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Abstract: The integration of immunization with other essential health services is among the strategic
priorities of the Immunization Agenda 2030 and has the potential to improve the effectiveness,
efficiency, and equity of health service delivery. This study aims to evaluate the degree of spatial
overlap between the prevalence of children who have never received a dose of the diphtheria–tetanus–
pertussis-containing vaccine (no-DTP) and other health-related indicators, to provide insight into
the potential for joint geographic targeting of integrated service delivery efforts. Using geospatially
modeled estimates of vaccine coverage and comparator indicators, we develop a framework to
delineate and compare areas of high overlap across indicators, both within and between countries,
and based upon both counts and prevalence. We derive summary metrics of spatial overlap to
facilitate comparison between countries and indicators and over time. As an example, we apply this
suite of analyses to five countries—Nigeria, Democratic Republic of the Congo (DRC), Indonesia,
Ethiopia, and Angola—and five comparator indicators—children with stunting, under-5 mortality,
children missing doses of oral rehydration therapy, prevalence of lymphatic filariasis, and insecticide-
treated bed net coverage. Our results demonstrate substantial heterogeneity in the geographic overlap
both within and between countries. These results provide a framework to assess the potential for
joint geographic targeting of interventions, supporting efforts to ensure that all people, regardless of
location, can benefit from vaccines and other essential health services.

Keywords: immunization; spatial overlap; DTP vaccine; integrated service delivery; geospatial
modeling; zero-dose children; vaccination; vaccine coverage; geographic inequality

1. Introduction

Since the inception of the Expanded Programme on Immunisation (EPI) in 1974 [1],
global efforts to expand access to lifesaving vaccines have produced tremendous public
health benefits, with an estimated 50 million deaths averted by vaccination activities
between 2000 and 2019 alone [2]. Over the past four decades, country immunization
programs have overseen large gains in coverage for vaccines included in the original EPI
program, alongside the global rollout and scale-up of newer vaccines.

However, since 2010, these gains have stalled or reversed in many countries, and global
vaccination coverage has largely plateaued [3,4]. In addition, disruptions to immunization
delivery efforts due to the COVID-19 pandemic have resulted in additional, persistent
declines in global vaccine coverage, with the coverage of key vaccines such as diphtheria–
tetanus–pertussis (DTP) falling in many countries to the lowest levels in decades [5,6].

The stagnation and backsliding of global vaccine coverage in recent years emphasizes
the need for new approaches to vaccine delivery. The Immunization Agenda 2030 (IA2030)
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aims to provide such a global strategy, coordinating and strengthening vaccination efforts
around the world to ensure that “everyone, everywhere, at every age fully benefits from
vaccines for good health and well-being” [7]. IA2030 also contains a strong strategic em-
phasis on the integration of vaccine delivery with other key health services [7], embedding
immunization programs within the broader context of primary health care and global goals
to achieve universal health coverage [8,9].

To achieve these ambitious goals, immunization programs must be equipped to reach
“zero-dose” children—children who have never received a dose of a routine
vaccine—including children and communities historically missed by immunization ser-
vices. Operationally, “zero-dose” is generally proxied by “no-DTP”; that is, children who
have never received a dose of a DTP-containing vaccine [10]. Recent work analyzing the
complex paths from birth to full immunization in 92 countries emphasizes the importance
of zero-dose children, as receipt of a first vaccine is strongly associated with additional
vaccinations [11]. Furthermore, zero-dose children are more likely to have limited access
to water, sanitation, and education [12] and live in poorer households [11]. A substantial
number of zero-dose children also live in proximity to conflict [13]. Therefore, more delib-
erate provisioning of multiple interventions or services in contact with health systems or
providers, including vaccination services, could be an efficient way to reach at-risk children
and communities and reduce health inequalities.

To understand where and with which services integrated delivery could have the
greatest impact for previously underserved communities, an understanding of the degree
of overlap between no-DTP prevalence and other health gaps is needed. Numerous
previous studies have assessed these relationships at an individual level, most commonly
using data from household surveys [12,14–16]. At the population level, analyses of the
spatial overlap between gaps in immunization coverage and other health services can
complement these individual-level analyses. Spatial analyses conducted in recent years
have emphasized the substantial degree of subnational inequality in vaccine coverage [13,
17–23], as well as other key health services and indicators [22,24–31]. Fewer studies have
assessed whether subnational distributions of zero-dose (or no-DTP) children are similar
to those for other health indicators [32]. Some publicly available tools, such as the WHO
Health Equity Assessment Toolkit [33], allow for powerful comparisons of health indicators
within countries, although only for the years in which surveys have been conducted,
and are limited to the geographic resolution of traditional survey methods (e.g., the first
administrative level). Spatial overlap analyses can help to identify subnational areas and
health services that may benefit most from integrated intervention.

Here, we propose a set of analyses that can be used to explore and quantify the
degree of spatial overlap between populations of zero-dose children (proxied by no-DTP
prevalence and counts) and gaps in vaccine coverage or other health-related indicators.
Leveraging estimates of vaccination coverage from geospatial models and publicly available
gridded estimates of other health indicators, we estimate patterns of spatial overlap in five
example countries to demonstrate how these patterns may be explored both between and
within countries, as well as over time. The approaches presented here can be expanded to
other countries and health indicators and could serve as a resource when considering the
possibility of joint intervention targeting.

2. Materials and Methods
2.1. Geospatial Estimation of Vaccination Coverage

For the purposes of this analysis, we used the prevalence of no-DTP (the proportion
of children of the target age for vaccination who have not received any doses of a DTP-
containing vaccine (DTPcv)) as a proxy for zero-dose children. We used a previously
published geospatial modeling approach to estimate DTP vaccine coverage at the 5 × 5 km
level [17], updating the approach to include more recent data and extending through 2019
(estimates were previously published for years 2000–2016).
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To simplify the demonstration of these analyses, we selected the following five coun-
tries as examples for this analysis: Nigeria, Democratic Republic of the Congo (DRC),
Indonesia, Ethiopia, and Angola. These countries were selected by ordering all the
countries by the total number of estimated no-DTP children in 2019 [3], excluding coun-
tries for which spatial estimates were unavailable for two or more comparator indicators
(Supplemental Table S1).

We searched the Global Health Data Exchange (GHDx) for household-based surveys
containing information on DTP vaccination status between 2000 and 2019 [34]. We included
surveys with information on DTP coverage information among children aged 12–59 months
and excluded surveys that lacked subnational geographic information, had unrealistic cov-
erage estimates, or contained areal data but were missing survey design variables that
precluded the calculation of representative DTP coverage for each areal unit. From these
five countries, we included data from 35 surveys with vaccination coverage information
for 420,710 children from 11,047 GPS-located clusters and 2772 areal units. We calculated
coverage at the most geographically granular level available for inclusion in the model. To
better estimate the covariate effects and account for cross-border patterns of vaccine cover-
age, we modeled each country as part of a multi-country region (mirroring regions used to
estimate MCV1 coverage by Sbarra et al. [18]), resulting in the inclusion of an additional
202 surveys including data for 1,200,877 children from other surrounding countries in the
modeling process. A full list of included surveys can be found in Supplemental Table S2
and excluded surveys (with rationale for exclusion) in Supplemental Table S3.

We defined DTP1 coverage as the proportion of children who have received at least one
dose of a DTPcv. At the most granular geospatial resolution possible for each survey, we cal-
culated DTP1 coverage for each birth cohort. We then used a previously described Bayesian
continuation ratio ordinal regression model-based geostatistical estimation framework to
estimate DTP1 coverage [17], aggregated these estimates to the second administrative level
using population estimates from WorldPop [35,36] and a modified version of the Database
of Global Administrative Areas (GADM) shapefile [37], and then calculated no-DTP preva-
lence as 1—DTP1 prevalence. For analyses using counts of zero-dose children, we similarly
converted no-DTP prevalence to counts by multiplying the estimates of children under 1
year of age for each second-level administrative unit and year derived from the gridded
estimates from WorldPop. For brevity and consistency throughout this manuscript, we
refer to second-level administrative units as “districts” hereafter, while acknowledging that
the nomenclature for these units varies between countries (e.g., local government areas
in Nigeria). Additional details of the geospatial modeling strategy can be found in the
Supplemental Material (Supplemental Methods).

2.2. Spatial Estimates of Other Health Indicators

To assess the degree to which areas with a high prevalence or counts of zero-dose
children may also exhibit gaps in other health services or outcomes, we identified and
included the following five additional health indicators in our analyses: mortality among
children under 5 years of age (U5M) [24], children with stunting [25], children with diarrhea
who did not receive oral rehydration therapy (ORT) [38], prevalence of lymphatic filariasis
(LF) [39], and individuals not sleeping with insecticide-treated bed nets (ITNs) [31]. These
metrics were selected based on their persistent significance in the global health sphere, the
role that subnational disparity plays in that persistence, and relationships to immunization
that may give rise to potentially useful overlap analyses.

In addition to their significance in global health, these metrics were selected according
to the availability of published estimates over time across multiple countries at a 5 × 5 km
resolution. Estimates available in this format were most readily comparable to those
produced for no-DTP prevalence. The estimation of these different metrics also employed
geospatial modeling techniques that incorporated similar survey and other data sources
and accounted for relationships with covariates, as well as correlations across space and
time. The range of years with available estimates differed for each metric (Table 1). For each



Vaccines 2023, 11, 802 4 of 19

metric, we analyzed the overlap with no-DTP prevalence in the most recent year of data
available, and for select analyses, we compared the overlap during the most recent year to
that in the year 2000. Given their limited use in the country, missing ITN information was
not available in Indonesia, but there was full coverage for all other indicators and countries.

Table 1. Details for health indicator estimates.

Indicator Definition Example Countries
Available

Most Recent
Year Available

Target Population
Age Range Citation

No-DTP No-DTP
prevalence rate

Angola, DRC,
Ethiopia,

Indonesia, Nigeria
2019 Under 1 year Mosser, J.F. et al. [17] *

Stunting Stunting
prevalence rate

Angola, DRC,
Ethiopia,

Indonesia, Nigeria
2019 Under 5 years Kinyoki, D.K. et al. [25]

U5M Mortality probability and
death counts

Angola, DRC,
Ethiopia,

Indonesia, Nigeria
2017 Under 5 years Burstein, R. et al. [24]

Missed ORT
(1–ORT coverage) for

children who
had diarrhea

Angola, DRC,
Ethiopia,

Indonesia, Nigeria
2017 Under 5 years Wiens, K.E. et al. [38]

Missed ITNs
(1–proportion of

population that sleeps
under an ITN)

Angola, DRC,
Ethiopia, Nigeria 2019 All ages Bertozzi-Villa, A. et al. [31]

LF LF prevalence rate
Angola, DRC,

Ethiopia,
Indonesia, Nigeria

2018 All ages Cromwell, E.A. et al. [39]

* Estimates updated to include additional years, geographies, and data sources.

2.3. Analyses of Spatial Overlap

For this analysis, we assessed the spatial overlap of no-DTP and these additional
indicators in the context of assessing the degree to which the greatest burden for both
no-DTP and the other indicators fell within the same districts. We fractionally aggregated
the 5 × 5 km resolution pixel estimates for each metric to the same modified GADM
shapefile [37]. Because prioritization decisions may be based not only on prevalence
but also on total counts, we multiplied the respective prevalence estimates by the target
population (Table 1) data available from WorldPop [35,36] to calculate the count estimates
for each metric. For metrics with count data already available (i.e., for U5M, ORT, and LF),
we used those values directly, although these were also based on WorldPop data. For both
no-DTP and the health indicators, we assessed the overlap based on the mean estimates
of prevalence or counts, without accounting for the uncertainty associated with all of
these indicators.

In practice, decisions about prioritization for integrated service delivery are (and
should be) made not only by considering the geographic patterns of the relevant indicators,
but by accounting for a broad range of factors, including the available resources and data,
and tailored by local expertise to each context [9]. For the purposes of this study, we used a
highly simplified categorization scheme to illustrate the potential applications of spatial
overlap analysis to contribute to the prioritization decisions. Similar analytic techniques,
however, could easily be applied to other prioritization groupings. In this illustrative
categorization approach, we assigned districts to population-weighted quartiles of burden
for each metric, where districts with the highest values for each metric were in the top
quartile and the districts with the lowest values for each metric were in the bottom quartile.
Through population weighting, we ensured that the sum of target populations within each
quartile were roughly equal. The scope of categorization needs and overlap assessment may
vary between country-focused and global stakeholders. To explore the implications of these
different frames of reference, we organized districts into quartiles both (1) within countries
and (2) at a multi-national scale across countries. Similarly, we also categorized the districts
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into quartiles according to both (1) prevalence and (2) counts. To assess the full scope of
overlap, we produced bivariate maps displaying overlap across all quartiles (Figure 1).
We also produced simplified maps highlighting only those districts in the highest quartile
for no-DTP, the respective comparator metric, or both. Finally, while we largely focused
on comparing no-DTP categorization with each individual comparator metric, we also
produced maps quantifying the number of metrics in the highest quartile in each district.
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Figure 1. Example for a bivariate color legend used in maps to describe quartile classification overlap
between no-DTP and the other health indicators (with stunting here as an example). For each of the
two indicators, districts are distributed across four bins based on prevalence values such that the total
target population value is roughly equal in each bin. Color bins along the diagonal (from bottom
left to top right) indicate matching category assignments for the two indicators for a given district.
Schema is used in figures representing all categorization quartiles.

We also aimed to quantify the overall degree of overlap between no-DTP and the
other health indicators using the summary metrics to facilitate high-level comparisons.
We calculated the proportion of districts in the highest quartile for no-DTP that were also
in the highest quartile for the other indicators. Furthermore, we devised an additional
measure that was not reliant on the quartile categorization schema. We envisioned a
scenario where vaccination stakeholders might prioritize districts by aiming to reach the
greatest number of no-DTP children in the fewest districts possible. If these same districts
were also targeted for simultaneous interventions for our comparator health indicators,
what proportion of that country’s target groups for those indicators would be reached?
We applied this hypothetical approach, serially targeting districts based on the number
of no-DTP children, beginning with the targeting of the single district with the highest
number of no-DTP children, then the two highest no-DTP districts, and so on. At each step,
we calculated the cumulative proportion of individuals reached (for both no-DTP and the
additional indicator), with each subsequent district targeted based upon the number of
no-DTP children. By comparing these cumulative proportions between the two indicators
for each set of serially targeted districts, we can calculate the area under the curve (AUC)
to serve as a measure of overlap (Figure 2). This process is illustrated in step plots in
Supplemental Figures S1–S23. As an example, an AUC of 0.5 indicates that geographic
targeting based upon no-DTP reaches areas with equal proportions of no-DTP children and
children with stunting. AUC values < 0.5 would indicate a smaller proportion of children
with stunting reached, and AUC values > 0.5 would indicate greater proportions of children
with stunting reached. We then analyzed AUC values between countries and indicators
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and over time, comparing AUC values in 2000 to those in the most recent year of available
data.
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Figure 2. Area under the curve (AUC) scatter plot example. This example scatterplot visualizes how
the area under the curve (AUC) can be used to quantify the proportion of children with stunting
(Y axis) in Nigeria that could be reached through cumulative proportion targeting of districts for
children with no-DTP (X axis). Individual points represent districts, ordered to begin with the district
with the highest number of no-DTP children, then the second highest, until the cumulative proportion
of no-DTP children reaches 100%. The red line represents AUC = 0.5, indicating equal proportions
of children with stunting through cumulative no-DTP targeting. Curves below the red line are
associated with AUC < 0.5 or smaller proportions of children with stunting, and curves above the
red line are associated with AUC > 0.5, or greater proportions of children with stunting. Point size
represents district population size of children under 1.

2.4. Ethical Approval and Reporting Guidelines

Data were not obtained from subjects for the Global Burden of Diseases, Injuries,
and Risk Factors Study or related analyses such as this study. Instead, we used pre-
existing, publicly available, de-identified datasets that include, but are not limited to,
administrative and survey-based vaccine coverage reports. Data were identified through
online searches, outreach to institutions that hold relevant data such as ministries of health,
or individual collaborator references and identification. Most of the data used are publicly
available. Therefore, informed consent was not required. This study was approved by
the University of Washington’s Human Subjects Division Study ID: STUDY00009060. Our



Vaccines 2023, 11, 802 7 of 19

study follows the Guidelines for Accurate and Transparent Health Estimates Reporting
(GATHER; Supplemental Table S4).

3. Results
3.1. Mapping Overlap
3.1.1. Country-Specific Overlap by Prevalence

Figure 3A shows an example bivariate map that illustrates the spatial overlap be-
tween the population-weighted quartile classifications for no-DTP and stunting in Nigeria,
based on the prevalence of each indicator. In this example, when categorizing by preva-
lence within Nigeria, based on the available geospatial estimates for both no-DTP and
stunting, higher-prevalence districts tended to be more widely distributed through the
northern regions of the country, while the southern regions had a lower prevalence for
both indicators. Overlap between no-DTP and stunting categorization was high; nearly
two thirds of all districts in Nigeria (488 of 774 districts, or 63.0%) were designated to the
same population-weighted quartile for both no-DTP and stunting. Figure 4A shows a
simplified representation of the same analysis, restricting the mapped districts to only the
high-quartile areas for each indicator. Of the 207 districts in the highest quartiles for either
no-DTP or stunting, half of those districts (49.0%, or 100 of 207 total) were in the highest
quartile for both indicators.
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Vaccines 2023, 11, 802 8 of 19

Vaccines 2023, 11, x FOR PEER REVIEW 8 of 20 
 

 

Figure 3. Country-specific Nigeria overlap for no-DTP and stunting, for all categorization quartiles. 
The top row (A) shows categorization based on prevalence, while the bottom row (B) shows cate-
gorization based on counts. Population-weighted quartile ranges for no-DTP and children with 
stunting are delineated in the bivariate color legends (center). District-level values are shown both 
as maps (left) and with scatterplots (right), with colors corresponding to quartile legend values. 
Point size in scatterplots reflects relative size of under-1 population in each district. 

 
Figure 4. Country-specific overlap between no-DTP and stunting in Nigeria for highest category 
quartiles only. Districts in red are in the highest quartile for no-DTP only, blue are in the highest 
quartile for children with stunting only, and purple are in the highest quartile for both indicators. 
The map on the left (A) shows categorization based on prevalence, and the map on the right (B) 
shows categorization based on counts. 

The spatial overlap between health indicators varies from indicator to indicator and 
country to country (Supplemental Figures S24–S69). In Ethiopia, for example, the loca-
tions with the highest no-DTP prevalence are located primarily in the east and south of 
the country (especially in the Afar and Somali regions) and are distinct from those with 
the lowest ITN coverage, which are located more centrally (for instance, in Amhara and 
Oromia) (Supplemental Figures S40a and S63a). In the Democratic Republic of the Congo, 
the geographic overlap between under-5 mortality and no-DTP prevalence is highly het-
erogeneous, with a mixture of high-prevalence areas for no-DTP, U5M, both, and neither 
indicator (Supplemental Figures S34a and S57a). 

3.1.2. Country-Specific Overlap by Counts 
As expected, when these same analyses are repeated using an example categorization 

approach based on counts rather than prevalence, the results tend to emphasize areas of 
large populations—although this pattern is not universal across indicators and countries. 

For the overlap between no-DTP and stunting in Nigeria, for example, when catego-
rization is based on counts rather than prevalence, higher-quartile districts still tended to 
be in the northern regions of the country, while southerly districts tended to be in the 
lower quartiles (Figure 3B). Compared to the prevalence-based approach, there was more 
concordance between count-based classifications, with more than three fourths of all dis-
tricts (597 of 774 districts, or 77.1%) being designated to the same quartiles for both no-
DTP and stunting. Fewer districts were classified into the highest quartiles for either met-
ric based on counts compared to prevalence (125 vs. 207 districts), but a greater proportion 
were in the highest quartile for no-DTP and stunting (78 of 125 districts, or 62.4%). There 
were 44 districts categorized in the highest quartile for both no-DTP and stunting accord-
ing to both prevalence and counts (Figure 4). 

However, these patterns again varied between countries and indicators (Supple-
mental Figures S24–S69). For Indonesia, for instance, locations that might be targeted for 
joint targeting based on spatial overlap between no-DTP and missed ORT would vary 

Figure 4. Country-specific overlap between no-DTP and stunting in Nigeria for highest category
quartiles only. Districts in red are in the highest quartile for no-DTP only, blue are in the highest
quartile for children with stunting only, and purple are in the highest quartile for both indicators. The
map on the left (A) shows categorization based on prevalence, and the map on the right (B) shows
categorization based on counts.

The spatial overlap between health indicators varies from indicator to indicator and
country to country (Supplemental Figures S24–S69). In Ethiopia, for example, the loca-
tions with the highest no-DTP prevalence are located primarily in the east and south of
the country (especially in the Afar and Somali regions) and are distinct from those with
the lowest ITN coverage, which are located more centrally (for instance, in Amhara and
Oromia) (Supplemental Figures S40a and S63a). In the Democratic Republic of the Congo,
the geographic overlap between under-5 mortality and no-DTP prevalence is highly het-
erogeneous, with a mixture of high-prevalence areas for no-DTP, U5M, both, and neither
indicator (Supplemental Figures S34a and S57a).

3.1.2. Country-Specific Overlap by Counts

As expected, when these same analyses are repeated using an example categorization
approach based on counts rather than prevalence, the results tend to emphasize areas of
large populations—although this pattern is not universal across indicators and countries.

For the overlap between no-DTP and stunting in Nigeria, for example, when catego-
rization is based on counts rather than prevalence, higher-quartile districts still tended to
be in the northern regions of the country, while southerly districts tended to be in the lower
quartiles (Figure 3B). Compared to the prevalence-based approach, there was more con-
cordance between count-based classifications, with more than three fourths of all districts
(597 of 774 districts, or 77.1%) being designated to the same quartiles for both no-DTP and
stunting. Fewer districts were classified into the highest quartiles for either metric based
on counts compared to prevalence (125 vs. 207 districts), but a greater proportion were in
the highest quartile for no-DTP and stunting (78 of 125 districts, or 62.4%). There were 44
districts categorized in the highest quartile for both no-DTP and stunting according to both
prevalence and counts (Figure 4).

However, these patterns again varied between countries and indicators (Supplemental
Figures S24–S69). For Indonesia, for instance, locations that might be targeted for joint
targeting based on spatial overlap between no-DTP and missed ORT would vary broadly
depending on whether decisions were informed by analyses of prevalence or counts
(Supplemental Figures S45 and S68). In Angola, prevalence-based analysis of the overlap
between no-DTP and ITN use identifies broad areas of the country that is potentially
amenable to joint targeting (Supplemental Figures S31a and S53a). Due to the population
distribution in the country, however, count-based analysis suggests that joint targeting
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opportunities might be focused upon relatively few locations (Supplemental Figures S31b
and S53b).

3.1.3. Overlap for Multiple Indicators

For some stakeholders, it may be of interest not only to understand the degree of
geographic overlap between no-DTP and other health indicators individually, but also to
identify locations that may be amenable to integrated intervention across many indicators.
We, therefore, produced country-specific maps that show the number of health indicators in
the highest quartile in each district, using our population-weighted classification approach.
Here, we continue to show results from Nigeria as an example, although results for other
countries can be found in Supplemental Figures S70–S73.

According to both prevalence and counts, more indicators were classified in the highest
quartile in northern and northwestern Nigeria (Figure 5). Districts in southern Nigeria
were largely only in the highest quartile for one to two indicators (missed ITNs and/or LF),
whereas districts in northern and northwestern Nigeria had many cases of the overlapping
classification for no-DTP, stunting, U5M, and missed ORT.
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Figure 5. Country-specific multi-indicator overlap for Nigeria. Color given in each district reflects
the number of indicators assigned to the highest quartile in that district. Districts outlined in white
indicate those where no-DTP is among the indicators in the highest quartile. The map on the
left (A) shows categorization based on prevalence, and the map on the right (B) shows categorization
based on counts.

When classified by prevalence, high-quartile districts were relatively more concen-
trated across indicators in Nigeria compared to other countries (Figure 5A, Supplemental
Figures S70–S73). More than two thirds of districts in Nigeria were categorized into the
highest quartile for at least one of the six indicators analyzed (525 of 774, or 67.8%), but
these proportions were even greater in all other countries, including 74.8% of districts in
Indonesia (374 of 500), 81.1% of districts in DRC (194 of 239), 81.0% of districts in Ethiopia
(64 of 79), and 87.7% of districts in Angola (143 of 163).

The opposite was true when categorizing the districts into population-weighted quar-
tiles by counts. In this example, a much smaller proportion of districts—43.7%—were in
the highest quartile for at least one indicator in Nigeria (338 of 774 districts; Figure 4B).
This trend was consistent across other countries (Supplemental Figures S70–S73).

3.1.4. Multinational Overlap by Prevalence

The analyses above focus on describing the spatial patterns of no-DTP and other
indicators, based upon within-country classification for each indicator. For global or
regional decision-makers, however, examination of the degree of spatial overlap across
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countries may be of interest. We, therefore, repeated these analyses, but instead categorized
districts as those with the highest prevalence or counts for each indicator across all five
example countries included in these analyses, rather than within the countries separately.
Given the limited number of countries and indicators used in this analysis, these example
results are meant to be illustrative only, to demonstrate the magnitude of differences in the
perceived overlap when looking across rather than between countries and are not meant as
policy recommendations.

Categorizing by prevalence across our five focal countries combined, population-
weighted quartile assignments for no-DTP and stunting were markedly similar (Figure 6).
The quartile classifications for no-DTP and stunting exactly matched (i.e., districts in the
lowest quartile for no-DTP were also in the lowest quartile for stunting, etc.) in nearly
half of all districts (795 out of 1755 total; 45.3%). Districts in the highest quartile across all
countries for no-DTP could be found in every country, as well as districts in the highest
quartile for stunting (Figure 7). The districts where the highest-quartile categorization for
no-DTP and stunting overlapped largely fell within Nigeria and Angola, with 27.0% of
districts in Nigeria and 50.3% of districts in Angola being in the highest category for both
indicators (209 of 774 in Nigeria and 82 of 163 districts in Angola). While significant portions
of DRC and Ethiopia were in the highest quartile for one indicator or the other, there was
little overlap between indicators in these countries, and none in Indonesia (Figure 7).
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Figure 6. Multinational overlap between stunting and no-DTP for all categorization quartiles, based
on prevalence. Ranges for population-weighted quartiles across the five example countries combined
for no-DTP and children with stunting are delineated in the bivariate color legend (bottom right).

Different patterns were observed for other comparator indicators (Supplemental
Figures S74–S81). For instance, when comparing categorization for no-DTP and ORT across
all five countries to that for no-DTP and stunting, fewer districts in Nigeria and Angola
were in the highest quartile for both indicators, whereas larger areas of Ethiopia and DRC
were in the highest quartile for both (Supplemental Figure S80).
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3.1.5. Multinational Overlap by Counts

Categorization at the multinational scale was even more closely aligned between
no-DTP and stunting when classifying districts according to counts rather than preva-
lence (Figure 8). When categorizing by counts, quartile assignment matched exactly
between no-DTP and stunting in 71.1% of all districts (1248 of 1755 total). Far fewer
districts were in the highest quartile when considered in terms of counts—only 5.8% of
districts were in the highest quartile for either indicator using counts, compared to 35.5%
of districts when considered by prevalence (102 vs. 623 out of 1755 districts, respectively;
Figures 8 and 9). In addition, the highest-quartile districts for either indicator fell largely in
Ethiopia and DRC. The highest-quartile districts were scarce in the other three countries,
making up <3% each for districts in Nigeria, Angola, and Indonesia. Only 49 districts were
in the highest quartile for both no-DTP and stunting (2.7% of all districts), and more than
half (28 of 49) were found in Ethiopia. This trend was largely consistent across all indicators
(Supplemental Figures S82–S89).

3.2. Quantifying Spatial Overlap

District-level mapping, as in the analyses above, can help to identify subnational
locations with potential for joint targeting. In some cases, however, it may be useful to
quantify the degree of spatial overlap between no-DTP and another indicator in a single
summary metric—i.e., to compare between countries or across comparator indicators.
These summary metrics may help to determine the potential benefit of integrated services
and delivery for some indicators compared to others, for instance.
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Figure 9. Multinational overlap between stunting and no-DTP for highest quartiles only, based on
counts. Districts in red are in the highest quartile for no-DTP only, blue are in the highest quartile for
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3.2.1. Percent Overlap of High-Quartile Districts

First, we identified all the districts in the highest quartile for no-DTP and calculated the
proportion of those districts that were also categorized into the highest quartile for each of
the other indicators. This proportion of overlap varied greatly between and within countries
and indicators (Figure 10). The overlap was almost always higher when districts were
classified based on counts rather than prevalence, with a few exceptions (e.g., overlap with
LF or with ORT in several countries). For both prevalence- and count-based categorization
approaches, the degree of overlap between no-DTP and other indicators tended to be
lower in DRC compared to other countries; the proportion overlap was less than 50% for
all comparator indicators except LF (where 66.2% of districts categorized in the highest
quartile for no-DTP overlapped with LF highest-quartile categorization using prevalence,
compared to 46.7% using counts).
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Figure 10. Overlap between districts in highest quartile categories for both no-DTP and comparator
indicators, by country. Percent overlap indicates the proportion of districts in the highest quartile
for no-DTP that are also in the highest quartile for the respective comparator indicators. Solid bars
represent categorization based on prevalence, while striped bars represent categorization based
on counts.

Although the ranges between the indicators tended to be broad, there was nevertheless
variation in consistency within most countries. For example, for categorization based on
prevalence, there was some degree of overlap with no-DTP for every comparator indicator
in Angola; the proportions of overlap ranged from 25.0% for LF to 62.8% for missed ORT.
In Nigeria, on the other hand, proportions ranged from extremely low overlap with missed
ITNs (0.6%) to high overlap with missed ORT (77.9%).

3.2.2. AUC

In the more recent year of measurement, across countries and indicators, the median
AUC was 0.43 (where AUC = 0.5 indicates equal proportions of the comparator indicator
and no-DTP reached through no-DTP targeting, AUC < 0.5 indicates lower proportions
of the population reached for the given indicator compared to no-DTP, and AUC > 0.5
indicates greater proportions of the population reached for the given indicator). The AUC
for stunting in Nigeria was slightly above this value at 0.453 (Figure 2). The overall range
of values for this measure was relatively narrow (Figure 11, Supplemental Figures S1–S23).
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Two-thirds of the observations fall between 0.39 and 0.46, with all indicators in Ethiopia
and DRC falling within that range. The AUC was higher in Angola compared to other
countries overall; only in Angola did any indicators reach an AUC > 0.5 (stunting at 0.52,
LF at 0.55, and missed ITNs at 0.58), indicating even greater proportions of those target
populations reached (compared to no-DTP populations reached). This finding is possible
when the degree of geographic concentration is greater for other indicators than for no-DTP.
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values for the most recent year of data available for the given metric (Table 1).

Based on AUC, across indicators, overlap with no-DTP was generally lower in 2000
compared to the more recent year measured in the countries included here, indicating
broad reductions in spatial overlap over time (Figure 11). The largest decreases were for LF
and missed ITNs in Nigeria, which were already lower than the other indicators in Nigeria
in 2000 and these declined by 0.15 and 0.14, respectively. Angola was an exception to this
trend, with a higher AUC in the more recent year across the indicators.

4. Discussion

In this study, we present a series of analyses of the distribution of no-DTP children and
populations in need of other health interventions, using available subnational estimates of
each indicator, and highlight their potential utility by applying these approaches to five
example countries. These results demonstrate the substantial variation in joint geographic
overlap between no-DTP and other health indicators, both between and within countries. In
addition, the degree of spatial overlap and potential areas for joint geographic targeting vary
depending on whether classification is based on prevalence or counts, and whether policy
decisions are being made within or across countries. In general, the degree of spatial overlap
between no-DTP and other indicators (measured by AUC) decreased over time for most
comparisons and countries, with the exceptions of LF in Ethiopia and multiple indicators
in Angola. For several of these analyses, we derived hypothetical categorization schemes
for no-DTP children for illustrative purposes, such as population-weighted quartiles or
serial targeting of districts based upon the estimated number of no-DTP children living
in each district. We note, however, that these approaches could (and should) be tailored
to reflect specific subnational prioritization plans under consideration in the future, while
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also expanding to include more countries and/or comparator indicators in the analysis.
Taken together, the analytic approaches presented here form a foundation for future work
to better understand the degree of geographic overlap between districts with high numbers
of no-DTP children and those in need of other vital health services.

The comparator indicators presented here reflect a mixture of health service and health
outcome measures, illustrating the different ways in which spatial overlap analyses might
be applied. For instance, previous integration efforts have often included co-delivery of
immunizations and ITNs [40], and areas with high LF prevalence and low immunization
coverage may benefit from mass drug administration and immunization efforts. Reduc-
ing the disease burden of childhood diarrhea requires multifaceted approaches, such as
preventive measures (including vaccination, i.e., for rotavirus) and access to treatment
(including ORT) [41]. Malnutrition and immunization have complex interactions; malnour-
ished children are at a higher risk for infectious disease mortality [42] and may benefit most
from the protection of vaccines. Malnutrition may also affect immunologic responses to
vaccination, and vaccination is an important component of multi-pronged interventions to
reduce malnutrition [43]. Lastly, despite substantial progress, under-5 mortality in many
countries is still significantly higher [44] than the stated Sustainable Development Goal
(SDG) target of 25 or fewer deaths per 1000 live births by 2030 [8], and immunization is
one of the cornerstones of efforts to reduce child mortality. Comparisons between gaps in
vaccination coverage and these indicators, therefore, can illustrate a variety of potential
uses for spatial overlap analyses.

For no-DTP children and communities that face barriers to accessing essential health
services beyond immunization, integrating vaccine delivery with the delivery of other
services could potentially provide substantial equity benefits. Integrated approaches also
have the potential to increase the efficiency of health service delivery. As a result, integration
has been a key theme of global immunization strategies over the past decades. The
integration of immunization service delivery along with other public health interventions
across one’s life course is one of the strategic priority goals of IA2030 [7], formed one of the
strategic focus areas of the Global Immunization Vision and Strategy (2006–2015) [45], and
was one of the guiding principles of the Global Vaccine Action Plan (2011–2020) [46]. The
World Health Organization has also published extensive guidance for the integration of
immunization services across one’s life course and within health systems [47].

Past efforts have focused on the integration of immunization services with other inter-
ventions in both campaign and routine immunization settings, including services such as
ITN distribution, mass drug administration for deworming, vitamin A supplementation
and nutritional services, family planning, HIV services, water and sanitation, and intermit-
tent preventive therapy for malaria, among others [9,40]. Reviews of program experiences
that implemented such integrated immunization activities suggest that integration can be
challenging and highlight the need for a thoughtful consideration of the feasibility of joint
intervention; careful, context-specific planning and implementation; strong community-
based leadership; and timely and reliable monitoring strategies [9,48]. Analyses of the
geographic overlap of populations in need of improved vaccination services and other
interventions—such as those presented in this study—could serve as valuable additional
input into this decision-making and planning process. Moreover, the heterogeneous pat-
terns of overlap between countries and indicators illustrated by this study reinforce the
need for context-specific decision-making about the integration of service delivery and
integration plans that are tailored to the needs of each country and community.

This study is subject to several important limitations. First, this analysis focuses on
district-level, population overlaps between the distribution of no-DTP children and other
health services. This type of analysis helps to define geographic areas that might bene-
fit from joint prioritization of immunization and other service delivery. This approach,
however, does not examine other dimensions of overlap that may be important to under-
stand when evaluating the potential benefits of integrated service delivery. These results
should be paired with local expertise, as well as individual-level analyses such as those
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recently published [12], which can provide a more nuanced understanding of the associa-
tions between no-DTP status, lack of access to other health services, and other important
non-geographic factors, such as poverty and race/ethnicity. Second, geospatial modeled
estimates are often generated from survey data, which can vary in representativeness,
temporal availability, and accuracy across indicators and between countries, and are subject
to important forms of bias (including recall bias). Survey data representativeness may vary
due to limitations of the available population estimates to inform sampling designs in some
countries. In cases where populations at high risk for being zero-dose—for instance, those
living in urban poor areas or migrant populations—are not adequately represented in the
survey data, the resulting geospatial estimates will reflect these underlying biases. Third,
these analyses rely on gridded population estimates from the WorldPop project [36] to con-
vert between the prevalence of each indicator and counts of individuals at risk. In settings
where no recent census data are available or migration is common, however, inaccurate
population estimates could substantially bias prioritization decisions. To support accurate
prioritization and planning, reliable target population estimates are critical. Last, we note
that the classifications for the indicators presented here may not translate directly with the
unmet needs. For example, coverage of ITNs on its own does not account for the endemicity
of malaria. This limitation emphasizes the need for a framework such as that proposed here
to be considered alongside a broad range of additional factors, context, and local expertise.
For additional limitations, please see the Supplemental Material (Supplemental Methods).

As this paper has highlighted, contextual knowledge is crucial for the effective use
of any analyses to be used in decision-making. That contextual information can be highly
localized and unique to each situation. We also note that the work in this paper is presented
here without that contextual input of those most affected by under-immunization. While
we have attempted to present many different analytical facets to address a range of possible
use cases, we nevertheless acknowledge this critical component still missing from these
analyses. Therefore, we invite feedback from global, regional, national and local experts
in vaccine delivery and health service delivery as to how this work may be improved,
modified and/or tailored to best support the efforts to reach zero-dose children and provide
essential health services.

5. Conclusions

As the global immunization community works to fulfill the ambitious goals of IA2030,
new strategies to reach zero-dose children and communities will be needed. Integrating
immunization with other essential health services, as part of robust primary health care
systems, has the potential to improve efficiency and achieve greater equity in health
outcomes, particularly for communities that are most at risk. The potential benefits of
integration—and the ideal strategies to plan and implement these efforts—are likely to vary
from country to country. Spatial analyses of the overlap between gaps in immunization
services and other key health indicators can help to define the potential for joint geographic
targeting of integrated service delivery to help ensure a future where all people have
equitable access to lifesaving vaccines.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/vaccines11040802/s1, Supplemental Methods; Table S1: Ten
countries with highest no-DTP counts in 2019 and indicator data availability details; Table S2: Surveys
included in DTP modeling; Table S3: Surveys excluded from DTP modeling; Table S4: GATHER Com-
pliance checklist; Table S5: Geospatial covariates used in modeling; Figures S1–S23: Country-specific
AUC step plots; Figures S24–S46: Country-specific, all quartile overlap; Figure S47–S69: Country-
specific, highest quartile overlap; Figures S70–S73: Multi-indicator overlap of country-specific highest
quartiles; Figures S74–S77: Multinational all quartile overlap by prevalence; Figures S78–S81: Multi-
national highest quartile overlap by prevalence; Figures S82–S85: Multinational all quartile overlap
by counts; Figures S86–S89: Multinational highest quartile overlap by counts. References [49–52] are
cited in the Supplemental Methods.
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