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Abstract: Since the emergence of COVID-19, the forecasting of new daily positive cases and deaths has
been one of the essential elements in policy setting and medical resource management worldwide. An
essential factor in forecasting is the modeling of susceptible populations and vaccination effectiveness
(VE) at the population level. Owing to the widespread viral transmission and wide vaccination
campaign coverage, it becomes challenging to model the VE in an efficient and realistic manner,
while also including hybrid immunity which is acquired through full vaccination combined with
infection. Here, the VE model of hybrid immunity was developed based on an in vitro study and
publicly available data. Computational replication of daily positive cases demonstrates a high
consistency between the replicated and observed values when considering the effect of hybrid
immunity. The estimated positive cases were relatively larger than the observed value without
considering hybrid immunity. Replication of the daily positive cases and its comparison would
provide useful information of immunity at the population level and thus serve as useful guidance for
nationwide policy setting and vaccination strategies.

Keywords: hybrid immunity; vaccination effectiveness; herd immunity; COVID-19; forecasting;
deep learning

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, which emerged
in late 2019, has since spread globally. Unlike upsurges in 2020 and 2021, the number of
death cases per population has become small within the spread of the Omicron variant
and its sublineage [1]. In most European and American countries, almost no movement
restriction has been implemented since early 2022, whereas in various East Asian countries,
some preventive measures or precautions were still implemented into late 2022 [2–4].

The percentage of people infected with SARS-CoV-2 in European countries is signifi-
cant. This may be partly attributable to reinfections [5–7]. In such countries, the number of
infected people during a new surge becomes smaller than that in earlier waves [1]. Instead,
in East Asian countries, the number of new cases grew until the Omicron variant and its
subvariants (until late 2022). The abovementioned difference in policy or regulation setting
would result in immunity at the population level. Infection, including reinfection, may
result in immunity acquisition in addition to the vaccination [8].

Several studies have reported that hybrid immunity is the most robust immunity
against COVID-19 infection [9–12]. Hybrid immunity is defined as the immunity of vac-
cinated individuals, with two to three doses, alongside a primary SARS-CoV-2 infection.
Carazo et al. [13] showed that hybrid immunity from BA.2 infection plus two to three doses
of the vaccine similarly improved the estimated individual vaccination effectiveness (VE)
to 96% longer than 5 months. However, the study was conducted with a limited scope for
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a group of healthcare workers. In [14], the booster shots combined with infection were
reported to cause higher protection from infection with a milder waning effect than the
booster shots alone. The effectiveness of infection prevention in individuals is attenuated
with time and depends on the timing of primary infection. However, few studies have
modeled hybrid immunity with time [15], resulting in difficulty in its application to vacci-
nation strategies. The number of reported daily positive cases (DPC) has been inhibited
since August 2022 in Japan, where the Omicron BA.5 variant is dominant. Unlike earlier
waves of COVID-19 decay and respread (11% of the total population before the sixth wave
of the pandemic), the number of infected people reached 21 million (corresponding to 23%
of the entire population in Japan) [16].

For the estimation of VE at the population level, the modeling of the individual
hybrid immunity is one of the key factors in forecasting the number of newly positive
cases [17] where a high percentage of people are both vaccinated and primarily infected.
This estimation is also useful for developing vaccine strategies [18]. Questions that remain
are (1) to what degree have people obtained hybrid immunity, and (2) how does it affect
the DPC in the real world. One approach to estimate the VE is to replicate the DPC using
an estimated VE based on in vitro antibody measurements.

This study aimed to develop a mathematical VE model at the population level that
considers the effect of hybrid immunity. Its effectiveness is confirmed from the replication
of the DPC using data acquired from Tokyo between June 2021 and October 2022, which
coincided with the fifth wave (from June to September 2021), the sixth wave (from January
to May 2022), and the seventh wave (from July to September 2022) in Japan.

2. Materials and Methods
2.1. Materials

The Vaccination Record System of the Digital Agency [19] provided the number of
newly vaccinated individuals per day, as shown in Figure 1a. The open dataset was
divided into categories of dose number, gender, and age (binary of younger or older than
65 years old).

The Tokyo Metropolitan Agent provided the DPCs, which were divided into fully
vaccinated and nonvaccinated individuals [20], until 27 September 2022. After that day, the
Ministry of Health, Labour, and Welfare [16] provided the DPCs.

In the Japanese Cabinet Secretariat COVID-19 AI & Simulation Project [21], three
metrics, which related to human behavior, were considered: (1) mobility at the transit
stations; (2) nighttime population who stayed in the downtown area, including restaurants
and bars [22]; and (3) Twitter keywords (social gathering for drinking and BBQ). The
number of tweets with the Twitter keywords (social gathering for drinking, karaoke, and
BBQ) was considered as a metric to correlate with social behavior, as demonstrated in our
previous study [23]. Here, (1) and (3) were considered because (2) was correlated to the
remaining two factors. Mobility data were obtained from Google Mobility [24]. Mobility
is defined as the percent difference in population volume at transit stations compared to
a baseline. The baseline represents the median value for that day of the week from the
5-week period of 3 January to 6 February 2020 (before COVID-19 pandemic). Twitter data
were obtained from NTT Data, Inc.; processed by the Toyoda Lab., University of Tokyo;
and shared through the Cabinet Secretariat COVID-19 AI & Simulation Project. Tweeted
keywords completed during the day, the previous day, or those planned for the next day
were extracted when determining the number of tweeted keywords. Time series data for
mobility and the number of tweets is summarized in Figure 1b.

To estimate the hybrid immunity in the real world, the number of individuals with
asymptomatic infection also needed to be taken into consideration. The Bureau of Social
Welfare and Public Health of the Tokyo Metropolitan has conducted free reverse transcrip-
tion polymerase chain reaction (RT-PCR) testing on people without subjective symptoms,
mainly in downtown areas, restaurants, and train stations [25]. The rate of asymptomat-
ically infected individuals in relation to the reported positive cases was estimated by
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comparing both the positive rate of PCR testing in people without subjective symptoms
and the reported positive rate against the total population [26], as shown in Figure 1c.
The occupancy rate of SARS-CoV-2 by variants is also shown in Figure 1d. The ratio of
asymptomatic infection was an estimated 3.9 times higher (95% CI: 3.0–7.0 times) than
reported DPC between 1 September 2020 and 31 March 2021, from the first to the fourth
wave [27]. The ratio shown in Figure 1c is comparable in the sixth wave, whereas the ratio
was higher in the seventh wave. One potential reason for this difference is the pathogenicity
and transmissibility of viral variants.
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Figure 1. Time series of the (a) vaccination rates, and (b) the mobility at transit stations and the
number of tweets related to drinking on Twitter. (c) Rate of asymptomatically infected individuals
to reported positive cases. Missing period data are from 28 March to 3 April 2022, and 27 June to
3 July 2022. Periods with <500 average daily positive cases are not shown owing to a high level of
uncertainty. (d) Time sequences by SARS-CoV-2 variants.
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2.2. Vaccination Effectiveness (VE)
2.2.1. Individual Vaccination Effectiveness

In this study, VE was defined as VE = 1—relative risk in the real world without
controlling the conditions [28]. The relative risk is defined as the ratio of vaccinated and
unvaccinated population among infected people. A point of emphasis here is that, unlike
the vaccination efficacy, which is derived under controlled (rather ideal) conditions, the
VE is affected by the behavior at the population level. The individual VE of each dose was
represented mathematically as in our previous study [23,29] as follows:

e(i) =
{

at·i/K(i ≤ K)
at − s(i − K)(i > K)

, (1)

where parameters of at and s were adjusted to reach a peak K days after the inoculation of
t-th dose (K = 14 for the second dose and K = 7 for the third and subsequent doses) then
decrease linearly. The parameters were the same as in [23]. For this model, the estimated
individual VE, including its waning effect, is in good agreement with cohort studies in
Tokyo and its suburb area [30,31].

Qu et al. [14] reported that the waning effect in the neutralizing antibody, which would
be related to the vaccination efficacy, of an individual with a prior infection was slower
than the waning effect in an individual with no prior infection. Antibody effectiveness and
durability are assumed to increase because of hybrid immunity (third dose plus infection)
based on this study, as indicated in Figure 2 for individual immunity (e in Equation (1)).
The relationship between the antibody and vaccination efficacy is approximately derived
as in a previous study [32].
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Figure 2. Waning immunity of booster with and without previous SARS-CoV-2 infection [14].

The waning immunity in fully vaccinated individuals with primary infection, fully
vaccinated individuals with no prior infection, and nonvaccinated individuals with primary
infection was assumed to be −0.11%, −0.15%, and −0.15% per day, respectively [14].
Natural immunity due to primary infection was assumed to be equivalent to the first
vaccination for each variant [33]. Other studies suggested that natural immunity may
persist longer and be higher than assumed here [15,34]. In contrast, the immunity acquired
by the asymptomatic infection is smaller than that of symptomatic infection and the values
are not always consistent [35,36]. Considering this limitation regarding the asymptomatic
infection, we set the initial individual VE acquired by infection as smaller than that of the
full vaccination. In addition, immunity enhancement due to hybrid immunity is empirically
assumed to be 60% or 80% of the ideal hybrid immunity from booster shot immunity. All
parameters used in this study are listed in Table 1. In particular, the number of tweets
related to social gathering is highly correlated with real-world VE; some drops in VE were
observed during active social gathering [23].
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Table 1. Parameters for the individual VE used in Equation (1).

Vaccine Hybrid Immunity Natural Immunity

Parameters First Shot Second Shot Third Shot Forth Shot High Low

a Delta [29] 75 96 – –

73 62 35
Omicron (BA.1) [23] 35 63 85 –
Omicron (BA.2) [23] – 61 86 –
Omicron (BA.5) [23] – 37 63 69

s 0.15 0.15 0.15 0.15 0.11 0.11 0.15

2.2.2. Population Vaccination Effectiveness

Population VE is an essential factor for estimating viral transmission [37–41]. The
herd immunity threshold for SARS-CoV-2 was 50–83%, which is approximately derived
from the basic reproduction number [37]. For the available data, the population VE for
symptomatic infection in the convolution integral of the individual VE and the number of
newly vaccinated people was derived as follows [29]:

Ev(d) =
1
P

d

∑
i=0

T

∑
t=1

∑
s

Nt,(d − i)·et(i), (2)

where d is the day index and P is the population of Tokyo (13,843,329 people). Nt denotes
the daily number of people who are inoculated with the t-th dose, and et denotes the
individual VE of the t-th dose.

Considering the hybrid immunity, a proposal was made to extend Equation (2) as follows:

Ehy(d) =
1
P

d

∑
i=0

∑
s

vs

{
Nn,pi,(d − i)·en,pi(i) +

T

∑
t=1

(
Nt,pi,(d − i)·et,pi(i) + Nt,ni,(d − i)·et,ni(i)

)}
, (3)

The first and second terms of the right-hand side in Equation (2) correspond to the
natural immunity of nonvaccinated people with a primary infection and the summation
of the hybrid immunity for vaccinated people with a primary infection and the immunity
for vaccinated people with no previous infection. The parameter e denotes the individual
immunity shown in Figure 2. Nn,pi denotes the number of nonvaccinated people with
primary infection. Nt,pi denotes the number of the t-th vaccinated individuals with primary
infection (t = 1–4). Nt,ni is the number of the t-th vaccinated individuals with no previous
infection. The vs denotes the occupancy rate of SARS-CoV-2 by variants shown in Figure 1c,
accounting for difference in waning immunity due to changes in the predominant variants.
The waning effect was overwritten when people took the booster dose by adjusting the
number of people vaccinated in the past. Owing to the lack of data in Tokyo, Nn,pi, Nt,pi, and
Nt,ni were approximated by the rate of infected individuals using the vaccination history of
Japan reported by the Adversary Board of the Ministry of Health, Labour, and Welfare [42].
The vaccination rate in each dose and estimated population VE is shown in Figure 3.

The observed data in Figure 3 is empirically derived from the ratio of vaccinated and
unvaccinated populations among infected people. The observed data in Japan and Tokyo
were estimated by using the datasets which are provided by the website of the Ministry of
Health, Labor, and Welfare of Japan [43] and the press release by the Tokyo Metropolitan
Government [44], respectively. The datasets include the number of unvaccinated indi-
viduals, fully vaccinated individuals, and those vaccinated with a booster dose, for the
number of infected individuals in each category from April 2022 to September 2022. The
dataset in [43] is the weekly information for all of Japan, and the dataset in [44] is the daily
information in Tokyo, which is available only for Tokyo in Japan. The difference between
the reported values and the mathematically estimated values becomes larger, especially in
the Tokyo data after the number of infected people increases (after 30 June 2022).
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Figure 3. Time series of estimated population vaccination effectiveness (VE) in Tokyo from 1 July
to 30 September 2022. Empirical estimation from reported DPC and their vaccination status is also
plotted. This report ended 26 September 2022 in Tokyo and 28 August 2022 in Japan.

2.3. Forecasting of Daily Positive Cases with Deep Neural Network

Many prediction models, such as SIR/SEIR and deep neural networks have been
proposed to predict new positive cases during the epidemics. Although these predictions
yield useful information, the prediction accuracy may depend on the quality of the data
used to calibrate it. In addition, when contact is suppressed under the state of emer-
gency, the modeling or parameter extraction is not as straightforward as is reported by
multi-agent simulation [45,46].

A deep neural network approach is often employed for forecasting the DPC and death
cases. The major contribution of deep neural networks is that they allow researchers to
understand the correlation between various factors and the incidence of infection and
death cases. The network architecture we proposed in [47] is a multipath neural network
with long short-term memory modules (LSTM) (primarily used for time series forecasting)
and fully connected layers (primarily used for learning correlation features) in two major
phases as shown in Figure 2 of [17]. The design of the deep learning model is based on
ablation study in [47].

The training process is performed as shown in Figure 4 of [48]. The input values
detailed above for a certain period (14 days) are used along with the target output value
in the successive period (14 days) to train the model. The training is conducted through
minimizing cross-entropy loss function using the Adam algorithm for 1000 epochs and an
automatically estimated training rate. The process is implemented using a workstation
with 4 Intel ® Xeon CPUs running at 3.6 GHz with 128 GB memory and a set of 3 NVIDIA
GeForce 1080 GPUs. A single training session requires approximately 5 min.

Deep learning models are commonly presented as a black box, where the contribution
of different factors is unknow. To avoid this weakness as much as possible, we have derived
the population-level immunity mathematically as mentioned in the above subsections.
In [23], the optimal combination of input values were investigated among mobility, mete-
orological data, parameters related to social behavior, the day labels, the population VE,
and variant infectivity, whose selection was based on the correlation of the morbidity with
several potential factors [49,50]. The set of input data are arranged in a 2D array where the
x-axis represents the time-series data, and the y-axis is the value of different input variables.
The target output is set to be the DPC associated with each date. The following were
selected as input values from our analysis in terms of the mean absolute percentage error
(MAPE) by comparing the reported and estimated DPC: mobility at the transit stations;
the number of tweets with risk keywords in Twitter; population VE, which was obtained
from the individual VE and vaccination rates [23]. Other factors which may potentially
influence viral transmission include meteorological data, which was discussed extensively
in the early stages of the pandemic [51–53], and the correlation between viral transmission
and human behavior, which was reported in the later stages of the pandemic during the
vaccination campaigns and the emergence of viral variants [54,55]. According to [23], their
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contributions are marginal in mid- and long-term projections, compared to the other factors.
The association between meteorological factors and viral infection may be closely related to
social behavior [52]. This may be implicitly included in behavior as infections occur inside
buildings in metropolitan areas. Thus, the meteorological factor was not considered here.

Using this deep learning model enables an accurate forecasting of DPCs in three major
urban areas of Japan (Tokyo, Osaka, and Aichi), which was provided in the COVID-19 AI
& Simulation Project powered by the Cabinet Secretariat in Japan [21]. The validation of
our model can be found in [21]; also see [17,23,29]. In this study, to evaluate the estimation
accuracy of DPC, the mean absolute error (MAE) and MAPE were used.

3. Results

The numerical examples in 15 timeframes (the 1st week of every two months) are
presented in Figure 4a to demonstrate the robustness of our computational approach in
replicating the DPC. This includes the period when hybrid immunity was not expected
(from the fifth to the seventh waves), i.e., the number of infected populations was rather
small. Mobility and the number of tweets in the future are assumed to be known, and the
reported DPCs were used for validation. Even in the periods with varying predominant
variants and VE, a high consistency was observed between the estimated and observed
values in almost all timeframes, except for one timeframe from 1 June 2022, even in
the period of difference in dominant variant and vaccine effectiveness. The timeframe
from 1 June 2022, corresponds to a less predictable period when the predominant variant
alternated between Omicron BA.2 and BA.5 (see Figure 1c). Table 2 shows the MAEs and
MAPEs across 15 timeframes. Except for the timeframe 3–6 when the average number
of DPCs was less than 500, the average MAPE was 26.5% in the 1-month forecast, which
increased to 48.8% in the 2-month forecast.
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percentage error (MAPE) by comparing the reported and estimated DPC: mobility at the 

transit stations; the number of tweets with risk keywords in Twitter; population VE, which 

was obtained from the individual VE and vaccination rates [23]. Other factors which may 

potentially influence viral transmission include meteorological data, which was discussed 

extensively in the early stages of the pandemic [51–53], and the correlation between viral 

transmission and human behavior, which was reported in the later stages of the pandemic 

during the vaccination campaigns and the emergence of viral variants [54,55]. According 

to [23], their contributions are marginal in mid- and long-term projections, compared to 

the other factors. The association between meteorological factors and viral infection may 

be closely related to social behavior [52]. This may be implicitly included in behavior as 

infections occur inside buildings in metropolitan areas. Thus, the meteorological factor 

was not considered here. 

Using this deep learning model enables an accurate forecasting of DPCs in three ma-

jor urban areas of Japan (Tokyo, Osaka, and Aichi), which was provided in the COVID-19 
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Figure 4. (a) Performance of the forecasting system for daily positive cases. In evaluating the
performance, Twitter and mobility data were assumed to be known from the reported value. A
2-month forecast was made every month (on the first day of the month). The vaccination effectiveness
with hybrid immunity (High), shown in (b), was considered. Observed cases and seven-day average
values are shown in grey. Red and green curves are used to represent the forecasting to clarify the
overlap. (b) Time series of forecasting of the daily positive cases in Tokyo from 1 July to 30 September
2022, considering the vaccination and hybrid immunity at the population level. The red colored area
indicates the 95% confidence interval of the prediction considering hybrid immunity (High).
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Table 2. MAEs and MAPEs across 15 timeframes of forecasting daily positive cases shown in Figure 4a
before the seventh wave.

One Month Two Month

Timeframe Start Date End Date MAE MAPE MAE MAPE

1 1 July 2021 31 August 2021 311.8 25.7% 404.2 19.2%
2 1 August 2021 30 September 2021 654.9 15.3% 922.8 105.4%
3 1 September 2021 31 October 2021 349.4 58.3% 204.7 84.8%
4 1 October 2021 30 November 2021 36.2 52.6% 24.6 61.9%
5 1 November 2021 31 December 2021 7.5 40.1% 14.6 50.5%
6 1 December 2021 31 January 2022 7.7 22.7% 916.5 24.0%
7 1 January 2022 28 February 2022 2088.2 33.1% 2573.6 27.4%
8 1 February 2022 31 March 2022 1757.0 13.3% 1513.3 14.9%
9 1 March 2022 30 April 2022 1022.7 13.3% 1268.8 20.9%
10 1 April 2022 31 May 2022 1336.5 25.1% 1995.5 55.3%
11 1 May 2022 30 June 2022 1325.1 41.6% 1694.9 73.5%
12 1 June 2022 31 July 2022 1230.3 63.8% 2333.7 41.8%
13 1 July 2022 31 August 2022 2146.0 11.0% 2099.4 10.0%
14 1 August 2022 30 September 2022 1616.9 7.1% 2456.1 27.7%
15 1 September 2022 31 October 2022 1361.1 17.2% 1280.1 25.3%

Our forecasting model in the above figure was focused during the seventh wave
(30 June to 31 September 2022) with and without consideration of hybrid immunity. As is
shown in Figure 4b, the immunity at the population level is influenced by the modeling of
hybrid immunity. From Figure 4b, the estimated DPC with population VE considering hy-
brid immunity is in better alignment with reported values than those values without hybrid
immunity. The MAPEs with hybrid immunity (high), (low), and without hybrid immunity
were 14.0%, 108.3% and 242.0%, respectively, from 15 July 2022 to 15 October 2022.

4. Discussion and Conclusions

It is crucial to forecast the DPC to set policies and medical resource management.
Unlike earlier waves, when the DPC number was smaller than the entire population, the
population immunity became complex owing to infection and vaccination, in addition
to new variant emergence. Modeling hybrid immunity is one of the elements that will
help to improve the DPC forecasting. To evaluate the impact of hybrid immunity at the
population level, we estimated the DPC while taking into account the hybrid immunity
with machine learning.

The feature of our model is that the number of input parameters is limited to four.
Specifically, first, the population VE was estimated as pre-processing and validated by
comparing daily reports of Tokyo (Figure 3b). The hybrid immunity was then proposed
to be modeled for the first time based on previous in vitro studies [13,14]. The remaining
factors considered in the model are viral infectivity, mobility at the transit stations, and the
number of tweets with risk keywords on Twitter, which would be associated with human
contact. Then, the effect of latency (mainly for incubation time) is considered as LSTM.
Thus, our model would be close to nonlinear multivariate analysis considering the time
shift in terms of virtually infinite fitting parameters in machine learning.

The estimated population VE was in good agreement with the reported value during
the quasi-state of emergency (until March 2022). After the state was lifted, some drops in
the reported population VE were seen compared to the estimated VE with the increasing in
social gatherings [23]. A non-negligible population was infected in the seventh wave for
the first time in Tokyo, but not in the suburb area of Japan (over Japan). The population
VE in the real world was affected by social behavior [56]. In Tokyo, social behavior was
curtailed due to the quasi-state of emergency until 21 March 2022.

The population VE in Tokyo was derived based on the vaccination history and infection
rates. The comparison of replicated and observed DPCs was conducted to verify our
modeling for the period of the seventh wave, in which the number of positive cases cannot
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be ignored; that is, the effect of hybrid immunity became significant. As shown in Figure 4b,
the forecasting with hybrid immunity at a high level is a better explanation of the seventh
wave. Here, we assumed that the vaccination effectiveness for infection prevention was
80% of the ideal value, which is derived from in vitro studies. This would hypothesize that
the people with asymptomatic infection would acquire immunity with 60% effectiveness
or approximately 60% of the population with asymptomatic infections. The threshold of
herd immunity may be derived by comparing between the observed DPCs and estimated
population VE; approximately 40%. The results suggested that the threshold of herd
immunity can be achieved via a hybrid immunity [57], although further investigation is
needed. Without considering the hybrid immunity, the MAE and MAPE were 15,389 and
242%, respectively, from 15 July to 15 October 2022, which were larger than those in earlier
waves (see Figure 4b). The limitations of this study are as follows:

1. The DPC does not include all infected populations, because it is only the “reported”
cases. The population with asymptomatic infections, as well as the limited capacity of
the tests, must be taken into consideration. The former was considered, approximately,
as is shown in Figure 1b, while it cannot be considered for the latter;

2. For long-term forecasting (its replication), the weather and holiday behavior were not
considered. Meteorological data is shown to be associated with the morbidity and mor-
tality rates [58,59]. The population VE is affected by social behavior [56], which may
partly explain the VE difference between different countries [60–62]. This long-term
modeling may provide general applicability of modeling, whereas some information
may be potentially ignored. Thus, further fine-tuning of the hybrid immunity would
not improve the accuracy of the modeling due to other uncertainty factors;

3. The reinfection immunity, as well as pre-existing immunity levels to OC43, HKU1,
and coronaviruses, were not considered. This may also be related to immunological
imprinting of the antibody response [63]. Unlike most other countries, this imprinting
effect was almost negligible until the seventh wave as the percentage of the estimated
infected population was 11% of the total population. If this is existent, the number
of estimated DPC would be higher. However, this is well within the range how the
hybrid immunity can provide the VE. In this study, it was empirically assumed as
60% or 80% of the ideal hybrid immunity from booster shot immunity including the
uncertainty of the immunity of asymptomatic infection (see Section 2.2.1);

4. For simplicity, the natural immunity obtained due to infection in unvaccinated people
was assumed to wane at the same slope as with vaccination; although, it is possible
that the immune effect could persist for a longer period [34]. However, in Japan,
where vaccination rates have exceeded 80%, the impact of immunity in unvaccinated
people with a primary infection on predictions of DPCs is small especially before the
seventh wave. In addition, the percentage of the infected population compared to
the unvaccinated population was not large until the sixth wave. As mentioned in
Section 2.2.1, people with asymptomatic infection are also considered, and thus VE
was set lower than fully vaccinated people. However, this simplification may not
result in significant error due to the fact that the number of infected people prior to
the period considered here was small as and a high percentage of the population of
Japan was vaccinated.

In conclusion, immunity modeling becomes more important in future forecasting and
replication than in the earlier waves. The results of this study suggested that DPC monitor-
ing in the real world would provide insight into the expectations of hybrid immunity and
its durability based on limited data. The model proposed here would be helpful for policy
setting and vaccination strategies.
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