Myocarditis and Pericarditis following COVID-19 Vaccination in Thailand
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Data Extraction and Management
2.3. Study Definition
2.4. Data Analysis
3. Results
3.1. Characteristics of Myocarditis/Pericarditis following COVID-19 Vaccination
3.2. The Incidence of Myocarditis/Pericarditis Stratified by Age Group, Sex, and Vaccine Type
3.3. The Incidence of Myocarditis/Pericarditis for BNT162b2, Stratified by Age Group, Sex, and Dose
3.4. Factors Associated with Myocarditis/Pericarditis following COVID-19 Vaccination in Thailand
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trachtenberg, B.H.; Hare, J.M. Inflammatory Cardiomyopathic Syndromes. Circ. Res. 2017, 121, 803–818. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dominguez, F.; Kühl, U.; Pieske, B.; Garcia-Pavia, P.; Tschöpe, C. Update on Myocarditis and Inflammatory Cardiomyopathy: Reemergence of Endomyocardial Biopsy. Rev. Española Cardiol. 2016, 69, 178–187. [Google Scholar] [CrossRef]
- Tschöpe, C.; Ammirati, E.; Bozkurt, B.; Caforio, A.L.P.; Cooper, L.T.; Felix, S.B.; Hare, J.; Heidecker, B.; Heyman, S.; Hubner, N.; et al. Myocarditis and inflammatory cardiomyopathy: Current evidence and future directions. Nat. Rev. Cardiol. 2021, 18, 169–193. [Google Scholar] [CrossRef]
- Moore, J.B.; June, C.H. Cytokine release syndrome in severe COVID-19. Science 2020, 368, 473–474. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Guo, J.; Huang, Z.; Lin, L.; Lv, J. Coronavirus Disease 2019 (COVID-19) and Cardiovascular Disease: A Viewpoint on the Potential Influence of Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers on Onset and Severity of Severe Acute Respiratory Syndrome Coronavirus 2. Infec. J. Am. Heart Assoc. 2020, 9, e016219. [Google Scholar] [CrossRef] [PubMed]
- Heymans, S.; Cooper, L.T. Myocarditis after COVID-19 mRNA vaccination: Clinical observations and potential mechanisms. Nat. Rev. Cardiol. 2022, 19, 75–77. [Google Scholar] [CrossRef]
- Michael, K.; Jason, A. Viral Myocarditis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459259/ (accessed on 2 July 2022).
- Caforio, A.L.; Adler, Y.; Agostini, C.; Allanore, Y.; Anastasakis, A.; Arad, M.; Böhm, M.; Charron, P.; Elliott, P.; Eriksson, U.; et al. Diagnosis and management of myocardial involvement in systemic immune-mediated diseases: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Disease. Eur. Heart J. 2017, 38, 2649–2662. [Google Scholar] [CrossRef][Green Version]
- Hu, J.-R.; Florido, R.; Lipson, E.J.; Naidoo, J.; Ardehali, R.; Tocchetti, C.G.; Lyon, A.; Padera, R.; Johnson, D.; Moslehi, J. Cardiovascular toxicities associated with immune checkpoint inhibitors. Cardiovasc. Res. 2019, 115, 854–868. [Google Scholar] [CrossRef][Green Version]
- Bracamonte-Baran, W.; Čiháková, D. Cardiac Autoimmunity: Myocarditis. Adv. Exp. Med. Biol. 2017, 1003, 187–221. [Google Scholar] [CrossRef][Green Version]
- Liu, P.; Martino, T.; Opavsky, M.A.; Penninger, J. Viral myocarditis: Balance between viral infection and immune response. Can. J. Cardiol. 1996, 12, 935–943. [Google Scholar]
- Dennert, R.; Crijns, H.J.; Heymans, S. Acute viral myocarditis. Eur. Heart J. 2008, 29, 2073–2082. [Google Scholar] [CrossRef] [PubMed]
- Sagar, S.; Liu, P.P.; Cooper, L.T. Myocarditis. Lancet 2012, 379, 738–747. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kindermann, I.; Barth, C.; Mahfoud, F.; Ukena, C.; Lenski, M.; Yilmaz, A.; Klingel, K.; Kandolf, R.; Sechtem, U.; Cooper, L.T.; et al. Update on Myocarditis. J. Am. Coll. Cardiol. 2012, 59, 779–792. [Google Scholar] [CrossRef] [PubMed]
- Caforio, A.L.P.; Pankuweit, S.; Arbustini, E.; Basso, C.; Gimeno-Blanes, J.; Felix, S.B.; Fu, M.; Heliö, T.; Heymans, S.; Jahns, R.; et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 2636–2648. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Takahashi, M.; Isogai, J. A case of vaccine-associated myocarditis following pneumococcal immunization leading to acute mitral regurgitation. ESC Heart Fail. 2022, 9, 2013–2019. [Google Scholar] [CrossRef]
- Ho, J.; Sia, C.; Ngiam, J.; Loh, P.; Chew, N.; Kong, W.; Poh, K. A Review of COVID-19 Vaccination and the Reported Cardiac Manifestations. Singap. Med. J. 2021. ahead of print. Available online: http://www.smj.org.sg/sites/default/files/RA-2021-326-epub.pdf (accessed on 8 July 2022). [CrossRef]
- Mei, R.; Raschi, E.; Forcesi, E.; Diemberger, I.; de Ponti, F.; Poluzzi, E. Myocarditis and pericarditis after immunization: Gaining insights through the Vaccine Adverse Event Reporting System. Int. J. Cardiol. 2018, 273, 183–186. [Google Scholar] [CrossRef]
- Klein, N.P.; Lewis, N.; Goddard, K.; Fireman, B.; Zerbo, O.; Hanson, K.E.; Donahue, J.G.; Kharbanda, E.O.; Naleway, A.; Nelson, J.C.; et al. Surveillance for Adverse Events after COVID-19 mRNA Vaccination. JAMA 2021, 326, 1390. [Google Scholar] [CrossRef]
- Witberg, G.; Barda, N.; Hoss, S.; Richter, I.; Wiessman, M.; Aviv, Y.; Grinberg, T.; Auster, O.; Dagan, N.; Balicer, R.D.; et al. Myocarditis after Covid-19 Vaccination in a Large Health Care Organization. N. Engl. J. Med. 2021, 385, 2132–2139. [Google Scholar] [CrossRef]
- Montgomery, J.; Ryan, M.; Engler, R.; Hoffman, D.; McClenathan, B.; Collins, L.; Loran, D.; Hrncir, D.; Herring, K.; Platzer, M.; et al. Myocarditis Following Immunization with mRNA COVID-19 Vaccines in Members of the US Military. JAMA Cardiol. 2021, 6, 1202. [Google Scholar] [CrossRef]
- Mevorach, D.; Anis, E.; Cedar, N.; Bromberg, M.; Haas, E.J.; Nadir, E.; Olsha-Castell, S.; Arad, D.; Hasin, T.; Levi, N.; et al. Myocarditis after BNT162b2 mRNA Vaccine against Covid-19 in Israel. N. Engl. J. Med. 2021, 385, 2140–2149. [Google Scholar] [CrossRef] [PubMed]
- Mahrholdt, H.; Wagner, A.; Deluigi, C.C.; Kispert, E.; Hager, S.; Meinhardt, G.; Vogelsberg, H.; Fritz, P.; Dippon, J.; Bock, C.-T.; et al. Presentation, Patterns of Myocardial Damage, and Clinical Course of Viral Myocarditis. Circulation 2006, 114, 1581–1590. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Oster, M.E.; Shay, D.K.; Su, J.R.; Gee, J.; Creech, C.B.; Broder, K.R.; Edwards, K.; Soslow, J.; Dendy, J.; Schlaudecker, E.; et al. Myocarditis Cases Reported after mRNA-Based COVID-19 Vaccination in the US From December 2020 to August 2021. JAMA 2022, 327, 331. [Google Scholar] [CrossRef] [PubMed]
- Advisory Committee on Immunization Practices (ACIP). Update on Myocarditis following mRNA COVID-19 Vaccination June 23, 2022. 2022. Available online: https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2022-06-22-23/03-covid-shimabukuro-508.pdf (accessed on 7 February 2022).
- Paul-Ehrlich-Institut. Sicherheitsbericht vom 10.06.2021. 2021. Available online: https://www.pei.de/SharedDocs/Downloads/DE/newsroom/dossiers/sicherheitsberichte/sicherheitsbericht-27-12-bis-12-03-21.pdf?__blob=publicationFile&v=4 (accessed on 8 July 2022).
- Schneider, J.; Sottmann, L.; Greinacher, A.; Hagen, M.; Kasper, H.-U.; Kuhnen, C.; Schlepper, S.; Schmidt, S.; Schulz, R.; Thiele, T.; et al. Postmortem investigation of fatalities following vaccination with COVID-19 vaccines. Int. J. Leg. Med. 2021, 135, 2335–2345. [Google Scholar] [CrossRef]
- Buchan, S.A.; Chung, H.; Brown, K.A.; Austin, P.C.; Fell, D.B.; Gubbay, J.B.; Nasreen, S.; Schwartz, K.L.; Sundaram, M.E.; Tadrous, M.; et al. Effectiveness of COVID-19 Vaccines Against Omicron or Delta Symptomatic Infection and Severe Outcomes. JAMA Netw. Open 2022, 5, e2232760. [Google Scholar] [CrossRef] [PubMed]
- Division of Epidemiology, Department of Disease Control Thailand, Manual for Adverse Event following COVID-19 Immunization Surveillance. Div. Epidemiol. 2021. Available online: https://apps-doe.moph.go.th/boe/software/file/Guideline_AEFI_COVID19vaccine_DOE_17062021.pdf (accessed on 8 July 2022).
- Gargano, J.W.; Wallace, M.; Hadler, S.C.; Langley, G.; Su, J.R.; Oster, M.E.; Broder, K.R.; Gee, J.; Weintraub, E.; Shimabukuro, T.; et al. Use of mRNA COVID-19 Vaccine after Reports of Myocarditis Among Vaccine Recipients: Update from the Advisory Committee on Immunization Practices—United States, June 2021. MMWR. Morb. Mortal. Wkly. Rep. 2021, 70, 977–982. [Google Scholar] [CrossRef]
- Ontario Agency for Health Protection and Promotion (Public Health Ontario). Myocarditis and Pericarditis following Vaccination with COVID-19 mRNA Vaccines in Ontario: December 13, 2020 to November 21, 2021; Queen’s Printer for Ontario: Toronto, ON, USA, 2022. Available online: https://www.publichealthontario.ca/-/media/docments/ncov/epi/covid-19-myocarditis-pericarditis-vaccines-epi.pdf?sc_lang=en#:~:text=In%20early%20June%202021%2C%20Public,PHU%20notification%20of%20the%20report (accessed on 8 July 2022).
- Gellad, W.F. Myocarditis after vaccination against COVID-19. BMJ 2021, 375, n3090. [Google Scholar] [CrossRef]
- Husby, A.; Hansen, J.V.; Fosbøl, E.; Thiesson, E.M.; Madsen, M.; Thomsen, R.W.; Sørensen, H.T.; Andersen, M.; Wohlfahrt, J.; Gislason, G.; et al. SARS-CoV-2 vaccination and myocarditis or myopericarditis: Population based cohort study. BMJ 2021, 375, e068665. [Google Scholar] [CrossRef]
- Bolze, A.; Mogensen, T.H.; Zhang, S.-Y.; Abel, L.; Andreakos, E.; Arkin, L.M.; Borghesi, A.; Brodin, P.; Hagin, D.; Novelli, G.; et al. Decoding the Human Genetic and Immunological Basis of COVID-19 mRNA Vaccine-Induced Myocarditis. J. Clin. Immunol. 2022, 42, 1354–1359. [Google Scholar] [CrossRef]
- Tsilingiris, D.; Vallianou, N.G.; Karampela, I.; Liu, J.; Dalamaga, M. Potential implications of lipid nanoparticles in the pathogenesis of myocarditis associated with the use of mRNA vaccines against SARS-CoV-2. Metab. Open. 2022, 13, 100159. [Google Scholar] [CrossRef]
- Kounis, N.G.; Koniari, I.; Mplani, V.; Velissaris, D.; Tsigkas, G. The pathogenesis of potential myocarditis induced by COVID-19 vaccine. Am. J. Emerg. Med. 2022, 56, 382–383. [Google Scholar] [CrossRef] [PubMed]
- Pillay, J.; Gaudet, L.; Wingert, A.; Bialy, L.; Mackie, A.S.; Paterson, D.I.; Hartling, L. Incidence, risk factors, natural history, and hypothesised mechanisms of myocarditis and pericarditis following COVID-19 vaccination: Living evidence syntheses and review. BMJ 2022, 378, e069445. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Immunization Stress Related Responses: A Manual. Available online: https://www.who.int/publications/i/item/978-92-4-151594-8 (accessed on 8 July 2022).
- GOV.UK. Coronavirus Vaccine–Weekly Summary of Yellow Card reporting. Research and Analysis. Available online: https://www.gov.uk/government/publications/coronavirus-covid-19-vaccine-adverse-reactions/coronavirus-vaccine-summary-of-yellow-card-reporting (accessed on 8 July 2022).
- Pepe, S.; Gregory, A.T.; Denniss, A.R. Myocarditis, Pericarditis and Cardiomyopathy after COVID-19 Vaccination. Hear Lung Circ. 2021, 30, 1425–1429. [Google Scholar] [CrossRef]
- European Medicines Agency. Science Medicines Health. Meeting Highlights from the Pharmacovigilance Risk Assessment Committee (PRAC) 7-10 June 2021; European Medicines Agency. Science Medicines Health: Amsterdam, The Netherlands, 2021.
- Thai Database Connector. Thai Care Cloud. 2022. Available online: https://www.thaicarecloud.org/tdc-monitor (accessed on 30 July 2022).
- National Statistical Office. The 2017 Private Hospital Survay. 2018. Available online: http://www.nso.go.th/sites/2014/DocLib13/ด้านสังคม/สาขาสุขภาพ/โรงพยาบาลและสถานพยาบาลเอกชน/2560/FullReport.pdf (accessed on 30 July 2022).
- Kim, H.W.; Jenista, E.R.; Wendell, D.C.; Azevedo, C.F.; Campbell, M.J.; Darty, S.N.; Parker, M.A.; Kim, R.J. Patients with Acute Myocarditis Following mRNA COVID-19 Vaccination. JAMA Cardiol. 2021, 6, 1196. [Google Scholar] [CrossRef] [PubMed]
- Marshall, M.; Ferguson, I.D.; Lewis, P.; Jaggi, P.; Gagliardo, C.; Collins, J.S.; Shaughnessy, R.; Caron, R.; Fuss, C.; Corbin, K.; et al. Symptomatic Acute Myocarditis in 7 Adolescents after Pfizer-BioNTech COVID-19 Vaccination. Pediatrics 2021, 148, e2021052478. [Google Scholar] [CrossRef]
- Shay, D.K.; Shimabukuro, T.T.; DeStefano, F. Myocarditis Occurring after Immunization with mRNA-Based COVID-19 Vaccines. JAMA Cardiol. 2021, 6, 1115. [Google Scholar] [CrossRef]
- WHO Thailand. Coronavirus Disease 2019 (COVID-19). WHO Thailand Weekly Situation Update. 2021. Available online: https://cdn.who.int/media/docs/default-source/searo/thailand/2021_10_07_eng-sitrep-204-covid19.pdf?sfvrsn=5e4e56bf_5 (accessed on 20 December 2021).
- Guideline for Diagnosis and Management of Myocarditis and Pericarditis after COVID-19 mRNA Vaccination. Pediatric Infectious Disease Society of Thailand. 2021. Available online: https://pidst.or.th/A1104.html (accessed on 19 March 2022).
- COVID-19 Vaccination Recommendations for Children and Adolescents Aged 12 Years and above, Sep 7. Pediatric Infectious Disease Society of Thailand. 2021. Available online: https://www.thaipediatrics.org/Media/media-20210913111840.pdf (accessed on 19 March 2022).
- COVID-19 Vaccination Recommendations for Children and Adolescents Aged 12 Years and above, Sep 22, 2021. Pediatric Infectious Disease Society of Thailand. 2021. Available online: https://www.thaipediatrics.org/Media/media-20210927030328.pdf (accessed on 19 March 2022).
- COVID-19 Vaccination Recommendations for Children and Adolescents Aged 12 Years and above, Dec 27, 2021. Pediatric Infectious Disease Society of Thailand. 2021. Available online: https://www.thaipediatrics.org/Media/media-20220104074347.pdf (accessed on 19 March 2022).
- Weintraub, E.S.; Oster, M.E.; Klein, N.P. Myocarditis or Pericarditis Following mRNA COVID-19 Vaccination. JAMA Netw. Open. 2022, 5, e2218512. [Google Scholar] [CrossRef]
- Buchan, S.A.; Seo, C.Y.; Johnson, C.; Alley, S.; Kwong, J.C.; Nasreen, S.; Calzavara, A.; Lu, D.; Harris, T.M.; Yu, K.; et al. Epidemiology of myocarditis and pericarditis following mRNA vaccines in Ontario, Canada: By vaccine product, schedule and interval. medRxiv 2021, 5, 21267156. [Google Scholar]
- Lane, S.; Yeomans, A.; Shakir, S. Reports of myocarditis and pericarditis following mRNA COVID-19 vaccination: A systematic review of spontaneously reported data from the U.K.; Europe and the USA and of the scientific literature. BMJ Open 2022, 12, e059223. [Google Scholar] [CrossRef]
- Mix and Match COVID19 Vaccine in Thailand. HDmall. Available online: https://hdmall.co.th/c/update-mix-and-match-covid19-vaccines-thailand (accessed on 2 July 2022).
- Public Health Recommended the Booster Dose. bangkokbiznews. 2021. Available online: https://www.bangkokbiznews.com/social/966626 (accessed on 8 July 2022).
- Caforio, A.L.P. Receipt of mRNA Vaccine against COVID-19 and Myocarditis. N. Engl. J. Med. 2021, 385, 2189–2190. [Google Scholar] [CrossRef]
- Grant, J.K.; Shah, N.P. The Impact of Physical Activity on Pericarditis. Curr. Cardiol. Rep. 2021, 23, 150. [Google Scholar] [CrossRef] [PubMed]
- Hause, A.M.; Marquez, P.; Zhang, B.; Su, J.R.; Myers, T.R.; Gee, J.; Panchanathan, S.S.; Thompson, D.; Shimabukuro, T.T.; Shay, D.K. Safety Monitoring of Bivalent COVID-19 mRNA Vaccine Booster Doses Among Children Aged 5–11 Years—United States, October 12–January 1, 2023. MMWR Morb. Mortal Wkly. Rep. 2023, 72, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Van Linthout, S.; Klingel, K.; Tschöpe, C. SARS-CoV-2-related myocarditis-like syndromes Shakespeare’s question: What’s in a name? Eur. J. Heart Fail. 2020, 22, 922–925. [Google Scholar] [CrossRef] [PubMed]
- Block, J.P.; Boehmer, T.K.; Forrest, C.B.; Carton, T.W.; Lee, G.M.; Ajani, U.A.; Christakis, D.A.; Cowell, L.G.; Draper, C.; Ghildayal, N.; et al. Cardiac Complications after SARS-CoV-2 Infection and mRNA COVID-19 Vaccination—PCORnet, United States, January 2021–January 2022. MMWR Morb. Mortal Wkl. Rep. 2022, 71, 517–523. [Google Scholar] [CrossRef]
- Barda, N.; Dagan, N.; Ben-Shlomo, Y.; Kepten, E.; Waxman, J.; Ohana, R.; Hernán, M.A.; Lipsitch, M.; Kohane, I.; Netzer, D.; et al. Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting. N. Engl. J. Med. 2021, 385, 1078–1090. [Google Scholar] [CrossRef]
- Patone, M.; Mei, X.W.; Handunnetthi, L.; Dixon, S.; Zaccardi, F.; Shankar-Hari, M.; Watkinson, P.; Khunti, K.; Harnden, A.; Coupland, C.A.C.; et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat. Med. 2022, 28, 410–422. [Google Scholar] [CrossRef]
ChAdOx1-nCoV n = 21 | BNT162b2 n = 166 | BBIBP-CorV n = 5 | CoronaVac n = 4 | MRNA-1273 n = 8 | Total n = 204 | |
---|---|---|---|---|---|---|
No. of case reports to AEFI-DDC | 21 | 166 | 5 | 4 | 8 | 204 |
No. of vaccination doses administered | 44,159,927 | 17,137,233 | 14,578,943 | 26,385,393 | 2,371,390 | 104,632,886 |
Rate (cases/1 million dose) | 0.048 | 0.970 | 0.034 | 0.015 | 0.337 | 1.95 |
Reported age, No. | 21 | 166 | 5 | 4 | 8 | 202 |
Age, median (IQR), y | 61 (41–66) | 14 (13–16) | 33 (13–47) | 23 (21.5–27.5) | 39 (32.5–52) | 15 (13–17) |
Reported onset, No. | 20 | 163 | 3 | 3 | 8 | 197 |
Time to symptom onset, median (IQR), d | 4 (1–23) | 2 (1–4) | 5 (0–44) | 3 (2–16) | 2 (0–6) | 2 (1–4) |
Reported sex, No. | 21 | 166 | 5 | 4 | 8 | 204 |
Male (%) | 13 (61.9) | 120 (72.29) | 2 (40) | 2 (50) | 3 (37.5) | 140 (68.63) |
Female (%) | 8 (38.1) | 46 (27.71) | 3 (60) | 2 (50) | 5 (62.5) | 64 (31.37) |
Reported occupation No. | 21 | 166 | 5 | 4 | 8 | 204 |
Occupation (%) | ||||||
Student | 3 (14.29) | 135 (81.33) | 2 (40) | 1 (25) | 0 (0) | 141 (85.45) |
HCP | 0 (0) | 2 (1.2) | 0 (0) | 0 (0) | 0 (0) | 2 (1.21) |
Monk | 0 (0) | 2 (1.2) | 0 (0) | 0 (0) | 0 (0) | 2 (1.21) |
Government officer | 0 (0) | 1 (0.6) | 0 (0) | 1 (25) | 0 (0) | 2 (1.21) |
Merchant | 1 (4.76) | 1 (0.6) | 0 (0) | 1 (25) | 1 (12.5) | 4 (2.42) |
Unemployed | 3 (14.29) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 3 (1.82) |
Housework | 2 (9.52) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 2 (1.21) |
Employee | 4 (19.05) | 0 (0) | 1 (20) | 0 (0) | 2 (25) | 7 (4.24) |
Farmer | 1 (4.76) | 0 (0) | 0 (0) | 0 (0) | 1 (12.5) | 2 (1.21) |
Unknown | 7 (33.33) | 25 (15.06) | 2 (40) | 1 (25) | 4 (50) | 39 (19.12) |
Reported history of COVID-19 infection, No. | 21 | 166 | 5 | 4 | 8 | 204 |
No | 20 (95.24) | 164 (98.8) | 5 (100) | 4 (100) | 7 (87.5) | 200 (98.04) |
Yes | 1 (4.76) | 2 (1.2) | 0 (0) | 0 (0) | 1 (12.5) | 4 (1.96) |
Reported dose, No. | 21 | 166 | 5 | 4 | 8 | 204 |
Dose 1 | 5 (23.81) | 54 (32.53) | 3 (60) | 4 (100) | 2 (25) | 68 (33.33) |
Dose 2 | 16 (76.19) | 111 (66.87) | 2 (40) | 0 (0) | 2 (25) | 129 (63.24) |
Dose 3 | 0 (0) | 1 (0.6) | 0 (0) | 0 (0) | 4 (50) | 7 (3.43) |
Reported prognosis, No. | 21 | 166 | 5 | 4 | 8 | 204 |
Status $ (%) | ||||||
Full recovery | 1 (4.76) | 49 (29.52) | 1 (20) | 0 (0) | 1 (12.5) | 52 (25.49) |
Improved | 6 (28.57) | 82 (49.4) | 0 (0) | 1 (25) | 4 (50) | 93 (45.59) |
Death | 9 (42.86) | 0 (0) | 0 (0) | 1 (25) | 0 (0) | 10 (4.90) |
Unknown | 5 (23.81) | 35 (21.08) | 4 (80) | 2 (50) | 3 (37.5) | 49 (24.02) |
Reported hospitalization, No. | 21 | 166 | 5 | 4 | 8 | 204 |
Hospitalization (%) | ||||||
IPD | 11 (52.38) | 139 (83.73) | 2 (40) | 1 (25) | 7 (87.5) | 160 (78.43) |
OPD | 6 (28.57) | 18 (10.84) | 1 (20) | 2 (50) | 1 (12.5) | 28 (13.73) |
ER | 2 (9.52) | 7 (4.22) | 0 (0) | 1 (25) | 0 (0) | 10 (4.90) |
Unknown | 2 (9.52) | 2 (1.2) | 2 (40) | 0(0) | 0 (0) | 6 (2.94) |
Reported hospital stay, No. | 13 | 93 | 2 | 2 | 4 | 114 |
Duration of hospital stay, median (IQR), in days | 3 (1–12) | 3 (1–4) | 22.5 (10–35) | 21 (7–35) | 2.5 (1–4.5) | 3 (1–5) |
Age Group | Vaccine and Sex | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ChAdOx1-nCoV | BNT162b2 | BBIBP-CorV | CoronaVac | MRNA-1273 | Total | Background Incidence $ (Cases/100,000 Population) | ||||||||
Male | Female | Male | Female | Male | Female | Male | Female | Male | Female | Male | Female | Male | Female | |
05–11 y | NA | NA | 0.00 | 0.00 | 0.00 | 6.21 | NA | NA | 0.00 | 0.00 | 0.00 | 4.87 | 0.24 | 0.29 |
12–17 y | 12.78 | 0.00 | 2.87 | 1.03 | 2.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.89 | 1.02 | 0.45 | 0.37 |
18–20 y | 0.14 | 0.14 | 1.03 | 0.47 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.32 | 0.18 | 0.87 | 0.44 |
21–40 y | 0.01 | 0.01 | 0.13 | 0.05 | 0.00 | 0.03 | 0.04 | 0.04 | 0.20 | 0.61 | 0.03 | 0.05 | 0.83 | 0.51 |
41–60 y | 0.03 | 0.02 | 0.07 | 0.00 | 0.04 | 0.04 | 0.00 | 0.00 | 0.57 | 0.00 | 0.04 | 0.02 | 1.58 | 1.08 |
61–80 y | 0.19 | 0.04 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.61 | 0.13 | 0.03 | 3.88 | 3.25 |
>80 y | 0.00 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 4.77 | 4.94 |
Age Group | All | Male | Female | ||||||
---|---|---|---|---|---|---|---|---|---|
Dose 1 | Dose 2 | Dose 3 | Dose 1 | Dose 2 | Dose 3 | Dose 1 | Dose 2 | Dose 3 | |
05–11 y | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
12–17 y | 1.11 | 2.86 | 0.00 | 1.61 | 4.43 | 0.00 | 0.62 | 1.48 | 0.00 |
18–20 y | 0.90 | 0.68 | 0.00 | 1.11 | 1.07 | 0.00 | 0.70 | 0.32 | 0.00 |
21–40 y | 0.11 | 0.08 | 0.08 | 0.00 | 0.18 | 0.20 | 0.22 | 0.00 | 0.00 |
41–60 y | 0.12 | 0.00 | 0.00 | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
61–80 y | 0.22 | 0.00 | 0.00 | 0.48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
>80 y | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Parameter | Control (n = 668) Number (%) | Case (n = 167) Number (%) | Odds Ratio | p-Value | 95% CI |
---|---|---|---|---|---|
Sex * | |||||
Male | 329 (49.25) | 118 (70.66) | 2.48 | <0.001 | 1.72–3.58 |
Female | 339 (50.75) | 49 (29.34) | reference | ||
Age group * | |||||
12–17 y | 15 (2.25) | 136 (81.44) | 81.60 | <0.001 | 9.66–689.19 |
18–20 y | 17 (2.54) | 9 (5.39) | 4.76 | 0.168 | 0.52–43.80 |
21–40 y | 251 (37.63) | 10 (5.99) | 0.36 | 0.352 | 0.04–3.11 |
41–60 y | 267 (40.03) | 3 (1.80) | 0.10 | 0.057 | 0.01–1.07 |
61–80 y | 108 (16.19) | 8 (4.79) | 0.67 | 0.716 | 0.08–5.94 |
>80 y | 9 (1.35) | 1 (0.60) | reference | - | - |
Vaccine type * | |||||
ChAdOx1-nCoV | 293 (43.86) | 15 (8.98) | reference | ||
BNT162b2 | 42 (6.29) | 146 (87.43) | 67.90 | <0.001 | 36.45–126.49 |
mRNA-1273 | 4 (0.60) | 3 (1.8) | 14.65 | 0.001 | 3.01–71.43 |
BBIBP-CorV | 127 (19.01) | 0 (0.00) | - | - | - |
CoronaVac | 202 (30.24) | 3 (1.80) | 0.29 | 0.053 | 0.08–1.02 |
Vaccine dose | |||||
Dose 1 | 219 (32.78) | 55 (32.93) | reference | ||
Dose 2 | 427 (63.92) | 109 (65.27) | 1.02 | 0.930 | 0.71–1.46 |
Dose 3 | 22 (3.29) | 3 (1.8) | 0.54 | 0.335 | 0.16–1.88 |
Period of vaccination $ | |||||
March–May | 74 (11.08) | 1 (0.76) | reference | ||
June–September | 461 (69.01) | 14 (10.69) | 2.23 | 0.437 | 0.29–17.34 |
October–December | 133 (19.91) | 116 (88.55) | 64.54 | <0.001 | 8.83–471.59 |
History of prior COVID-19 infection | |||||
No | 655 (98.05) | 164 (98.20) | reference | ||
Yes | 13 (1.95) | 3 (1.8) | 0.92 | 0.900 | 0.31–3.85 |
Parameter | Adjusted Odds Ratio | p-Value | 95% CI |
---|---|---|---|
Sex | |||
Male | 1.41 | 0.319 | 0.72–2.78 |
Female | Reference | ||
Age group | |||
12–17 y | 23.89 | 0.000 | 7.20–79.30 |
18–20 y | 4.82 | 0.011 | 1.42–16.32 |
21–60 y | 0.38 | 0.056 | 0.14–1.02 |
>60 y | Reference | ||
Vaccine type | |||
BNT162b2 | 12.78 | 0.000 | 3.05–53.48 |
mRNA-1273 | 66.08 | 0.000 | 9.81–445.07 |
ChAdOx1-nCoV | 2.26 | 0.225 | 0.61–8.40 |
CoronaVac | Reference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahasing, C.; Doungngern, P.; Jaipong, R.; Nonmuti, P.; Chimmanee, J.; Wongsawat, J.; Boonyasirinant, T.; Wanlapakorn, C.; Leelapatana, P.; Yingchoncharoen, T.; Ngarmukos, T.; Chokephaibulkit, K.; Srimahachota, S. Myocarditis and Pericarditis following COVID-19 Vaccination in Thailand. Vaccines 2023, 11, 749. https://doi.org/10.3390/vaccines11040749
Mahasing C, Doungngern P, Jaipong R, Nonmuti P, Chimmanee J, Wongsawat J, Boonyasirinant T, Wanlapakorn C, Leelapatana P, Yingchoncharoen T, Ngarmukos T, Chokephaibulkit K, Srimahachota S. Myocarditis and Pericarditis following COVID-19 Vaccination in Thailand. Vaccines. 2023; 11(4):749. https://doi.org/10.3390/vaccines11040749
Chicago/Turabian StyleMahasing, Chayanit, Pawinee Doungngern, Rittichai Jaipong, Poonyaporn Nonmuti, Jirapa Chimmanee, Jurai Wongsawat, Thananya Boonyasirinant, Chaisiri Wanlapakorn, Pattranee Leelapatana, Teerapat Yingchoncharoen, Tachapong Ngarmukos, Kulkanya Chokephaibulkit, and Suphot Srimahachota. 2023. "Myocarditis and Pericarditis following COVID-19 Vaccination in Thailand" Vaccines 11, no. 4: 749. https://doi.org/10.3390/vaccines11040749