
Citation: Zhao, L.; Fu, L.; He, Y.; Li,

H.; Song, Y.; Liu, S. Effectiveness and

Safety of COVID-19 Vaccination in

Patients with Malignant Disease.

Vaccines 2023, 11, 486. https://

doi.org/10.3390/vaccines11020486

Academic Editors: Alessandra

Casuccio and Giuseppe La Torre

Received: 14 November 2022

Revised: 25 January 2023

Accepted: 17 February 2023

Published: 20 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Effectiveness and Safety of COVID-19 Vaccination in Patients
with Malignant Disease
Li Zhao 1,†, Lin Fu 2,†, Yuqin He 1, Han Li 1, Yixuan Song 1 and Shaoyan Liu 1,*

1 Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for
Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing 100021, China

2 Institute of Plastic Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing 100144, China

* Correspondence: shaoyanliu.bj@263.net
† These authors contributed equally to this work.

Abstract: A novel virus named SARS-CoV-2 has caused a worldwide pandemic, resulting in a
disastrous impact to the public health since 2019. The disease is much more lethal among patients
with malignant disease. Vaccination plays an important role in the prevention of infection and
subsequent severe COVID-19. However, the efficacy and safety of vaccines for cancer patients needs
further investigation. Encouragingly, there have been important findings deduced from research
so far. In this review, an overview of the immunogenicity, effectiveness, and safeness of COVID-19
vaccines in patients with cancer to date is to be shown. We also highlight important questions to
consider and directions that could be followed in future research.
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1. Introduction

The emergence of a novel species of coronavirus in 2019, named severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) by WHO [1], caused a worldwide pandemic
with disastrous impacts to public health worldwide. The mortality rate for the disease is
higher in patients with certain comorbidities, including cancer [2–4]. Even though patients
with malignant disease overlap risk factors with the general population, such as advanced
age, malignancy itself may contribute as an independent risk factor [5–7]. The risk of severe
COVID-19 is obviously higher in patients <65 years of age with malignant disease [6,8]. It
is considered that malignancy is associated with a significant increase in case fatality for
both hematologic and solid malignancies [9]. Mortality rates among patients with active
cancers are significantly higher, affected by their compromised immunity [8]. Additionally,
mortality rates can also be influenced indirectly. Disruptions to the healthcare system
caused by the pandemic can result in cancer treatment delays, frequent treatment modifica-
tions, and reduced screening, which impacts cancer-specific survival [10,11]. The incidence
of long-term COVID-19 sequelae also affects up to 15% of cancer patients and adversely
affects the survival rate and tumor prognosis after COVID-19 recovery [11]. However, it
is also important to note that mortality rates in these studies were usually derived from
inpatient data, so the specific rates might be overestimated.

Vaccination plays an important role in the prevention of infection and subsequent
severe COVID-19 among the general population (Figure 1). As cancer patients face a higher
risk of mortality from COVID-19, effective preventative efforts are especially important in
this population, with vaccination being one of the most effective methods. It has already
been proved that vaccination is a safe and powerful tool to protect this population against
other infectious diseases [12–14]. Previous research also indicates that patients with cancer
benefit from additional vaccine doses [15], which is in line with the current concept of
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prime–boost vaccination. However, insufficient data were collected to directly ascertain
the efficacy and safety of vaccines that are currently available for COVID-19 patients with
cancer. Compared to the general population, patients with malignancy are more likely to
develop a less proficient immune response upon vaccination. This is mainly caused by
disease-associated or therapy-led immune deficiency. Therefore, patients with cancer are
usually prioritized for vaccinations but excluded from registration in clinical trials [16,17].
This means that vaccine efficacy in this population has had to be indirectly deduced from
an immunological or antibody-response perspective [18–20].

Vaccines 2023, 11, x FOR PEER REVIEW 2 of 15 
 

 

population against other infectious diseases [12–14]. Previous research also indicates that 

patients with cancer benefit from additional vaccine doses [15], which is in line with the 

current concept of prime–boost vaccination. However, insufficient data were collected to 

directly ascertain the efficacy and safety of vaccines that are currently available for 

COVID-19 patients with cancer. Compared to the general population, patients with ma-

lignancy are more likely to develop a less proficient immune response upon vaccination. 

This is mainly caused by disease-associated or therapy-led immune deficiency. Therefore, 

patients with cancer are usually prioritized for vaccinations but excluded from registra-

tion in clinical trials [16,17]. This means that vaccine efficacy in this population has had to 

be indirectly deduced from an immunological or antibody-response perspective [18–20]. 

Patients with malignant disease have a higher mortality rate from SARS-CoV-2. 

Therefore, it is vital that we understand how we can more effectively prevent infection or 

reduce disease severity through vaccination. This review will provide an overview of the 

current knowledge of COVID-19 vaccines in patients with malignant disease, including 

vaccine effectiveness, factors that could negatively influence immune response, and vac-

cine toxicity and safety. We tried to address questions based on available data. Infor-

mation mentioned in this review may provide us with a better perspective to guide our 

clinical recommendations and future vaccination research programs. 

 

Figure 1. Infection- or vaccination-induced immune protection against SARS-CoV-2. 

During the SARS-CoV-2 infection process, viral antigens such as the spike (S) protein 

are recognized and presented by antigen-presenting cells. Vaccines (such as mRNA and 

adenoviral vector vaccines) mimic this response by encoding the spike protein. Antigen-

presenting cells recognize the spike protein and present it to effector cells. This results in 

the activation of B cell responses, which is responsible for providing humoral immunity 

and the activation of effector cells, including T helper CD4+ (Th cell) cell and CD8+ T cell, 

mediating cellular immunity. Memory T and B cells persist in the periphery and can ex-

pand in response to secondary exposure. This figure was created with BioRender. 

2. Literature Search 

In this review, we used different electronic databases including PubMed, EMBASE, 

and the first 20 pages of the Google Scholar. The time scale was from December 15, 2019, 

to 15 October 2022. The language of the articles that were reviewed was limited to English. 

Information retrieval used the combinations of the following medical subject headings 

and key words: COVID-19, SARS-CoV-2, variants, alpha, beta, gamma, delta, iota, epsi-

lon, vaccine, safety, efficacy, side effects, effectiveness, clinical trial, observational study, 

randomized controlled study, vaccination, mRNA vaccine, adenovirus vector vaccine, 

Figure 1. Infection- or vaccination-induced immune protection against SARS-CoV-2.

Patients with malignant disease have a higher mortality rate from SARS-CoV-2. There-
fore, it is vital that we understand how we can more effectively prevent infection or reduce
disease severity through vaccination. This review will provide an overview of the current
knowledge of COVID-19 vaccines in patients with malignant disease, including vaccine
effectiveness, factors that could negatively influence immune response, and vaccine toxicity
and safety. We tried to address questions based on available data. Information mentioned in
this review may provide us with a better perspective to guide our clinical recommendations
and future vaccination research programs.

During the SARS-CoV-2 infection process, viral antigens such as the spike (S) protein
are recognized and presented by antigen-presenting cells. Vaccines (such as mRNA and
adenoviral vector vaccines) mimic this response by encoding the spike protein. Antigen-
presenting cells recognize the spike protein and present it to effector cells. This results in
the activation of B cell responses, which is responsible for providing humoral immunity
and the activation of effector cells, including T helper CD4+ (Th cell) cell and CD8+ T
cell, mediating cellular immunity. Memory T and B cells persist in the periphery and can
expand in response to secondary exposure. This figure was created with BioRender.

2. Literature Search

In this review, we used different electronic databases including PubMed, EMBASE,
and the first 20 pages of the Google Scholar. The time scale was from 15 December 2019, to
15 October 2022. The language of the articles that were reviewed was limited to English.
Information retrieval used the combinations of the following medical subject headings
and key words: COVID-19, SARS-CoV-2, variants, alpha, beta, gamma, delta, iota, epsilon,
vaccine, safety, efficacy, side effects, effectiveness, clinical trial, observational study, ran-
domized controlled study, vaccination, mRNA vaccine, adenovirus vector vaccine, subunit
vaccine, inactivated vaccine, ChAdOx1 nCoV-19, Ad26.COV2.S, mRNA-1273, BNT162b1,
BNT162b2, rAd26, rAd5, MF59-adjuvanted spike glycoprotein-clamp, immunogenicity,
immunotherapy, neoplasms, cancer, hematologic neoplasms, lymphoma, leukemia, multi-
ple myeloma, myelodysplastic syndromes, myelofibrosis, B-Lymphocytes, T-Lymphocytes.
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Studies were screened and we included relatively larger studies that described the immuno-
genicity, efficacy, and safety of COVID-19 vaccines in patients with cancer. Studies were
excluded with relatively small cohorts, except for areas that have limited articles.

3. Vaccine Effectiveness in Patients with Malignant Disease

Clinical vaccine efficacy, which is usually defined as the prevention of symptomatic
COVID-19, is generally less proficient in patients with malignant disease [20–29]. The
evaluation of vaccine-induced immune response in cancer patients is mainly focused on
assessing the humoral immunity response. Humoral immunity response is primarily
evaluated by establishing seroconversion rates and mean anti-body titers of antibodies that
are spike-reactive or RBD-reactive [30–33]. Cellular immunity, mainly addressed by T cell
response, is relatively limited and often provided along with humoral immunity.

According to a large US Veterans study including cancer patients who received mRNA
vaccines, the overall vaccine effectiveness (VE) in patients with cancer was about 58%,
which is lower compared to the general population [29]. The high risk of VE reduction
against COVID-19 experienced by cancer patients has also been observed in several other
studies [18,20,21,27,31,34,35]. A UK prospective cohort study of 6.9 million vaccinated
participants identified hematological cancer (HR 1.86), respiratory tract cancer (HR 1.35),
receiving chemotherapy (HR 3.63–4.3), and receiving bone marrow or solid organ trans-
plantation within the past 6 months (HR 2.5) as risk factors for COVID-19-related death,
despite receiving two doses of vaccination [36]. Fortunately, some research also indicates
that in long-term follow ups, certain cancer survivors can develop higher VE, closer to the
rates of the general population [29,37].

3.1. Humoral Immunity: Serology and Neutralizing Antibodies
3.1.1. Effectiveness of Vaccination on Humoral Immunity

Humoral immunity is mostly evaluated through the rates of seroconversion and mean
antibody titers. According to a prospective observational study of the mRNA vaccine
BNT162b2 (Pfizer-BioNTech), after receiving one does of the vaccine, the proportion of
participants with positive anti-S IgG titers were 38% and <20% in patients with solid tumors
and hematological malignancies, respectively, compared with 94% in the control cohort [20].
Consistent with the general population, neutralizing responses to variants of concern
(VOCs) decrease progressively in patients with cancer [18,38]. In a predictive model study,
neutralization titers against some SARS-CoV-2 variants of concern were reduced compared
with the vaccine strain [39]. This might be the reason why, in patients with hematological
malignancies, only 31% patients had detectable titers with activity against the Delta variant
after two vaccine doses, compared to 56% against the previous Wuhan strain [18].

3.1.2. Risk Factors for Poor Humoral Immune Response to Vaccination
Solid Cancer

The presence of seroconversion can be detected in most patients (>90%) with solid
tumors, which is comparable with the general population [18,34,40]. However, the specific
conversion rate tends to be lower, as it is impacted by impaired immunogenicity [20,25,35].
A meta-analysis reported that 297 patients with cancer who have completed their vaccine
regiment had a lower seroconversion rate compared with the 140-participant control group
(RR 0.95; 95% CI 0.92–0.99) [26].

The cancer population and the general population share common risk factors for
reduced seroconversion: age, sex, and the type of vaccine [18,30,34] (adenovirus-vectored
vaccines are less effective compared to mRNA vaccines). The CAPTURE study compared
the use of BNT162b2 (mRNA) and AZD1222 (adenovirus-vectored) in patients with malig-
nant disease. In comparison with the AZD1222 cohort, an exceptionally higher proportion
of the BNT162b2 cohort developed neutralizing antibodies (nAbs) against the VOCs, along
with significantly higher median nAb titers [18]. Similar results have been reported by
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Astha et al. [34]. Thus, it might be important to prioritize mRNA vaccines for cancer
patients wherever possible.

Specific cancer therapies can impair vaccine-induced immunogenicity. Chemotherapy:
patients who received chemotherapy within 3 months prior to the first vaccination dose
were estimated to have a vaccine effectiveness of 57% (95% CI, –23% to 90%) starting
14 days after the second dose vs 76% (95% CI, 50% to 91%) for those receiving endocrine
therapy and 85% (95% CI, 29% to 100%) for those who had not received systemic therapy
for at least 6 months prior [29]. Several other studies also identified chemotherapy as a risk
factor for lower seroconversion and neutralizing responses [23,30,31,35,41–44]. Notably,
seroconversion may not be affected by the timing of vaccination of ongoing chemotherapy
cycles [31,34]. Therefore, centers do not have to reschedule chemotherapy plans for vacci-
nation. However, to avoid acute adverse effects, vaccines should still not be administered
with chemotherapy on the same day. Immune checkpoint inhibitors: the evidence is mixed
on the impact of inhibitors on vaccination. In a recent study, 7% (9/131) of the patients
treated with immunotherapy were classified as suboptimal responders or non-responders,
while the extent of seroconversion is generally high [40]. A study of breast cancer patients
receiving CDK4/6 inhibitors reported no significant decrement in response to the first
dose of COVID-19 vaccines. However, another study showed significantly lower titer after
vaccination in patients receiving CDK4/6 inhibitor therapy [34]. This is in line with the
result of another study, where up to day 30 after the second dose, ovarian cancer patients
receiving PARP inhibitors had significantly lower nAbs in comparison to matched healthy
volunteers [45]. Steroids: a study reported chronic steroid as an independent risk factor for
reduced seroconversion in solid cancer therapy [46].

Hematological Malignancies

An exceptionally lower seroconversion rate has been observed in patients with hema-
tologic malignancies compared to those with solid tumors after complete immunization
(65% vs. 94%; p < 0.0001) [26]. This is in line with another study that compares seroposi-
tive rate after vaccination in this population against the comparison group (75% vs. 99%;
p < 0.001) [41]. However, vaccination responses are similar to the general population
in long-term hematological malignancy patients, including patients that received very
immunosuppressive therapies [29,37]. Patient-specific risk factors include sex [47–49],
age [47–51], and type of vaccine [19,52]. A superiority in VE of mRNA vaccines has also
been observed in patients with Hematological Malignancies [18]. Additionally, interest-
ingly, within the mRNA vaccines, mRNA-1273 is more effective than BNT162b2 [28,50].
Another risk factor is progressive disease [50,53–55] (and other factors that result in the
disorder of the immune system, such as reduced levels of uninvolved immunoglobulins or
lymphopenia) [41,48,50,55–58]. Patients with different types of hematological malignancies
may also respond differently to the same COVID-19 vaccine. A study shows that among
patients with chronic lymphocytic leukemia (CLL), non-Hodgkin’s lymphoma (NHL),
multiple myeloma (MM), chronic myeloid leukemia (CML), myeloproliferative neoplasms
(MPN), and myelodysplastic syndromes (MDS), patients with CLL, NHL, and MM had the
lowest seropositivity rates [35]. Therefore, it might be important to run subgroup analyzes
in future research. Specific therapies can also impair vaccine-induced immunogenicity.
Antibody responses were substantially reduced in patients receiving anti-CD20 antibody
therapies [27,31,41,47,48,51,54,58–67], BTK inhibitors [41,48,51,54,56,59,61,62,65], BCL in-
hibitors (such as venetoclax) [41,48,51,61–65], BCMA-targeted therapies [57,62,68,69], anti-
CD38 antibody therapies [57,62,67–70], and JAK inhibitors [41,59]. Over 50% of patients
exhibited less seropositive responses compared to control groups, especially in patients
undergoing active treatment. Depletion of normal B cells is the main reason for negative
seroconversion-receiving anti-CD20 antibody therapies, BTK inhibitors, or BCL inhibitors.
Treatment with B cell–directed therapies may reduce the production of vaccination-induced
antibodies in patients with hematological malignancy because of B cell depletion and/or
disruption of the B cell-receptor signaling pathway. A duration of time before vaccination
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from the last B cell–directed treatment may result in improved antibody titers [64]. Ad-
ditionally, steroids, especially active steroid therapy, seems to have a negative effect on
humoral response [47,49,50,71]. Compared to specific therapies mentioned above, the neg-
ative effect seems to be milder, probably dosage-dependent, influencing <50% of patients
with hematological malignancy. However, the negative effect of TKIs is rarely seen [41,59].
Encouragingly, it seems that deficient humoral immunity can be improved through the
treatment of the primary disease, according to a study in which 79.2% of patients reached a
positive serological response after receiving effective treatment. [48]. This is in line with the
observation of long-term hematological malignancy patients, whose VE are comparable
with the general population, including patients that received very immunosuppressive
therapies [29,37].

3.2. Cellular Immunity: T Cell Responses
3.2.1. Effectiveness of Vaccination on Cellular Immunity

The effectiveness of vaccination on cellular immunity can be measured by flow cy-
tometric analysis of cellular activation-induced markers [72], IFN-γ release [18,40,54], or
combined IFN-γ and IL-2 release [20,66]. Waned T cell response could be detected more
clearly with IFN-γ release or cellular activation-induced markers [18,32]. Cellular immunity
is often weaker in cancer patients compared to the general population. Only 46–79% T cell
responses are detected in solid tumor patients according to studies above. However, several
studies still show comparable responses between the cancer population (both solid can-
cer and hematological patients) and the general population [18,32,33,54,72]. Additionally,
strong T cell responses can be elicited after stimulation with SARS-CoV-2-derived pep-
tides [34,73–76]. In contrast to humoral immunity, cellular immunity may correlate better
with long-lasting immune memory and protection from severe disease [77]. T cell response
is less affected by mutations, and epitopes are more broadly conserved [78]. Therefore, T
cell responses are more robust in patients with hematological malignancies; they can be
detected in 34% to 75% of patients in whom serological response is negative (although
34% of seronegative individuals had CD4 responses with mainly IL-2-only monofunctional
cells) [18,54,58,68].

3.2.2. Risk Factors for Poor Cellular Immune Response to Vaccination

Criteria for T cell positivity alters among studies. Some studies use the presence of
activation markers on virus-specific T cells, while others have quantified cellular cytokine
secretion. Therefore, the establishing of risk factors for poor cellular immune responses to
vaccination is more challenging than for humoral immunity.

Solid Cancer

Limited data are available on the risk factors of cellular immunity in solid cancer. In
a study including cancer patients receiving BNT162b2 mRNA, chemotherapy or steroids
within 15 days of vaccination were associated with reduced T cell responses to vacci-
nation [33]. Other studies also reported reduced T cell responses but did not specify
treatment [20,72]. Interestingly, T cells are detectable in the absence of antibody responses
in patients receiving chemotherapy or immune checkpoint inhibitors [40].

Hematological Malignancies

Compared to the humoral response to vaccination, specific therapies (especially B
cell-depleting therapies as anti-CD20 antibody therapies) seem to have a weaker impact
on T cell responses [18,47,58,66]. CD8+ responses have been detected in hematologic
cancer patients that received B cell-depleting therapies, even in the absence of humoral
responses [79,80]. HSCT and allogeneic-HCT: recipients of HSCT and allogeneic-HCT have
a much weaker T cell response; while serological response is detectable, T cell responses
seem to occur in only 20–30% of patients [81,82]. Moreover, T cell performance might be
influenced by the specific type of the disease. CML patients may achieve a polyfunctional T
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cell rate of 12/15 (80%) [83], while 80% and 60% of MPN patients showed a polyfunctional
response of CD4 and CD8 T cells, respectively [84]. However, seronegative MM patients
had significantly reduced CD4 T cell responses compared to those of healthy controls. Spike
stimulation increases IL-2 levels in patients with hematological malignancies, but the IFN-γ
and tumor necrosis factor α (TNF-α) remain lower, which indicates a reduced magnitude
of protection by T cell response [68]. Other studies using receptor-binding domain (RBD)
as stimulation still elicited weaker immunogenicity responses in patients with MM vs
healthy controls (34.2% vs. 71.4%). Moreover, in other hematological patients, low-RBD-
specific T cell responses can also be seen [20,33]. This probably means that instead of
disease-specific immunosuppression, cellular immunity is linked to the failure to generate
a durable immune response to novel antigens. Humoral and cellular responses were often
found to be discordant in patients with cancer. Thus, the disharmony of the humoral and
cellular immune system is a possible cause of poor vaccine response.

3.3. Prime–Boost Vaccination: Solution for Waning Immunity and VOCs

Vaccine efficacy reduces over time due to the waning of humoral immunity and the
emergence of novel VOCs. In line with reports from the general population, neutraliz-
ing responses to VOCs decrease progressively in patients with malignant disease [18,38].
However, the combination effect of VOCs and malignancy can lead to drastically reduced
VE, which is more likely be seen in patients with hematological malignancies [39]. It has
been reported the VE against the Delta variant was only 31%, compared to the previous
56% VE against the previous Wuhan strain [18]. Encouragingly, booster vaccination, as a
solution for waning immunity and VOCs, is well tolerated in cancer patients [32]. Several
studies have shown the poor immune effect of a single-dose vaccination, and that it can be
significantly boosted through a second dose, with seropositivity boosted up to 75% and
95% after the second dose [22,25,30–32,34,35,44,46,54,60,72,85–88]. Therefore, booster doses
for malignancy patients were urgently rolled out to compete with the waning humoral
immunity. Increased performance of humoral immunity, measured by antibody titers, in
patients with cancer have been observed, and neutralizing antibodies (nAbs) have also
shown threefold increases compared with pre-booster doses [27,32,52,89–93].

Receiving treatment does not appear to be a contraindication for booster vaccination,
as it increases the antibody response in patients with solid tumors, even in those receiving
active treatment (intravenous anticancer medication) [94]. Furthermore, booster vaccination
induced seroconversion in previously seronegative patients; up to 56% patients showed a
humoral response after the second vaccine dose [76].

In certain circumstances, a positive immune response might not be achieved with two
doses, especially to avoid response decrement due to novel VOCs. A third dose might
be necessary. The percentage of patients with detectable neutralizing responses to VOCs
can be broadened following booster vaccination; participants who had low neutralizing
titers after two vaccine doses received a third booster dose and enhanced the neutralization
against numerous VOCs [95]. Neutralizing responses against Omicron in patients with
solid cancer increased from 47.8% to 88.9% after a third-dose vaccination [86]. Enhanced
immunogenicity was observed after a third mRNA COVID-19 vaccination in solid cancer
patients who previously received the heterologous CoronaVac/ChAdOx1(inactivated vac-
cine) regimens [96]. In another study, nAbs in patients with solid cancer increased from
37% to 90% after the third dose against Omicron [53]. Hematological patients could also
benefit from this process. In the same research, neutralizing antibodies against Omicron
are rarely detected after two vaccine doses. However, approximately 50% have detectable
neutralizing antibodies after a third dose [53]. Notably, booster vaccination might be espe-
cially important to patients with hematological malignancies, as they have a higher risk of
not seroconverting after vaccination, especially in those with B cell malignancies receiving
B cell-depleting therapies (CD20-targeted therapies or BTK inhibitors) [61,76,97].

Interestingly, the effect of prime–boost vaccination might be influenced by the vaccine
combination or the sequence of injection. It seems that heterologous vaccination is superior
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to homologous vaccination, at least in those vaccinated with adenovirus-vectored vaccines
as the first dose [98]. However, the conclusion was drawn from a small observational study.
Thus, it may be too early to preclude any meaningful conclusions, not to mention the most
effective vaccine combination.

Unfortunately, the effect of booster vaccination on T cell response remains unclear. A
mild effect has been observed [98], while other studies indicate no significant increment [32]
or discordant effects in patients who remain seronegative after booster vaccination [76].

4. Safety Concerns: Adverse Effects

The cancer population seems to exhibit similar rates of vaccine-induced adverse events
compared to the general population. The most common adverse events reported in an
early study involving patients with cancer were soreness or pain at or around the injection
site (63% of vaccinees), local swelling (9%), and systemic reactions including muscle pain
(34%), fatigue (34%), headache (16%), fever (10%), chills (10%), and gastrointestinal events
(10%) [99]. A prospective observational study reported no evidence of other unknown
adverse effects so far [20]. Because of short observation time, knowledge of longer-term
adverse effects of COVID-19 vaccines in individuals with malignancy is limited.

Surprisingly, it has turned out that immune checkpoint inhibitors do not significantly
increase immune-related adverse events (irAEs) rate [99–101]. This is in line with the
VOICE trial; irAEs only occurred in 4% (6/137) patients treated with immunotherapy and
4% (7/163) patients treated with chemoimmunotherapy among participants in cohorts
observed up to 28 days after the second vaccination [40]. However, possible vaccine-related
irAEs are still reported in case reports [102,103].

Patients receiving hematopoietic stem cell transplantation (HSCT) or allogeneic hemat-
opoietic cell transplantation (allo-HCT) seem to exhibit not only a reduced vaccine response,
but also a greater risk of vaccine-induced adverse effects. Cytopenia and worsening of
graft-versus-host disease may follow vaccination, and complications have been reported
after vaccination in up to 10% of patients [71,82,104].

Local lymphadenopathy is commonly observed after vaccination. Breast cancer pa-
tients showed an 14.5% to 53% rate of vaccine-induced lymphadenopathy that lasted for
over 6 weeks in 29% of patients [105]. Fortunately, lymphadenopathy usually resolves
spontaneously [106]. However, the local lymphadenopathy brings challenges to imaging
diagnoses, as it could be misinterpreted as lymph node metastases [44,105,107].

5. Discussion and Future Directions

Numerous studies have addressed the efficacy and immunogenicity of COVID-19
vaccines in patients with cancer since the outbreak of the pandemic. In this review, we
provided information on vaccine effectiveness, factors that could influence the immune
response, and vaccine safety of COVID-19 vaccines in patients with malignant disease.
However, several questions remain, and additional research is required.

Firstly, studies are narrowed with the type of vaccine. Studies included in this review
mostly focus on mRNA or adenovirus-vectored vaccines. Information on the efficacy
and safety of other COVID-19 vaccines in patients with malignant disease is limited. For
example, we currently have limited information on the inactivated vaccines used widely in
China, a country with a large population of people living with malignant diseases.

Secondly, the endpoint of vaccine effectiveness varies among studies and should
be considered deliberately. Most studies use the serological detection of spike-binding
antibodies in patients with cancer as a major immunological endpoint. They assessed the
presence of spike-reactive or RBD-reactive antibodies to establish rates of seroconversion
and mean antibody titers. However, this may lead to imprecise implications of functional
virus-neutralizing activity, especially against VOCs. Moreover, defining the levels of
antibodies directed precisely against the RBD on the spike protein may be more clinically
relevant as an indicator of protection against COVID-19 disease, as such antibodies have
shown higher neutralization capacity. Previous studies are more abundant on the study
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of humoral immunity responses against COIVD-19 vaccines. However, studies on T cell
responses have been addressed in relatively fewer studies and often in smaller subsets. This
is probably because of the difficulty establishing risk factors and setting up a clear endpoint
compared to humoral immunity. T cell positivity is defined variously among studies; some
of them have measured T cell reactivity by broadly quantifying cellular cytokine secretion,
while others have used the presence of certain activation markers on virus-specific T cells
for this purpose. The role of the T cell response against COVID-19 should be paid more
attention to, as T cell responses have been observed to be more robust in patients with
hematological malignancies. Future research into T cell response may lead to more effective
vaccines.

Thirdly, the stratification for specific cancer subtypes and therapies is needed. The
importance of stratified subtypes has already been shown in the studies of hematological
neoplasms. It is difficult to deduce the most optimal strategy of vaccination due to the
heterogeneity of existing cohorts, while the efficacy of a vaccine may alter between different
neoplasms subtypes. For example, differences in seroconversion of patients with malignant
disease vs the general population are probably restricted to specific subgroups, highlighting
the need for ongoing systematic meta-analyses to precisely define the at-risk groups among
patients with either solid tumors or hematologic diseases. Future research should consider
stratification in cancer subtypes when evaluating the safety and effectiveness of existing
or novel COVID-19 vaccines. Moreover, questions of the optimal time between doses, the
identification of at-risk patients after vaccination, and strategies for additional protection
of at-risk patients beyond vaccination for different cancers are needed to be answered.

Fourthly, studies may be limited to publication time, therefore failing to include novel
VOCs as study objects. Novel VOCs may perform different patterns of immune response
after vaccination. For example, the progressive reduction in vaccine efficacy has been
observed in new emerging VOCs, especially against the Beta, Delta, and Omicron VOCs.
This means a portion of previous studies are time efficient. Novel studies are needed to
answer the question of whether vaccine-induced protection could prevail against emerging
VOCs, and whether novel vaccines are needed against later strains for better protection.

Finally, the prime–boost vaccination concept has already been adopted in many health-
care systems to provide a level of protection comparable to the general population. How-
ever, the question of whether heterologous vaccine boosting regimens generate improved
vaccine-induced immune responses in patients with malignant disease needs further long-
term evaluation. Additionally, the optimal combination of vaccines needs to be sought.
Moreover, further investigations into the durability of vaccination and the therapy-specific
influence over the vaccine needs to be launched.

6. Conclusions

Encouragingly, a massive reduction in the risk of severe COVID-19 and death has
already been reached through global effort with the development of COVID-19 vaccines.
The vaccines available are effective in patients with cancer and the incidence of severe
adverse events is comparable to that in the general population, although patients with
cancer seem more likely to develop a less proficient immune response than the general
population. Certain toxicity profiles have been reported in specific patient populations, but
the benefits of vaccination against COVID-19 clearly outweigh the risks in all patients with
cancer.

A high proportion of patients with solid tumors can develop both humoral and T cell
responses following vaccination, although cancer therapies can suppress these responses.
Patients with hematological malignancies are often more vulnerable and perform limited
immune responses; this is found in patients receiving high-dose steroids, chemother-
apy, and especially in those with B cell malignancies receiving B cell-depleting therapies.
Choosing a time when immunosuppressive treatments are withheld might be a strategy to
improve VE.
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Discouragingly, a proportion of patients exhibit seronegative responses. However,
booster vaccines can result in seroconversion in those who were previously seronegative
following two vaccine doses, suggesting benefits of continuing administered vaccine doses.
In some cases, a third vaccine dose is strongly encouraged, particularly for individuals
with hematological malignancies in whom two doses do not provide sufficient immune
protection. A superiority has been observed in mRNA vaccines over viral vector vaccines
regarding immunogenicity. More research into the combination of vaccine boosting is
needed.

Effective measures taken to protect patients with cancer from contracting COVID-19
should not only include the prioritization of vaccination but also public health measures.
Adequate vaccination of all close contacts to offer population immunity for cancer patients
is needed.
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