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Abstract: The monkeypox virus (MPXV) has caused an unusual epidemiological scenario—an
epidemic within a pandemic (COVID-19). Despite the inherent evolutionary and adaptive capacity of
poxviruses, one of the potential triggers for the emergence of this epidemic was the change in the
status of orthopoxvirus vaccination and eradication programs. This epidemic outbreak of HMPX
spread worldwide, with a notable frequency in Europe, North America, and South America. Due to
these particularities, the objective of the present study was to assess and compare cases of HMPX
in these geographical regions through logistic and Gompertz mathematical modeling over one year
since its inception. We estimated the highest contagion rates (people per day) of 690, 230, 278, and
206 for the world, Europe, North America, and South America, respectively, in the logistic model.
The equivalent values for the Gompertz model were 696, 268, 308, and 202 for the highest contagion
rates. The Kruskal–Wallis Test indicated different means among the geographical regions affected by
HMPX regarding case velocity, and the Wilcoxon pairwise test indicated the absence of significant
differences between the case velocity means between Europe and South America. The coefficient of
determination (R2) values in the logistic model varied from 0.8720 to 0.9023, and in the Gompertz
model, they ranged from 0.9881 to 0.9988, indicating a better fit to the actual data when using the
Gompertz model. The estimated basic reproduction numbers (R0) were more consistent in the logistic
model, varying from 1.71 to 1.94 in the graphical method and from 1.75 to 1.95 in the analytical
method. The comparative assessment of these mathematical modeling approaches permitted the
establishment of the Gompertz model as the better-fitting model for the data and the logistic model
for theR0. However, both models successfully represented the actual HMPX case data. The present
study estimated relevant epidemiological data to understand better the geographic similarities and
differences in the dynamics of HMPX.

Keywords: basic reproduction number; cases; coefficient of determination; critical time; Gompertz
function; logistic regression; mathematical modeling; monkeypox
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1. Introduction

The Monkeypox (also known as Mpox) virus (MPXV) is a zoonotic virus with similar
clinical features to smallpox. MPXV belongs to the family Poxviridae, and the viral particle
is a brick-shaped enveloped virion, 150–300 nm in size, that contains a double-stranded
D.N.A. genome of 200 kbp on average [1]. Although the source of MPXV is among animals,
it is still undetermined whether the viral host reservoirs and infection occur in species such
as mice, rats, rabbits, hamsters, monkeys, humans, prairie dogs, woodchucks, jerboas, and
porcupines [2].

The virus was initially isolated in 1958 from vesiculopustular lesions found in fever
monkeys (Java macaques) in Denmark. However, the first recorded human Monkeypox
(HMPX) infection occurred in 1970 in the Democratic Republic of the Congo, followed
by sporadic outbreaks in eight African countries between 1970 and 1999, resulting in
approximately 923 HMPX cases [3]. The first instance of HMPX outside Africa was reported
in 2003 in the United States, with 47 cases. Between 2000 and 2020, a total of 20,237 cases of
HMPX were reported across 16 countries [4]. Although MPXV had been primarily confined
to African countries with occasional outbreaks elsewhere, in May 2022, a case of HMPX
was documented in the United Kingdom. From that point until February 2023, the virus
has rapidly spread to over 100 countries, leading to a total of 85,536 confirmed cases, with
most cases concentrated in Europe, the U.S.A., and South America [5].

MPXV zoonotic transmission occurs through direct contact or consumption of infected
animals. Human-to-human transmission usually takes place through indirect contact
with respiratory secretions, skin lesions, or contaminated objects. However, direct contact
remains a well-known risk factor for transmission [6]. MPXV infection causes a self-limiting
disease with an incubation period of 4–14 days, and it is characterized by headaches,
malaise, backache, fatigue, lethargy, and a low-grade fever. The vesiculopustular rash on
the face and trunk appears 12–26 days after exposure, and the worst clinical outcomes, such
as bronchopneumonia, encephalitis, and visual loss, are expressed in immunocompromised
patients [6].

Since eradicating smallpox using the vaccinia virus in 1980, nearly four decades have
passed without any orthopoxvirus vaccination programs. Consequently, discontinuing
smallpox vaccination may have contributed to a reduction in, or even loss of, herd immunity
against HMPX, potentially leading to an increase in the spread of the virus [7]. At present,
the treatment for HMPX is primarily supportive, and antiviral medications like tecovirimat,
cidofovir, and brincidofovir come with serious adverse effects. Additionally, only three
FDA-approved vaccines have shown efficacy in clinical trials; however, there are currently
no available data on their real-world effectiveness [8]. The long-term and rapid transmission
in non-endemic regions worldwide has raised concerns about the potential evolution of
MPXV into a more lethal pathogen. Moreover, the lack of treatment emphasizes the need
for strategies to enhance epidemiological tracking and reckoning [9].

Since the 1920s, mathematical modeling approaches have been developed to under-
stand dynamic growth and viral transmission patterns [10]. Logistic-regression-based mod-
els have been proposed for detecting and predicting epidemiology patterns in COVID-19,
showing similar results between the dynamics of the virus in a real scenario and those
calculated by the model [11–13]. In mathematical modeling based on a differential equation,
along with the logistic model, there is another widely used model in population growth
dynamics: the so-called Gompertz model, which has been widely used in tumor and epi-
demiological growth. Gompertz initially proposed this model in 1825 to study mortality in
human populations. Since it was used by Casey in 1934 for the adjustment of tumor growth
curves [14,15], its use in mathematical oncology has been ubiquitous because the solution
curve of the differential equation used in the Gompertz model gives us the ability to model
a saturated growth with a nonsymmetric inflection point compared to the logistic model
whose sigmoid curve is symmetrical [16,17]. In epidemiology, it has been used along with
other models such as the generalized logistic, Von Bertalanffy, and Richards, among others,
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for the adjustment of curves showing the population of people affected by COVID-19, for
example [18,19].

Infection with the MPXV has previously been modeled using systems of ordinary
first-order differential equations [20,21] and fractional order [22,23], which have considered
both interaction with a sink for zoonotic transmission (rodents) as well as dissemination
among the human population, and in some cases isolation of the sick and vaccination
which provides permanent immunity have been also considered. Although models based
on systems of differential equations provide a much more detailed explanation of the
mechanisms of population propagation and allow us to simultaneously evaluate several
epidemiological populations in addition to those infected as susceptible, latent, or recovered,
models that characterize a single population, have been shown to fit well with the data in
some studies [18,24,25].

This study aimed to assess and compare cases of HMPX in distinct continental regions
through logistic and Gompertz differential equations over 12 months of the epidemic. In
addition, we estimated the primary reproduction number for each model.

2. Materials and Methods
2.1. Data Collection

The primary dataset used to analyze Monkeypox infections in the present study was
obtained from the World Health Organization’s (WHO) comprehensive report on global
trends in Monkeypox for 2022–2023 [26]. The data variable under investigation pertained
to the aggregate number of cases or infections, wherein “total cases” was defined as the
sum of confirmed Monkeypox cases within the specified time frame, from 1 May 2022 to 30
April 2023 (Table S1).

To elucidate the epidemiological landscape of Monkeypox, a graphical representation
was employed to illustrate the temporal evolution of the disease across the world and the
continents with the highest incidence rates, namely Europe, North America, and South
America. A comprehensive global overview was presented, treating it as a single entity for
the specified time interval.

2.2. Mathematical Modeling

The mathematical modeling of the Monkeypox time series considering the variable
of cases (or diagnosed infected people) was carried out using the logistic regression and
the Gompertz function. These models use the sigmoid function to describe the growth of a
variable with slower speeds at the beginning and end of a period.

The R programming language within the R Studio integrated development environ-
ment (IDE) incorporates various packages, including, but not limited to, tidyverse and
ggplot2, as outlined in subsequent sections. These packages were used to visualize and
model the results obtained [27].

2.2.1. Logistic Model

The foundation of this model was rooted in the empirical modeling framework posited
by Bronshtein and Semendiaev, and it was derived as an extension of the Verhulst–Pearl
logistic model [28,29]. In the context of this research, this model was employed to assess
and project the temporal patterns of Monkeypox cases within specific geographical regions,
namely the world, Europe, North America, and South America.

The mathematical expression used to quantify the temporal dynamics of Monkeypox
within these defined populations can be characterized as a logistic dispersion, and it is
formulated as follows:

N =
M(

1 + Q× e−k×t
) (1)

In this mathematical representation, the symbol “M” signifies the maximum capacity
for the occurrence of cases, “Q” denotes a pre-established constant, “k” represents a factor
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of proportionality, “t” signifies the elapsed time measured in days, and “N” represents the
count of observed cases.

The formula utilized to calculate the maximum capacity “M” for the three distinct
events necessitates the consideration of three independent stochastic variables, along
with their associated dependent values retrieved from the dataset. This computation is
performed according to the following mathematical expression [13]:

M =
A× B− I2

A + B− 2I
(2)

The initial value, denoted as “A”, corresponds to the dependent variable at the in-
flection point of the independent variable “t1”. If the computed inflection point (mean
value) is not a whole number, it is rounded to the next highest available integer value.
This rounding rule will be used similarly for the following parameters and will include
any linked value. The second value, designated as “B”, represents the dependent variable
value corresponding to the final value of the independent variable “t2”. The third value,
denoted as “I”, is associated with the dependent variable value related to the semi-sum
of the independent variables “t1” and “t2,” expressed as “t3 = (t1 + t2)/2”. Subsequently,
the ascertained value of “M” is inserted into the logistic model. The logistic model is
then subjected to mathematical linearization, and the least squares method is employed
to achieve the following form: ln

(
M
N − 1

)
= ln Q + k× t; a linear equation: y = A + Cx,

where y = ln
(

M
N − 1

)
, x = t, and A = ln Q.

Executing the statistical procedure of linear regression involves inputting paired data
points (x, y)

[
t, ln

(
M
N − 1

)]
, and upon entering all the data pairs to determine the values of

ln Q and k, where k represents the slope of the linear equation (specifically, the ‘C’ coefficient
in the equation: y = A + Cx, with A being lnB and thus, Q = eA. This is achieved by
deriving Equation (1), leading to the establishment of Equation (3). Equation (2) is then
employed to ascertain the maximum possible number of infected individuals (M), a crucial
value for subsequent calculations. To gauge the incidence rate of Monkeypox cases within
the specified populations, we deduce the established logistic model, characterized by the
following mathematical representation:

dN
dt

=

[
M×Q× k× e−k×t(

1 + Q× e−k×t
)2

]
(3)

To ascertain the critical time point, denoted as (tc), corresponding to the moment when
the count of Monkeypox cases reaches its peak, we derive Equation (3), equal it to zero,
and subsequently solve for (tc):

tc = −
1
k
× ln

(
1
Q

)
(4)

2.2.2. Gompertz Model

The Gompertz model assumes that a population’s growth rate is density-dependent,
that is, that the number of individuals in a later instant depends on the number of individ-
uals previously, and the higher the initial number of individuals, the higher their growth
rate will be. It is also part of the model’s formalized ordinary differential equations, whose
solutions are sigmoid functions and, in the particular case that we present, depend on three
parameters for further adjustment, and whose main characteristic is that the turning point
of the curve is located before the midpoint of the curve, which gives it an asymmetrical
aspect, meaning it can reflect processes where exponential growth occurs in early stages of
the epidemic and then slows down [14,24].
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The Gompertz differential equation can be posed as a modification of the logistic
equation, given as dN

dt = rN
(

1− ln(N)
ln(α)

)
, where is the infection rate (day−1), α, is the maxi-

mum cumulative number of infected people in each region, and N = N(t) is the cumulative
number of infected from the onset of the epidemic versus time t (in days). Rewriting
the equation, we produce: dN

dt = rN
(

1− ln(N)
ln(α)

)
= rN

(
ln(α)−ln(N)

ln(α)

)
= r

ln(α) N·ln
(

α
N
)
; by

making a change in variable γ = r
ln(α) , we can express: dN

dt = γ·N·ln
(

α
N
)
, where γ is the

constant of proportionality related to the growth rate of the epidemic. Therefore, we can
present the initial value problem as:

dN
dt

= γ·N·ln
( α

N

)
, t(0) = t0, N(t0)= N0, (5)

where t0 is a point of reference from the beginning of the epidemic and N0 > 0 is the number
of infections accumulated at the beginning of the infection over time t0. The analytical
solution of the differential Equation (5) is as follows:

N(t) = N = α·e−ln( α
N0

)·e−γt
(6)

Making an additional variable change we produce: β = ln
(

α
N0

)
, where β is a parame-

ter that controls how quickly the population approaches α. The higher the β, the faster the
population will approach the maximum asymptotic value of α. From which we can express
the Gompertz function as:

N(t) = N = αe−βe−γt
(7)

The function found in (7) will be our curve, to which we will adjust the selected data
to apply the same methodology to determine parameters as in the logistic model. The value
of α was calculated using the mean values described by Bronshtein and Semendiaev, while
the parameters β and γ were obtained with linear regression [30].

Taking natural logarithm to (7), we obtained,

Nln(N) = lnα− βe−γt

ln(N)− lnα = −βe−γt (8)

Making the following variable change, it becomes,

y = ln(N), c = lnα
y− c = −βe−γt (9)

And linearizing produces,

ln(y− c) = ln(−β)− γt

If we have three points representing the epidemiological data of accumulated infected:
(t1, y1), (t2, y2), (t3, y3), we can estimate the parameter c [30].

c =
y1y2 − y2

3
y1 + y2 − 2y3

(10)

By reversing the variable changes in (8) and taking the same three points as those
considered for the logistics model (t1, A), (t2, B), (t3, I), where t3 = (t1 + t2)/2, which we
must replace in (10), we can calculate the value of α:

lnα = ln(A)ln(B)−ln2(I)
ln(A)+ln(B)−2ln(I)

α = e(
ln(A)ln(B)−ln2(I)

ln(A)+ln(B)−2ln(I) )
(11)
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On the other hand, from expression (8) we must:

lnα− ln(N) = βe−γt

ln
( α

N

)
= βe−γt

And by linearizing, we produce:

ln
(

ln
( α

N

))
= lnβ− γt (12)

From the second linearization Equation (12), and by applying the least squares method
approach with the line Y = a + bX, where Y = ln

(
ln
(

α
N
))

, X = t, b = −γ, and a = ln(β),
it is possible to find the values of the parameters α and γ of the Gompertz equation.

To estimate the parameters through linear regression, the data were tabulated as
ordered pairs (t, N), and the values of Y = ln

(
ln
(

α
N
))

and X = t were calculated directly
from the estimated line, the values of γ = −b, and a = ln(β), then β = ea.

To estimate the rate of cases due to Monkeypox in all study populations, the Gompertz
function was derived, and its differential equation was found:

dN
dt

= αβγe−βe−γt−γt

In order to determine the critical value (tc), which represents the maximum value of
the daily cases observed in the data, the second derivative was calculated, which has the
form:

d2N
dt2 = αβγe−βe−γt−γt(βγe−γt − γ

)
(13)

Moreover, expression (13) was equal to zero, which geometrically represents the
time coordinate of the inflection point of the Gompertz curve of the accumulated cases
(data), obtaining:

tc =
ln(β)

γ

If the value obtained is not an integer, the following integer value is selected (through
rounding), and then this value serves as a reference to find the date and maximum daily
infection rate value in the data.

2.3. Statistical Analysis

In the R programming language (version 4.2.3), we utilized additional packages within
the R Studio integrated development (IDE) environment, namely Nortest and Stats. The
Nortest package comprises a set of R functions tailored for executing normality tests, while
the Stats package encompasses a range of R functions dedicated to statistical tests and
comprehensive data analysis. Additionally, for model validation, we employed the lmtest
package to conduct the Breusch–Pagan test.

2.3.1. Normality Tests for the Variable Cases

The Monkeypox Total Cases variable underwent a segmentation process for statistical
analysis, was stratified according to the respective population groups under investigation,
and categorized by geographical region (i.e., world, Europe, North America, South Amer-
ica). This segmentation was performed to determine the most appropriate statistical tests to
be subsequently applied to the dataset for both the logistic model and the Gompertz model.

Hypothesis tests were conducted to assess the normality of the data within each group.
These tests were designed to ascertain whether the data distribution in each group adheres
to a normal distribution. The outcome of these tests is represented by a p-value, which
quantifies the probability of observing a data distribution similar to or deviating further
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from normality. This is carried out assuming the null hypothesis posits that the variable
conforms to a perfectly normal distribution within the population [31]. In cases where the
p-value exceeds the predetermined significance level, inadequate evidence exists to reject
the null hypothesis. This suggests that the variable follows a normal distribution [31].

The Kolmogorov–Smirnov test was employed because the dataset within each popula-
tion group exceeded a sample size of N > 50. This test used the lillie—test function from
the Nortest package for each population.

Hypothesis Test:

H0: The data follows a normal distribution.

H1: The data does not follow a normal distribution.

A significance level (α) of 0.05 was established.

2.3.2. Kruskal–Wallis Test for Monkeypox Cases Velocity

Based on the normality test results, the Kruskal–Wallis test was conducted for both
the logistic and Gompertz models. This non-parametric test assesses differences among
three or more independent groups sampled from a single non-normally distributed contin-
uous variable [32]. To perform the test, the Kruskal.test (case velocity~geographic region,
data = monkeypox) function was used.

Hypothesis Test:

H0: No significant differences among the means of the populations under study exist.

H1: At least one mean significantly differs from the other populations.

A significance level (α) of 0.05 was established.

2.3.3. Post-Hoc Test: Pairwise Wilcoxon Test for Monkeypox Cases Velocity

Based on the results of the Kruskal–Wallis test, a post-hoc test was conducted to
determine which means exhibited significant differences for both the logistic model and the
Gompertz model. As a post-hoc test for the Kruskal–Wallis test, multiple non-parametric
pairwise comparisons are typically performed, often using the pairwise Wilcoxon test [33].
To conduct the test, the pairwise. wilcox.test (case velocity~geographic region, data = mon-
keypox) function was employed.

Hypothesis Test for each combination:

H0: No significant differences exist between the means of populations X and Y.

H1: There are significant differences between populations X and Y.

X and Y represent any pair of populations analyzed by the Wilcoxon test.
A significance level (α) of 0.05 was established.

2.3.4. Multiple Linear Regression Analysis for Monkeypox Cases Velocity

Additionally, a multiple linear regression test was conducted to assess the effect of
each geographic region on the velocity of Monkeypox cases and to validate the conclusions
drawn from the Kruskal–Wallis and Wilcoxon tests for the logistic model and the Gompertz
model. Time and geographic region were used as independent variables to determine if
they are explanatory in the multiple linear regression model [34]; in other words, if they
affect the velocity of Monkeypox cases. The lm(case velocity~time + geographic region,
data = monkeypox) function was utilized to perform the test.

Hypothesis Test for each geographic region:

H0: Geographic region does not affect the velocity of Monkeypox cases.

H1: Geographic region affects the velocity of Monkeypox cases.

The geographic regions are Europe, North America, and South America.
A significance level (α) of 0.05 was established.
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2.3.5. Comparison of Modeled Variable against Real Data

To assess the degree to which the mathematical models align with the empirical data,
we computed the coefficient of determination denoted as R2, as elaborated by Schober,
et al. [35], for both the logistic model and the Gompertz model. R2 indicates the proportion
of the total variability observed in the response variable that the model can elucidate.
A higher R2 value, approaching 1, signifies a robust model fit, implying that the model
can account for a substantial portion of the response variable’s variability. Conversely, a
lower R2 value, approaching 0, implies that the model inadequately explains the variability
inherent in the response variable.

To calculate R2, we employed the subsequent mathematical formula:
R2 = 1 − (SSR/SST), where S.S.R. (Sum of Squares Residual) represents the summation of
squared discrepancies between the predicted values derived from the model and the actual
values of the response variable. At the same time, S.S.T. (Sum of Squares Total) signifies the
summation of squared discrepancies between the actual values of the response variable
and its mean.

Additionally, the Akaike information criterion (A.I.C.) was used as a second metric to
analyze the goodness of fit of our models to the actual data. This criterion evaluates the
quality of the adjustment of the models considering the number of parameters used in each
model and the number of observations made, choosing the best model that minimizes the
A.I.C. index. This index is calculated as [18]:

AIC = n·ln
(

∑n
i=1(yi − ŷi)

2

n

)
+ 2·p

where n is the amount of data analyzed (in our case, 365 days), p is the number of parameters
of our model (p = 3, for both models), and the difference in residuals squared is given
between the observed values (actual data) yi and the predicted values for each of the models
ŷi. This index was estimated after tabulating data accumulated for the infected population
(actual data, estimated data from the logistic and Gompertz models). Three parameters
were estimated for the logistics model (M, A, k) and the Gompertz model (α, β, γ).

2.4. Estimation of the Basic Reproduction Number

The primary reproduction number is a relevant epidemiological parameter at the
beginning of an epidemic outbreak; it indicates the number of secondary infections that can
occur when an infected individual is in contact with a population susceptible to infection.
Its epidemiological interpretation means that, forR0 > 1, the disease will spread, while for
R0 < 1, the outbreak will tend to limit itself. Aware of the importance of this epidemiological
parameter, we employed two different approaches to estimate it using the data obtained
from the two mathematical models in the present study. This was carried out to evaluate
which of these approaches could better reflect a real scenario. In our case, we estimate
R0 values for both models using two empirical methods. To implement them, we need
to know the infectious time and incubation period (pre-infectious period) of the disease.
Then, we estimate the value ofR0 using the following formula [36]:

R0 = (1 + r·D)
(
1 + r·D′

)
(14)

where r is the growth rate of the epidemic, D is the average time of infection, and D′ is the
average incubation time. This approach is valid when we assume that D and D′ follow an
exponential distribution, and when D and D′ are relatively short compared to each other.

The first methodology presented in [36] is a graphical method by which we tabulate
the first 26 days of the epidemic (considering the quasi-exponential behavior in the early
stages of the epidemic outbreak), concerning the natural logarithm of the accumulated
data, and using linear regression, we estimate the growth rate of the epidemic “r” (intrinsic
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growth of the infected population per each model) as the slope of the straight. The obtained
values for r are then utilized in Equation (14).

The second methodology used is an analytical approach, since at the beginning of an
epidemic, the number of infected persons accumulated is much lower than their maximum
capacity, N� Nmax; therefore, it is possible to approximate a logistic or Gompertz function
for exponential growth.

In the case of the differential logistic equation dQ
dt = kQ

(
1− Q

M

)
, when Q < M,

Q/M tends to zero, and therefore, dQ/dt = rQ, whose solution is Q(t) = Q(0)ekt, where
rlogistic = k is the intrinsic growth rate of the epidemic “r”.

For the Gompertz model dN
dt = γNln

(
α
N
)
, we can approximate ln(α/N) by using a

Taylor series: ln(α/N) = ln(α)− N/α. So, dN/dt = γN(ln(α)− N/α), and when N < α,
then dN/dt = γln(α)N. The solution is N(t) = N(0)eγln(α)t, where rgompertz = γln(α) = r.
The obtained values for r are then utilized in Equation (14).

3. Results
3.1. Epidemiological Panorama of Monkeypox

The Monkeypox outbreak that began in May 2022 accumulated more than 87 thousand
cases worldwide until this study’s analysis date (30 April 2023). Worldwide, the maximum
values of daily cases were recorded between 24 August and 5 October 2022, exceeding
1650 cases per day. In the case of the continents, the maximum case values were recorded in
2022, between 10 July to 2 August (for Europe), 10 to 24 August (for North America), and
between 9 August to 12 October (for South America), with maximum values exceeding 860,
1450, and 620 cases per day, respectively (Figure 1). Consequently, the accumulated case
values as of the cut-off date were more than 87.2 thousand (world), 25.6 thousand (Europe),
36.9 thousand (North America), and 22.3 thousand (South America).
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3.2. Mathematical Modeling

The mathematical models (logistic and Gompertz) were applied to each region (world,
Europe, North America, and South America) independently. The results obtained are
shown below (Table 1):
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Table 1. Estimated parameters for the logistic and the Gompertz models.

Model Parameters World Europe North America South America

Logistic Coefficient of Determination R2 0.8885 0.8720 0.9023 0.8774
Logistic Critical time tc (days) 152 108 117 144
Logistic Date on tc 30 September 2022 23 August 2022 28 September 2022 25 October 2022
Logistic Nmax on tc 43,648 13,926 18,515 11,160

Logistic
Highest contagion rate

(people/day)
690 230 278 206

Gompertz Coefficient of Determination R2 0.9952 0.9881 0.9900 0.9988
Gompertz Critical time tc (days) 100 62 75 94
Gompertz Date on tc 9 August 2022 8 July 2022 17 August 2022 5 September 2022
Gompertz Nmax on tc 32,656 9463 13,699 8264

Gompertz
Highest contagion rate

(people/day)
696 268 308 202

Finally, the results estimated by the logistic and the Gompertz models were compared
with the actual data and observed simultaneously. The contagion rate of Monkeypox cases
by each analyzed geographic region (Figure 2A) and the cumulative cases (Figure 2B)
are shown:
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3.3. Statistical Analysis
3.3.1. Normality Tests for the Variable Cases

The data from the populations (world, Europe, North America, and South America)
for the modeled data did not exhibit a normal distribution. The p-value for each population
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(Table 2) was less than 0.05, indicating the rejection of the null hypothesis and establishing
that the data does not follow a normal distribution.

Table 2. Results of the Normality Test.

Model Geographic Region p-Value Hypothesis Testing Interpretation

Logistic World 6.39 × 10−34 Reject H0 Non-Normal Distribution
Logistic Europe 4.11 × 10−60 Reject H0 Non-Normal Distribution
Logistic North America 1.08 × 10−32 Reject H0 Non-Normal Distribution
Logistic South America 1.68 × 10−30 Reject H0 Non-Normal Distribution

Gompertz World 1.94 × 10−39 Reject H0 Non-Normal Distribution
Gompertz Europe 3.77 × 10−98 Reject H0 Non-Normal Distribution
Gompertz North America 5.37 × 10−39 Reject H0 Non-Normal Distribution
Gompertz South America 2.87 × 10−36 Reject H0 Non-Normal Distribution

3.3.2. Kruskal–Wallis Test for Monkeypox Cases Velocity

The Kruskal–Wallis mean comparison test was conducted to assess whether there are
significant differences in the Monkeypox case velocities among each geographic region
for the logistic and Gompertz models. The obtained p-values were 1.55 × 10−41 and
2.71 × 10−42, respectively, rejecting the null hypothesis and indicating that at least one
population whose mean significantly differs from the means of the other populations under
study for the logistic model and the Gompertz model.

3.3.3. Post-Hoc Test: Pairwise Wilcoxon Test for Monkeypox Cases Velocity

The post hoc test, the Wilcoxon pairwise test, was performed to evaluate which mean
or means present significant differences compared to the other populations for both the
logistic and Gompertz models. The obtained p-values (Table 3) were mostly less than 0.05,
rejecting the null hypothesis and indicating significant differences among the following
populations: world and Europe, World and North America, world and South America,
Europe and North America, North America, and South America for both the logistic model
and the Gompertz model. However, the populations of Europe and South America have a
p-value of 0.894 for the logistic model and 0.546 for the Gompertz model, which is greater
than 0.05, hence accepting the null hypothesis and indicating that there are no significant
differences between the means of both populations for both models.

Table 3. Results of the post hoc test, Wilcoxon pairwise test.

Model Geographic Region World Europe North America

Logistic Europe 3.71 × 10−30 - -
Logistic North America 3.92 × 10−15 8.65 × 10−6 -
Logistic South America 6.23 × 10−32 0.894 1.73 × 10−6

Gompertz Europe 3.48 × 10−32 - -
Gompertz North America 1.71 × 10−15 2.93 × 10−6 -
Gompertz South America 5.17 × 10−31 0.546 5.15 × 10−6

3.3.4. Multiple Linear Regression Analysis for Monkeypox Cases Velocity

The multiple linear regression test was conducted to determine and validate whether
geographic region affects the Monkeypox case velocity for both the logistic and Gompertz
models. The obtained p-values for each geographic region (Table 4) were less than 0.05,
rejecting the null hypothesis and indicating that there is an effect of geographic region on
the Monkeypox case velocity, supporting the results obtained in the Kruskal–Wallis and
Wilcoxon tests.
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Table 4. Results of the multiple linear regression analysis for Monkeypox case velocity.

Model Geographic Region p-Value Hypothesis Testing Interpretation

Logistic World <2.2 × 10−16 Reject H0 Significant effect
Logistic Europe 0.001295 Reject H0 Significant effect
Logistic North America 0.000108 Reject H0 Significant effect
Logistic South America 9.74 × 10−7 Reject H0 Significant effect

Gompertz World <2.2 × 10−16 Reject H0 Significant effect
Gompertz Europe 0.000314 Reject H0 Significant effect
Gompertz North America <2.2 × 10−16 Reject H0 Significant effect
Gompertz South America <2.2 × 10−16 Reject H0 Significant effect

3.3.5. Comparison of Modeled Variable against Real Data

The comparison of actual data with the data obtained from the mathematical model for
the Monkeypox case velocity by geographic region resulted in determination coefficients
(R2) for both the logistic model and the Gompertz model (Table 5):

Table 5. Adjustment values for models and actual data for each region studied.

Geographic Region R2–Logistic R2–Gompertz A.I.C.–Logistic A.I.C.–Gompertz

World 0.8885 0.9952 6836.8260 5669.1384
Europe 0.8720 0.9881 5783.6794 5066.7892

North America 0.9023 0.9900 6087.4334 5336.7998
South America 0.8774 0.9988 5869.6060 4229.3746

These values indicate that both mathematical models firmly represent the actual data
for all variables. However, it is essential to emphasize that the Gompertz model would be
better because the coefficients obtained are more significant than the logistic model and
close to one. In particular, the Gompertz model applied to South America showed the
highest value among all (0.9988).

The adjustment analyses’ results by calculating the coefficient of determination and
the Akaike information criterion (A.I.C.) are also shown in Table 5:

A higher coefficient of determination and a lower value of the A.I.C. index for the
Gompertz model indicate a better fit to our data than the logistic model.

3.4. Estimation of the Basic Reproduction Number

Graphically, it was possible to estimate the growth rates of the epidemic for each model
in each region (rlogistic, rgompertz). The estimated regression lines are shown in Figure 3. The
growth values of the epidemic are considered as the slopes of the regression lines in each
case; for example, for the world: rlogistic = 0.0311 and rgompertz = 0.1421.
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Figure 3. Linear regression curves of the actual and modeled data considering 26 days of exponential
growth and taking the natural logarithm of the accumulated data for the infected population shown
from top to bottom for (A) world, (B) Europe, (C) North America, (D) South America.

While the analytical approach also found values of (rlogistic = k, rgompertz = γ·ln(α)),
these are shown in Table 6:
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Table 6. Growth epidemic values are determined by each region by graphical and analytical approxi-
mation.

Geographic
Region

Graphical
rlogistic

Graphical
rgompertz

Analytical
rlogistic

Analytical
rgompertz

World 0.0311 0.1421 0.0315 0.2458
Europe 0.0349 0.1179 0.0362 0.2893

North America 0.0287 0.0931 0.0300 0.2377
South America 0.0364 0.1820 0.0367 0.2454

The calculations for R0 assumed that the pre-infectious period is the average incu-
bation period, D′ = 9.1 days, while the infectious period is the mean generation period,
D = 12.5 days [37]. For example, to calculateR0 for the world with the r_logistic obtained
using the graphical method: R0 = (1 + 0.0311× 9.1)× (1 + 0.0311× 12.5) = 1.78178. The
estimatedR0 values using both methodologies are shown in Table 7.

Table 7. R0 values are determined by each region by graphical and analytical approximation.

Geographic
Region

Graphical
Logistic R0

Graphical
Gompertz R0

Analytical
Logistic R0

Analytical
Gompertz R0

World 1.78178 6.36625 1.79327 13.18179
Europe 1.89239 5.12781 1.93098 16.76913

North America 1.71361 3.99690 1.75038 12.56134
South America 1.93695 8.69906 1.94593 13.15080

4. Discussion

This study was conducted one year after the HMPX epidemic outbreak in different
geographic regions, and through comparative mathematical modeling, the epidemiological
dynamics of cases were assessed.

Poxviruses are pathogens closely linked to the history of humanity [38,39]. Despite
evolving slowly due to their sizeable double-stranded D.N.A. genome, poxviruses are
highly adaptable and can undergo genotypic and phenotypic alterations to adapt and
thrive in new hosts [40–42]. Furthermore, their genomic architecture can shape their
evolution and sometimes interact with other viruses [41,43].

The HMPX outbreak presents some peculiar and intriguing features in the field of
virus epidemiology. First and foremost, it is an epidemic occurring within an ongoing
pandemic (COVID-19) caused by the SARS-CoV-2 virus [44,45]. Secondly, despite its
primary association with primates, it can infect various animal and human species [2].
Unlike the outbreaks in humans in past decades [4], the 2022 epidemic outbreak constitutes
the first significant case of global dispersion, affecting several countries and continents [5].
Third, the global discontinuation of vaccination programs against orthopoxviruses (i.e.,
vaccinia virus vaccine) after the eradication of smallpox potentially correlates with the
re-emergence of this virus [7], implying the need to review global vaccination strategies to
prevent or control new outbreaks of HMPX.

Mathematical models play a pivotal role in the anticipatory analysis of the propagation
of infectious diseases, providing a crucial foundation of information for decision-makers in
public health and government policy. In the present study, in addition to addressing differ-
ent data, scales, and geographical spaces, we aimed to include comparative approaches
and novel methodologies. While many epidemiological studies have developed compart-
mental mathematical models to understand the infectious dynamics of HMPX [20–23,46],
there are not many studies that have attempted to explain the dynamics using a single
differential equation for the infected population in HMPX. In this sense, our study provides
a primary approximation model for HMPX with two large and well-studied mathematical
models, namely the logistic and Gompertz models. These models have proven to be useful
in describing infectious dynamics in many cases [18,19]. Furthermore, we implemented
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the methodology presented by Bronshtein and Semendiaev [30] in the case of fitting the
data using three points for the Gompertz model. Additionally, we calculated R0 using
an empirical and analytical approach with real data in models based on a single ordinary
differential equation.

Performing mathematical modeling of HMPX cases using two models simultaneously
allows us to establish comparisons to determine the one with the best fit. Thus, based on
the coefficient of determination values, the Gompertz model fits our data better than the
logistic model. This is because, in the daily data (velocity of cases), a slightly asymmetrical
distribution is observed, with the highest rates of contagion occurring at the beginning
of the epidemic. Geometrically, this represents that the tipping point (maximum speed,
corresponding to the maximum number of daily recorded infections in the data) occurs
before the midpoint of the accumulated infection curve.

This characteristic and a better adjustment to data with these features have been
determined in several epidemiological studies, in which models based on differential
equations are also compared [18,19]. Although there are equivalent ways of writing the
Gompertz function with three parameters, it is recommended to use the form in which the
time coordinate is explicitly presented at the inflection point tc [14,24]. The methodology
used in this study enables us to estimate the critical time tc based on the presented function.
It also allows us to highlight the relationship between the rates of the epidemic spread r
(infection rate, epidemic growth rate, or population growth rate of infected in each region),
the maximum cumulative amount α, and the initial number of infected N0 concerning
the parameters of the Gompertz curve. We determined that β = ln

(
α

N0

)
and γ = r

ln(α) .
In the case of β, this parameter controls the speed with which, given an initial amount
of accumulated infections, these approach their maximum accumulated amount. The
more significant the difference between α and N0, the faster the infected population will
grow. This is deduced by taking the limit in Equation (7) to: lim

β→∞
N(t) = lim

β→∞
αe−βe−γt

= 0.

Therefore, in Equation (5): γ·N·ln
(

α
N
)
→ 0 , when N → α . On the other hand, for γ, we

can calculate the intrinsic growth rate for the infected population as r = γln(α). Finally, we
can calculateR0, one of the most relevant parameters in viral epidemiology.

In the Gompertz model, taking the logarithm of the equation results in a nonlinear
equation on the logarithmic scale, given the presence of the natural logarithm function
ln(α/N). Consequently, the relationship between the slope of the linear regression and
rgompertz is not direct. It cannot be immediately obtained through the slope of the regression
line on the logarithmic scale. In contrast, when we take the logarithm of the logistic model
equation, a linear relationship emerges on the logarithmic scale. This allows the slope of
the linear regression to directly provide an estimate of the intrinsic growth rate (rlogistic).
We also observe discrepancies when determining rgompertz through the two methodologies.
These discrepancies arise from the Gompertz function’s mathematical structure, which does
not allow the determination of the growth rate through a single logarithm. Additionally,
this value (the slope of the regression lines) is sensitive to the assumed amount of data as
exponential growth. As a result of the above, significant discrepancies in the R0 values
estimated by the Gompertz model are noted in each method used to find rgompertz. In
any case, it is essential to mention that, the R0 calculated from the Gompertz model is
greater than that calculated by the logistic model. At the beginning of an outbreak, there
is always a lack of data because the disease is unknown. The Gompertz model, being
asymmetric, rises more quickly, leading to an R0 that is always higher than the logistic
model. However, theseR0 estimates should be viewed as initial and imprecise empirical
references. They depend on factors such as periods of pre-infection and infection, and
the method of calculating the rate of outbreak growth, which may vary significantly in
each region and study population. Additionally, the values of the periods of infection and
pre-infection (incubation) used for our calculations represent only average values within a
wide range. Different ranges of values can be found in the literature [37,46,47].
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For the logistic model, we note that when estimating rlogistic with a small population
Q compared to its carrying capacity M, its growth resembles exponential growth, and the
growth rate is approximately constant. However, as the population approaches carrying
capacity (Q approaches M), growth slows and approaches zero, otherwise known as the
self-regulation effect of carrying capacity. Therefore, the logistic equation captures both the
initial exponential growth and the eventual stabilization of the population as it approaches
M. However, it is imperative to recognize the inherent limitations of logistic models, as
they assume a uniform population and equivalent vulnerability to infection.

Both methods of estimating rgompertz are valid only for small values of N and for an
initial growth phase. As the population grows and approaches carrying capacity (α), the
behavior of the Gompertz equation differs significantly from exponential growth. Therefore,
this approach adequately describes the initial behavior but does not represent the complete
behavior of the Gompertz model.

Due to the methodologies used, the values ofR0 should be taken as illustrative and
are presented to quantitatively show thatR0 > 1 in any case, and the epidemic outbreak, in
general, occurs faster according to the Gompertz model, which fits better with the observed
data in Figure 3. Here, we note that the slopes found are closer to those found in the actual
data. However, the logistic model estimated consistent values of R0 (through graphical
and analytical approximations), and they were closer to those observed at the beginning of
the epidemic [48].

Even though the differences mentioned above between the two models impacted the
early (and better-adjusted) estimates of tc and the highest contagion rate for the Gompertz
model, both models validly approximated the epidemiological behavior of HMPX, and
how geographic region affects its contagion velocity. This allowed us to observe significant
differences in Monkeypox case velocities among each geographic region in both models,
except for the peer evaluation between Europe and South America, which exhibited similar
behaviors (a flatter curve) compared to North America and the world, which presented
more accentuated curves. All these mathematical estimates with an epidemiological rela-
tionship enable us to understand better the dynamics of HMPX and its potential preventive
and clinical implications.

Historically, Monkeypox was a self-limiting disease. However, the recent outbreak has
indicated a shift in its transmission patterns, especially among men who have sex with men
(MSM) [45]. Clinical manifestations have evolved, with patients now exhibiting unusual
symptoms such as proctitis, tonsillitis, and paraphimosis related to penile edema [49].
Amidst this health crisis, there is a silver lining in the antigenic similarity between the
smallpox virus and the Monkeypox virus, allowing for the use of smallpox vaccines as a
preventive measure against Monkeypox [50].

Strategies for managing and preventing Monkeypox are based on measures initially
designed for smallpox protection. Smallpox is the only infectious disease that humanity has
successfully eradicated, and the strategies employed could be applied to Monkeypox [51].
However, the challenge lies in understanding the Monkeypox virus and its transmission
patterns and developing effective treatment and prevention strategies [52].

The recent Monkeypox epidemic has highlighted the virus’s adeptness at evading
the host’s immune system. The virus has developed strategies to control the activation
of antiviral T cells and the production of inflammatory cytokines. This immune evasion
mechanism is crucial for the virus’s efficient spread within the infected host [53]. Like other
poxviruses, the Monkeypox virus has evolved multiple mechanisms to evade the host’s
immune system [54]. The discontinuation of smallpox vaccination, which provides cross-
protection against Monkeypox, may have significantly contributed to the 2022 outbreak [7].
A study on the Jynneos vaccine and Monkeypox infection delves into the immune responses
elicited, presenting fewer side effects than earlier smallpox vaccines [55]. It represents an
example of potential improvements in vaccination strategies against HMPX and highlights
the need to review current immunization programs.
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With respect to the aforementioned information, the models used in the present study
can consider the vaccination factor as a coefficient derived from the empirical efficacy
values of a potential authorized vaccine against HMPX, or they can be used to simulate
various vaccine scenarios. Alternatively, the vaccination factor could be simulated by
implementing fractional order or compartmentalized models, as has been published for
other viral diseases [56–58]. The logistic model is better suited to the initial and mid-
stages of an epidemic, offering a symmetrical S-shaped curve that depicts consistent viral
spread and carrying capacity. In contrast, the Gompertz model excels in later stages,
capturing slowed disease spread with its asymmetrical S-shaped curve influenced by
factors like immunity. Consequently, it can be deduced that the model choice depends
on the epidemic phase, disease spread nature, and data fit. Both models share a sigmoid
and bounded function, but the logistic model’s tipping point creates a symmetric curve,
while the Gompertz model’s inflection point leads to asymmetry. Model selection hinges on
observed data characteristics, considering the Gompertz model’s potential initial growth
rate overestimation.

5. Conclusions

The present study demonstrates that the use of mathematical models based on single
differential equations firmly represents the real data, as shown by the determination
coefficients (R2) for both the logistic model and the Gompertz model. Consequently, this
allows for the estimation of important epidemiological values such as tc, the contagion rate,
and the basic reproduction number (R0).

The case data in the selected geographic regions showed a non-normal distribution and
the significant effect of the geographic region on Monkeypox case velocity. Furthermore,
significant differences were observed between case rates in these regions, except for Europe
and South America, which exhibited flatter curves.

Finally, due to the nature and symmetry (or asymmetry) of the compared models,
it was observed that the Gompertz model better represented the real case data, while
the logistic model allowed the estimation of consistent values of R0 (through graphical
and analytical approximations), which were closer to those observed at the beginning of
the epidemic.
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