align
with the African Centres for Disease Control’s COVID-19 program [48] recommendation
that 70% of the population should be fully vaccinated. It should be noted that achieving
herd immunity is vital, particularly in the African continent, which is mostly dominated by
a large proportion of young people and given the low vaccine supply. However, despite
this recommendation and the results of our model, it may take longer for most African
countries to reach herd immunity, given the current low vaccine coverage levels in Africa.
In addition to the low supply of COVID-19 vaccines [49], many Africans are also unwilling
to be vaccinated, as many African countries, for instance, DR Congo, still have thousands
to millions of doses that are yet to be administered.

This study has some limitations. We modeled vaccine effectiveness against transmis-
sion, new COVID-19 infections, and deaths. However, these estimates may vary according
to the significant difference between men and women in the death rate for COVID-19,
age structure of the population, specific COVID-19 variants in each country, and multiple
COVID-19 vaccine doses administered. In addition, the proposed modeling framework
can be extended to include data for all the waves of the pandemic, not just the third wave.
Furthermore, the study considered a constant vaccination rate which may not be realistic, as
the vaccination rate may depend on the number of vaccine doses available on a particular
day. Hence, considering the time-dependent vaccination rate may improve the accuracy of
the VE estimates.

5. Conclusions

Vaccination programs significantly reduce the transmission as well as relative infec-
tiousness among vaccinated individuals. COVID-19 vaccines prevent COVID-19 disease
by reducing the probability of developing symptoms. The study also pointed out that a
large proportion of the undetected cases are pre-symptomatic and asymptomatic. This may
increase the rate at which susceptible individuals acquire infection, since such individuals
are unaware they are sick and are less likely to adhere to NPIs. This study showed that the
likelihood of achieving vaccine-derived herd immunity in most African countries is very
promising, especially if the vaccination program is complemented with low or moderate
levels of adherence to NPIs among both vaccinated and unvaccinated individuals. These
results may vary according to the significant difference between men and women in the
death rate for COVID-19, the age structure of the population, specific COVID-19 variants
in each country, and multiple COVID-19 vaccine doses administered. However, achieving
herd immunity in Africa is largely hindered by widespread vaccine hesitancy. It is therefore
important for the African governments to design vaccination strategies that address vaccine
hesitancy, such as an incentive-based approach, where individuals are given incentives such
as food items, beverages, snacks, and T-shirts at the points of vaccination. This may yield
positive results for mass vaccination as it will encourage more people to get vaccinated,



Vaccines 2023, 11, 857 19 of 26

thus giving indirect protection against the disease to individuals who cannot get vaccinated,
such as children, and pregnant women, thus achieving herd immunity.
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Appendix A

Table A1. Selected countries in each region with their start date and end date.

Selected Countries Start Date End Date

DR Congo 25 April 2021 30 November 2021
Rwanda 5 March 2021 13 December 2021
Kenya 30 May 2021 19 October 2021
Algeria 4 January 2021 29 October 2021
Libya 13 January 2021 13 December 2021
Namibia 25 March 2021 25 November 2021
South Africa 18 February 2021 8 November 2021
Nigeria 16 May 2021 28 November 2021

Table A2. Fixed model parameters, their description and value.

Parameter Value References

du 1/270 day −1 [50]
dv 1/270 day −1 [51]
ω 1/180 day −1 [52]
αE 3.3 days [53]
αp 3.2 days [25]
ρ1 0.6 [54]
ρ2 0.1 [55]
γa1 1/5 day −1 [29,54]
γa2 1/3.4 day −1 [29,54]
γs1 1/10 day −1 [29,54]
γs2 1/8 day −1 [29,54]
γc1 1/11 day −1 [29,54]
γc2 1/10 day −1 [29,54]
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Figure A1. Plots depicting the fitting of the model to the cumulative confirmed COVID-19 cases for
selected African countries.
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Figure A2. Dynamic trend for the force of infection over time during COVID-19 vaccination. The blue
and red curves represent the force of infection for the unvaccinated (λu) and vaccinated (λv) individ-
uals, respectively.
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Figure A3. Bar plot presenting the estimated infection probabilities for vaccinated and unvaccinated
individuals for selected African countries.
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Figure A4. Plots presenting the estimated relative infectiousness for vaccinated and unvaccinated
individuals for selected African countries. (A) Pre-symptomatic infectious, ( B) Asymptomatic
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Table A3. Fixed parameters, their values and sources varying per country.

Parameters
Countries

Algeria DR Congo Kenya Libya Namibia Nigeria Rwanda South Africa

L.E 77.5 61.6 67.5 73.4 64.9 55.8 70.0 64.9
N0 44,177,969 95,894,118 53,005,614 6,735,277 2,530,151 213,401,323 13,461,888 59,392,255
µ 3.5× 10−5 4.4× 10−5 4× 10−5 3.7× 10−5 4.2× 10−5 4.9× 10−5 3.9× 10−5 4.2× 10−5

Λ 6227.61 17,591.26 10,285.07 433.56 264.94 39,787.80 1424.71 4999.12
VC 13.62% 0.15% 6.38% 27.5% 13.69% 3.00% 35.5% 26.6%
VP 160 220 143 258 246 197 284 264
ν 0.00085 0.00001 0.00045 0.00107 0.00056 0.00015 0.00125 0.00101
ψ1 0.35 0.30 0.15 0.35 0.30 0.45 0.45 0.45
ψ2 0.25 0.25 0.18 0.25 0.25 0.25 0.25 0.45

Table A4. Values for the Initial conditions for the state variables and 95%CI.

Country Su0
(
×106

)
Eu0 Ipu0 IAu0 ISu0 Ru0

Namibia
1.66

[1.57, 1.74]
1500.00

[1365.29, 1634.70]
700.15

[641.35, 758.9]
706.06

[675.15, 736.97]
700.00

[672.02, 727.97]
144.62

[105.10, 184.14]

South Africa
44.87

[43.13, 46.60]
4763.61

[4179.73, 5347.49]
5499.92

[5214.45, 5785.39]
1322.84

[970.52, 1675.16]
265.16

[223.47, 306.86]
455.28

[416.41, 494.15]

Nigeria
49.94

[30.06, 69.72]
76,207.26

[72,089.64, 80,324.87]
39,377.52

[36,424.84, 242,330.20]
12,989.71

[11,127.50, 14,851.92]
571.77

[425.02, 718.52]
346.74

[194.97, 498.51]

Libya
4.19

[3.80, 4.58]
10043.62

[9799.05, 10,288.17]
7097.94

[6808.63, 7387.25]
5144.00

[4593.28, 5694.72]
2500.26

[2252.15, 2748.37]
1159.89

[1058.219, 1261.57]

DR.Congo
7.14

[2.09, 12.19]
69,889.75

[66,287.98, 73,491.51]
1002.16

[902.45, 1101.87]
541.19

[442.15, 640.22]
784.58

[734.78, 834.37]
249.44

[230.28, 268.59]

Rwanda
13.35

[12.58, 14.13]
3191.59

[2882.33, 3500.86]
1120.60

[1041.19, 1200.01]
1011.78

[858.52, 1165.04]
741.58

[714.24, 768.93]
251.03

[208.27, 293.79]

Algeria
9.58

[5.42, 13.72]
93,208.19

[88,602.33, 97,814.04]
4344.26

[3988.51, 4700.00]
530.67

[115.97, 945.38]
581.77

[ 542.56, 620.99]
100.51

[63.13, 137.89]

Kenya
4.32

[4.06, 4.55]
77,571.99

[68,155.25, 86,988.73]
44,589.27

[41,245.57, 47,932.96]
34,186.64

[31,497.56, 36,875.72]
13,641.08

[12,529.16, 14,753.01]
962.79

[924.76, 1000.82]

Table A5. Estimated (fitted) parameter values and their 95% CI for the model for each selected country.

Parameter Namibia South Africa Nigeria Libya

buu 0.69943 [0.66876, 0.73010] 0.75138 [0.70816, 0.79461] 0.68895 [0.64075, 0.73716] 0.34566 [0.31123, 0.38009]
buv 0.49986 [0.46100, 0.53872] 0.47487 [0.43008, 0.51967] 0.29131 [0.25009, 0.33253] 0.19777 [0.18971, 0.20583]
bvu 0.49949 [0.44789, 0.55109] 0.69237 [0.62429, 0.76045] 0.20114 [0.14281, 0.25947] 0.13348 [0.11327, 0.15354]
bvv 0.09929 [0.09199, 0.10658] 0.09903 [0.09701, 0.10105] 0.09582 [0.09138, 0.10026] 0.05061 [0.04610, 0.05513]

θPu 0.99999 [0.90132, 1.09866] 0.94265 [0.85095, 1.03434] 0.81294 [0.69935, 0.92650] 0.97356 [0.88567, 1.06144]
θAu 0.25624 [0.17032, 0.34215] 0.32720 [0.24394, 0.41045] 0.32603 [0.22519, 0.42687] 0.54310 [0.44715, 0.63904]
θSu 0.00012 [−0.0679, 0.06822] 0.11758 [0.02434, 0.21083] 0.64576 [0.83210, 0.96535] 0.51002 [0.47033, 0.54970]
θCu 0.01583 [−0.0229, 0.05461] 0.28121 [0.20859, 0.35382] 0.88343 [0.79233, 0.97452] 0.87620 [0.78317, 0.96922]
θPv 0.68982 [0.61379, 0.76585] 0.69391 [0.61708, 0.77070] 0.89522 [0.77477, 1.01567] 0.49071 [0.44117, 0.52506]
θAv 0.27906 [0.20984, 0.34828] 0.59369 [0.52832, 0.65905] 0.91138 [0.79100, 1.03177] 0.47209 [0.42120, 0.52289]
θSv 0.19411 [0.12131, 0.26691] 0.00502 [-0.0760, 0.08605] 0.85105 [0.75183, 0.95027] 0.59134 [0.52606, 0.65661]
θCv 0.64782 [0.57741, 0.71824] 0.21637 [0.13351, 0.29921] 0.63620 [0.56903, 0.70337] 0.37854 [0.32847, 0.42861]

qp1 0.00499 [0.00492, 0.00506] 0.00499 [0.00496, 0.00502] 0.00006 [−0.0002, 0.00019] 0.00486 [0.00440, 0.00532]
qp2 0.00067 [0.00063, 0.00072] 0.00131 [0.00126, 0.00135] 0.00026 [0.00018, 0.00034] 0.00139 [0.00129, 0.00149]
qa1 0.00498 [0.00465, 0.00532] 0.00497 [0.00489, 0.00505] 0.00027 [−0.00004, 0.0006] 0.00351 [0.00309, 0.00392]
qa2 0.00395 [0.00371, 0.00419] 0.00256 [0.00253, 0.00265] 0.00004 [−0.0003, 0.00040] 0.00256 [0.00237, 0.00276]
qs1 0.00868 [0.00824, 0.00913] 0.00839 [0.00829, 0.00851] 0.00031 [−0.0005, 0.00114] 0.00862 [0.00792, 0.00933]
qs2 0.00294 [0.00280, 0.00309] 0.00356 [0.00341, 0.00372] 0.000004 [−0.0004, 0.0004] 0.00439 [0.00407, 0.00472]

δs1 0.00029 [0.00028, 0.00031] 0.19703 [0.17974, 0.00211] 0.00567 [0.00458, 0.00677] 0.00197 [0.00183, 0.02114]
δs2 0.00019 [0.00018, 0.00020] 0.09581 [0.08846, 0.10316] 0.00015 [−0.0007, 0.00098] 0.00099 [0.00182, 0.00217]
δc1 0.00040 [0.00038, 0.00042] 0.19959 [0.17916, 0.22004] 0.00298 [0.00221, 0.00375] 0.00199 [0.01899, 0.02094]
δc2 0.00019 [0.00018, 0.00020] 0.02278 [0.01553, 0.03003] 0.00382 [0.00308, 0.00457] 0.00099 [0.00090, 0.00108]
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Table A6. Estimated parameter values and their 95% CI for the model for each selected country.

Parameter Rwanda Algeria Kenya DR Congo

buu 0.56684 [0.54223, 0.59140] 0.79907 [0.74159, 0.85655] 0.63721 [0.58228, 0.69215] 0.59252 [0.55302, 0.63202]
buv 0.32961 [0.28843, 0.37078] 0.44401 [0.39858, 0.48943] 0.69956 [0.66150, 0.73763] 0.25625 [0.18964, 0.32285]
bvu 0.34471 [0.30639, 0.38305] 0.54705 [0.48178, 0.61232] 0.49691 [0.46349, 0.53033] 0.29970 [0.26933, 0.33008]
bvv 0.18714 [0.17146, 0.20282] 0.05621 [0.05062, 0.06181] 0.04087 [0.02406, 0.05769] 0.01336 [0.00516, 0.02154]

θPu 0.49657 [0.45476, 0.53838] 0.95831 [0.90050, 1.01612] 0.46168 [0.42345, 0.49992] 0.99997 [0.94617, 1.05378]
θAu 0.38102 [0.32949, 0.43255] 0.36306 [0.26965, 0.45647] 0.24275 [0.21254, 0.27297] 0.42697 [0.33455, 0.51938]
θSu 0.43582 [0.41439, 0.45727] 0.22221 [0.11050, 0.33392] 0.31683 [0.26989, 0.36376] 0.00335 [−0.0765, 0.08316]
θCu 0.41064 [0.35984, 0.46145] 0.17918 [0.09015, 0.26821] 0.08219 [0.03981, 0.12458] 0.10705 [0.05563, 0.15847]
θPv 0.48203 [0.43416, 0.52992] 0.23469 [0.15878, 0.31059] 0.45516 [0.41124, 0.49907] 0.22848 [0.17245, 0.28450]
θAv 0.49791 [0.44987, 0.54594] 0.48487 [0.42802, 0.54172] 0.25320 [0.23014, 0.27626] 0.01724 [−0.0390, 0.07350]
θSv 0.35278 [0.31528, 0.39029] 0.62145 [0.55725, 0.68564] 0.39507 [0.35426, 0.43587] 0.48985 [ 0.44160, 0.5380]
θCv 0.03734 [0.00201, 0.07265] 0.73060 [0.65886, 0.80235] 0.00433 [−0.0367, 0.04540] 0.40973 [0.35467, 0.4648]

qp1 0.00019 [0.00018, 0.00022] 0.00163 [0.00109, 0.00215] 0.00019 [0.00018, 0.00021] 0.00073 [0.00053, 0.00092]
qp2 0.00010 [0.00009, 0.00011] 0.00008 [0.00007, 0.00009] 0.00006 [0.00005, 0.00010] 0.00028 [0.00020, 0.00035]
qa1 0.00254 [0.00227, 0.00281] 0.00025 [−0.0003, 0.00079] 0.00288 [0.00269, 0.00306] 0.00095 [0.00077, 0.00113]
qa2 0.00189 [0.00170, 0.00208] 0.00003 [−0.0002, 0.00026] 0.00199 [0.00185, 0.00213] 0.00097 [0.00089, 0.00106]
qs1 0.00018 [−0.0003, 0.00064] 0.00130 [0.00042, 0.00218] 0.00192 [0.00171, 0.00213] 0.000009 [−0.0004, 0.0005]
qs2 0.00091 [0.00086, 0.00096] 0.003461 [0.0031, 0.00387] 0.00198 [0.00180, 0.00216] 0.00001 [0.00000, 0.00002]

δs1 0.00023 [0.00020, 0.00025] 0.00025 [0.00022, 0.00027] 0.00029 [0.00027, 0.00032] 0.00026 [0.00023, 0.00028]
δs2 0.00019 [0.00018, 0.00020] 0.00017 [0.00012, 0.00021] 0.00012 [0.00010, 0.00013] 0.000001 [0.0000, 0.00002]
δc1 0.00021 [0.00019, 0.00023] 0.00052 [0.00048, 0.00056] 0.00014 [0.00013, 0.00015] 0.00029 [0.00028, 0.00031]
δc2 0.00019 [0.00019, 0.00021] 0.00002 [−0.00001, 0.00005] 0.00006 [0.00005, 0.00010] 0.00018 [0.00016, 0.00020]

Table A7. Estimated values for the basic and control reproduction numbers and its components for
each country with 95% confidence interval.

Parameter Rc1 Rc2 Rc3 Rc R0

Namibia 0.813 [0.775, 0.851] 0.011 [0.009, 0.013] 0.889 [0.851, 0.927] 1.713 [1.639, 1.788] 2.569 [2.449, 2.688]
South Africa 0.670 [0.658, 0.683] 0.002 [0.015, 0.017] 0.800 [0.786, 0.820] 1.500 [1.464, 1.515] 3.131 [3.099, 3.163]
Nigeria 0.777 [0.749, 0.829] 0.021 [0.019, 0.024] 0.801 [0.772, 0.829] 1.599 [1.554, 1.643] 3.157 [3.049, 3.265]
Libya 0.699 [0.682, 0.716] 0.010 [0.009, 0.012] 0.723 [0.707, 0.739] 1.432 [1.399, 1.464] 2.586 [2.525, 2.647]
DR Congo 0.841 [0.778, 0.903] 0.00 [0.000, 0.001] 0.841 [0.778, 0.903] 1.682 [1.557, 1.808] 2.407 [2.228, 2.587]
Rwanda 0.853 [0.841, 0.865] 0.040 [0.036, 0.044] 0.912 [0.896, 0.928] 1.806 [1.781, 1.831] 2.817 [2.777, 2.856]
Algeria 0.908 [0.805, 1.011] 0.007 [0.005, 0.009] 0.987 [0.8797, 1.094] 1.902 [1.026, 2.237] 3.640 [2.893, 3.634]
Kenya 0.225 [0.222, 0.227] 0.836 [0.801, 0.872] 0.007 [0.004, 0.011] 1.911 [1.864, 1.986] 2.438 [2.335, 2.543]
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