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The continuous progress in vaccine development witnessed in the last decades, cul-
minated with the development of vaccines against cancers, is set to change how various
cancers are treated. Cancer vaccines can be divided into two main categories: prophylactic
and therapeutic cancer vaccines.

Prophylactic vaccines are given to individuals at risk of developing certain types of tu-
mors to reduce global disease morbidity and mortality [1]. Such vaccines have represented
a breakthrough in preventing virus-induced tumors such as hepatocellular carcinoma [2]
and cervical cancer [3]. Contrastingly, therapeutic cancer vaccines target existing malig-
nancies and induce cancer regression by eliciting an immune anti-tumor response through
tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs) [4,5].

The first-ever therapeutic cancer vaccine dates back to 1980 when Hoover Jr et al. de-
veloped an autologous vaccine against colorectal cancer [6]. Subsequently, the development
of a tumor antigen vaccine against melanoma represented the first use of tumor antigens
in the treatment of cancers [7]. This was followed by Gardner et al.’s development of an
autologous dendritic cells (DCs) vaccine for treating asymptomatic and minimally symp-
tomatic prostatic cancer, which introduced the use of dendritic cells as a vaccine platform
for anti-tumor vaccines development [8]. Recently, the advent of the COVID-19 pandemic
and the race to produce mRNA vaccines opened the door for testing these vaccines in
tumor therapy [9].

In addition to their solo use in cancer treatment, therapeutic cancer vaccines can be
combined with other immunotherapies to achieve better results. For example, the combina-
tion of therapeutic vaccines with immune checkpoint blockade (ICB) has yielded promising
results due to the prevention of T cell exhaustion by immune checkpoint molecules, thus
potentiating the anti-tumor response [10]. An example is the combination of the GVAX
tumor vaccine with ipilimumab, which has a more powerful immune response in pan-
creatic adenocarcinoma than when either therapy is used alone [11]. Furthermore, the
discovery of neoantigens, generated from the mutation of tumor cells, has opened the door
to personalized therapeutic cancer vaccines. These vaccines use next-generation sequenc-
ing to identify specific mutations in cancer patients, allowing them to tailor therapies to
the mutated proteins. This elicits a more potent and lasting anti-tumor T-cell response,
preventing tumor recurrence [12].

Four cell-based cancer vaccine platforms currently exist: peptide-based, nucleic acid-
based, and virus-based (Figure 1).

Cell-based vaccines include tumor cell and immune cell vaccines. The former contains
whole TAAs and is further classified into autologous or allogenic [1]. The expression
of a large variety of TAAs makes the anti-tumor response non-specific, which prompts
the use of adjuvants to potentiate vaccine immunogenicity. In cell-based vaccines, this
can occur by combining them with radiotherapy, which enhances neutrophil recruitment
and thus increases reactive oxygen species, eventually leading to tumor cell apoptosis
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and improving antigens recognition [13]. A well-known example of a cell-based vaccine
is sipuleucel-T (Provenge), a DC-based vaccine used to treat advanced prostate cancer.
This vaccine significantly improved the three-year survival of prostate cancer patients by
increasing survival by a median of 4.5 months [14].
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Figure 1. Used platforms for therapeutic cancer vaccines.

Virus-based vaccines include inactivated, live attenuated, and subunit vaccines and
stimulate an anti-tumor response by triggering both innate and adaptive immune re-
sponses [4]. The most commonly used oncolytic viruses include herpes simplex virus and
adenovirus [15]. The latter is futuristic due to its ability to be amended, its reproducibility,
infectivity to the mucous membrane, and host cell tropism [16].

On the contrary, peptide-based vaccines are weaker in their immune response; there-
fore, adjuvants are mostly needed to enhance their immunogenicity [17]. These adjuvants
can be antigen delivery systems [18] (that protect the antigenic particles from degradation,
facilitate their uptake, and aid in their localization in lymph nodes) or immunopoten-
tiators [19] (which act by enhancing innate immunity through the activation of pattern
recognition receptors).

Lastly, nucleic acid vaccines are composed of a group of pathogen antigens (carriers)
and the encoding gene. They can be in the form of ribonucleic acid (RNA), deoxyribonucleic
acid (DNA) [20], or, most recently, mRNA, which can be used in combination with conven-
tional cancer therapeutics to achieve a synergistic effect in improving clinical outcomes
and/or defeating tumor resistance [4,21].

The success of mRNA vaccines in the fight against the COVID-19 pandemic has
sparked hope in the potential anti-tumor effects of these vaccines. mRNA vaccines have
proven to be an effective alternative to DNA, DC, and protein-based vaccines. This is
because they have the advantage of being devoid of insertional mutagenesis, being able to
encode for multiple antigens (and thus potentiating the anti-tumor response), and having
better tolerability, fewer adverse effects, and the possibility of rapid, low-cost, and large-
scale manufacturing. Moreover, they possess a higher protein expression rate than DNA
vaccines, making them the nucleic acid vaccines with the highest future potential [22].
Nevertheless, owing to their ability to stimulate the interferon I system, mRNA vaccines
could trigger an autoimmune reaction in predisposed individuals. This suggests special
caution should be taken in screening at-risk individuals before vaccine administration [23].
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Although therapeutic cancer vaccines represent an exciting frontier in the race to solve
the age-old cancer treatment puzzle, identifying vaccine platforms that can achieve high
immunogenicity is crucial. Moreover, addressing individual variations in tumor antigens
is needed for better anti-tumor response.

In conclusion, future research should focus on improving immunogenicity by optimiz-
ing combination therapy and refining vaccine platforms for better clinical outcomes.
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